
IEEE Transactions on Power Systems, Vol. 9, No. 3, August 1994

A N I M P L E M E N T A B L E D I S T R I B U T E D STATE E S T I M A T O R A N D DISTRIBUTED
B A D DATA P R O C E S S I N G SCHEMES FOR E L E C T R I C POWER SYSTEMS

S.-Y. Lin C.-H. Lin

Department of Control Engineering
National Chiao Tung University

Hsinchu. TAIWAN, ROC

1277

Abstract - In this paper, we present an implementable dis-
tributed state estimator and distributed bad data detection and
identification schemes for electric power systems. The system
under consideration is partitioned into k areas, each of which
is governed by a local control center that has a t least one com-
puter system. These decentralized computer systems are linked
by a communication network. The distributed state estimator
and distributed bad data processing schemes are designed to be
carried out in this computer network. The proposed distributed
state estimator possesses the following properties, which ensure
its implementability: 1) it uses only the computers available
in the decentralized local control centers, 2) i t is executed in a
small-scale computer communication network, 3) it can converge
even if errors occasionally occur in the communication links, and
4) the decentralized computers need not be synchronous. Fur-
thermore, our distributed bad data processing schemes can pro-
cess the bad data in each area independently using the corre-
sponding local computer system.

I. In t roduct ion
To render the burden of massive data processing and com-

putations in the control center of large power system and to
improve the efficiency of control and management, distributed
processing is a trend. In recent years, distributed processing
systems have become more practical to implement because ad-
vances in computer network technology and the drastic reduction
in the cost of computers has made sophisticated computer coni-
munications environments and computers available at lower cost.
However, before advanced computer network technology can be
employed in power system control and management, methods
that are suitable for distributed processing need to be devel-
oped. In this paper, we focus on state estimation, a fundamen-
tal problem in the control and management of power systems,
and present an implementable distributed state estimator and
distribiited bad data detection and identification schemes. The
concept of distributed state estimation was proposed by Lin in
[l]. In that work, a distributed state estimator based on the
RQPD method was considered. However, that distributed state
estimator is haid to implement from a practical viewpoint, be-
cause l) a data communication network that is topologically the
same and physically in parallel with the power network is needed,
2) the data communication network should have no communica-
tion error, 3) too many processors are needed, since each node
in the data communication network needs a processor, e.g., the
number of processors equals the number of buses, and 4) a local
synchronization scheme in each processor is needed to govern the
synchronization of the iterative RQPD method. To circumvent
those four restrictions on the data communication network, this
paper uses a different approach. First of all, we assume that
the power system is partitioned into several areas and that each
area has a local control center to govern that area’s operations.

93 SM 531-4 PWRS A paper recommended and approved
by the IEEE Power System Engineering Committee of
the IEEE Power Engineering Society for presentation
at the IEEEIPES 1993 Summer Meeting, Vancouver, B.C.,
Canada, July 18-22, 1993. Manuscript submitted Jan.
4, 1993; made available for printing May 26, 1993.

PRINTED IN USA

This assumption is reasonable because for large system decen-
tralized control seems to be a promising approach. We further
assume that the computer systems in the local control centers of
adjacent areas are connected by communication links and thus
form a small-scale computer network. Then, we present in this
paper a distributed state estimator based on the partially asyn-
chronous block Jacobi method, which will operate on the small-
scale computer network. In contrast to the four drawbacks of
the distributed state estimator based on the RQPD method, the
distributed state estimator proposed here possesses the following
properties, which ensure its implementability: 1) it uses oqly the
computers available in the decentralized local control centers, 2)
it is executed in a small-scale computer communication network,
3) it can converge even if errors occasionally occur in the commu-
nication links, and 4) the decentralized computers need not be
synchronous. Furthermore, we will also present distributed bad
data detection and identification schemes for use with the dis-
tributed state estimator; these schenies are based on a reduced
model method proposed by Korres and Contaxis 121.

11. Background of t h e C o m p u t e r Network
a n d Measurement Requi rements

The power system under consideration is partitioned into k
areas, and each area is governed by a local control center. The
measurement data in each area will be collected in each individ-
ual local control center. Two areas are called adjuretit ureas if
they are connected to each other by tie-lines. Fig. 1 shows such a
structure. We assume that each local control center has a t least
one computer system for data acquisition, data processing, and
computation. The computer systems of adjacent areas are con-
nected by communication links, so these decentralized computer
systems form a computer network. Fig. 2 shows a computer net-
work corresponding to the system shown in Fig. 1, where each
black square denotes a computer system.

area 1 area 5

area 3 area 2 area 4

e.f.: external reference boundary bus
i.m.: injection-measured boundary bus
s.b.: swing bus

Fig. 1. Example of a system partitioned into areas.
0885-8950/94/$04.00 0 1993 IEEE

1278

3 2 4

Fig. 2. Example of a computer network for the system shown

in Fig. 1.

Let the boundary bus with real and reactive power injection
measurements of an area be called an injection measured bound-
ary bus. Let the tie-lines with power flow measurements be
called jlow-measured tie-lines. Then, a boundary bus of area
i connected t o some adjacent area, say area j , at an injection-
measured boundary bus of area j or at a boundary bus of area
j through a flow-mea.sured tie-line is called an external reference
boundary bus of area j . For example, in Fig. 1, the external refer-
ence boundary bus in area 1 connected to an injection-measured
boundary bus in area 2 is an external reference boundary bus of
area 2.

Then, for the purpose of distributed bad data detection and
identification, the placement of the measurement meters in the
system should meet the following requirements.

1. Each of the k areas is a maximal noncritical area. as defined
in [2] and is also an observable subnetwork as defined in 31.

boundary bus.
A property that €allows directly from requirement 1 is that

the injection-measured boundary buses of an area or the flow-
measured tie lines must be critical measurements. We call these
critical measurements boundary critical measurements. More de-
tails on this type of measurement setup will be presented in the
section below on bad data detection and identification. Here we
will simply note that the measurement setup of the test exa.mples
presented in [2] meets the two requirements above.

To account for the effect of the swing bus in the distributed
state estimation, we use a distributed tier propagation method,
which will be presented la.ter, based on a tier structure. The
tier-structure for the areas of the power system (or the computer
network) is formed by first designating the area containing the
swing bus to be area 1, and na.niing that area tier 1. Thus, tier 1
contains only one area. We then set j = 1 and label as the areas
in tier j + 1 all the as yet unlabelled areas that have external
reference boundary buses in the areas of tier j. We repeat this
labelling process until a.11 areas are labelled. Let T denote the
total number of tiers formed, and let j , denote the total nuniber
of areas in tier j. Fig. 3 shows an example of the tier-structure
for the power system shown in Fig. 1.

In the computer network, we need to assign one computer sys-
tem to initiate the process of state estimation and to collect and
broadcast simple status and command signals from and to all
other computer systems. Accordingly, communication paths are
needed, and we will also designate these communication pat.hs
based on the tier structure described above. Viewing the tle-
centralized computer systems as nodes in the computer network,
we designate the node corresponding to area 1 to be the root
node. Then, based on tlie tier structure, we may form an oiit-

going directed radial tree as follows. All the nodes in tier 2 are
directly connected to lhe root node by a single conimunicat,iori
link. Thus, all these communication links will be set up as tree
branches with an outward direction. We then set j = 2, let t,he
set of nodes in tier j + 1 be denoted by Nj+', and let the set
#j+l = Nj+'. Starting from the first node of tier j , we assign
the communication links that connect the first node of tier j to

2. Each area must contain a t least one external re I erence

I : tier 1, 11: tier 2, III: tier 3, IV: tier 4

Fig. 3. Example of the tier-structure for the system shown
in Fig. 1.

nodes in_flJ+' as tree branches with an outward direction and
updat,e Nj+' by deleting the nodes connected to the first node
of tier j. We repeat this process from the second node until the
j,th node of tier j and from the second tier to (T - 1)th tier, so
that an outgoing directed radial tree is eventually formed. Fig.
4 shows such an outgoing directed radial tree for the computer
network shown in Fig. 2. Thus, we let the root node be re-
sponsible for initia.ting the state estimation and collecting and
broadcasting all the necessary signals. All other nodes will com-
municate with the root node through a backward direction in the
radial tree. Furthermore, we define a node i in the radial tree
as a predecessor of node j if there exists a directed tree branch
from node i to node j. Consequently, node j will be a followcr
of node i if node i is a predecessor of node j . For example, in
Fig. 5, node 2 is the predecessor of nodes 3 and 4, and nodes 3
and 4 are followers of node 2. Any node that has no followers is
called a leaf node.

111. S t a t e m e n t of t h e Distr ibuted
State Es t imat ion P r o b l e m

For the 7th area (i = 1,2 , . . . , k), let us adopt the following

N,: the number of buses
z,: the local measurement vectoi, which may include the tie-

line flow measurements measured from the end bus in the zth
area
xl: the local state vector, composed of N, voltage magnitudes

and N, phase angles

notation:

ROOT

3 2 4

Fig. 4. Example of the directed radial tree for the computer
network shown in Fig. 2.

1279

xi,=: the state vector of the external reference boundary buses
of area i

hi: the nonlinear measurement vector function corresponding
to zi

q;: the Gaussia.n random measurement error vector corre-
sponding to z;

R,: the diagonal covariance ma.trix of the measurement error
vector 11,

The measurements in each area i can be expressed as

Z, = h(x,,xt,e) + 17%. (1)
Let the state vector, measurement vector, nonlinear measure-

ment vector function, the measurement error vector and the cor-
responding covariance matrix of the whole system be denoted by
x, z, h, 7, and R, respectively. Then x = (xI ,xz, . . . , xk), z =
(Zi,Zzr. .. ,zk) ,h = (hi , 11z7.. . ,hk),7] = (V I , % , . . . ,Vk) and =
r R i 0 ... 0 1

.. . 1 0 R2 ... 0 1 . Furthermore, N (= NI + NZ + . . . +
l o 0 . . . RI;]
Nk) denotes the total number of buses of the system. Based on
(I), the measurements of the whole system can be expressed by

z = h(x) + 9. (2)
Then, the problem of our distributed state estimation is to use

the computer network associated with the measurement data col-
lected in each local control center to solve the following weighled
least square (WLS) problem in a distributed way:

1
2 (3) m;tnJ(x)(= -[z - h(x)lTR-'[z - h(x)]),

where the phase angle of the swing bus will be kept fixed as a
reference.

IV. T h e Dis t r ibu ted State Es t imator Based on t h e
Par t ia l ly Asynchronous Block Jacobi M e t h o d

From the definitions of z, x, h , and 7 and the form of (I), the
measurement equation (2) can be rewritten as

and the WLS problem can be rewritten as

k

min J(x)(= E[., - h,(x,, ~ , , ,) l ~ R ; ~ [z , - h4xt,x3,dI). (5)
,=1

Obviously, a distributed computation performed in the com-
puter network environment should be different from a compu-
tation carried out in a central computer. First of all, in the
centralized computation, the reference effect of the phase angle
of the swing bus will affect the states of all other buses during the
progress of the computing process. However, in the distributed
computation, since the swing bus lies only in area 1, then ini-
tially, other areas cannot utilize the effect of the reference phase
angle of the swing bus without certain initial value processing
procedures. To overcome this drawback of a distributed compu-
tation environment, we use a distributed tier propagation method
to deliver the reference effect of the reference phase angle of the
swing bus to all other areas i = 2, . . . , k.

4.1 T h e initial value processing procedures
The distributed tier propagation method, which contains the

distributed forward calculation and backward notification proce-
dures, is based on the tier structure as described below. With-
out loss of generality, we will order the sequence of the indices of
the areas according to the tier structure as 11(= 1),21, . . . ,2,,
. . . , Ti, . . . , T - k). Note that area 11 is the only area in tier 1
that contains %- t e swing bus.
Distributed foniiard tier propagation for calculating initial values
of the states: The procedures will be described in two steps.

(1) Once the root node initiates the process of state estima-
tion, the computer system of area 1 will perform the followiiig.

Let Zll denote ?Il but exclude the boundary critical measure-
ments, and let h,, and fjll denote the nonlinear measurement
vector function and measurement error vector corresponding to
Zl l , respectively. Since each area is an observable subnetwork
by requirement 1 of the measurement setup, we will solve 1,lie
following isolated area state estimation problem:

in the computer system of area 11, where RI, is the covariance
matrix of fjll. Then, the coniputer system of area. 1 will send the
values of the states of the external reference boundary buses to
the adjacent areas in t,ier 2.

(2) Once the computer system in area i of tier j (> 1) receives
the values of the statme vector xj;: of all the external reference
boundary buses from the adjacent areas in tier j - I, it will
perform the following. Let zj, denote zj, but exclude all the
boundary critical measurements except for those which are in-
volved with the received states of the external reference bound-
ary buses in the areas of tier j - 1. If these included boundary
critical measurements are involved also with the external refer-
ence boundary buses in the areas of the same tier j , we,denotc
the states of the external reference boundary buses as xi,,.. IA
h3, and f j j , denote the nonlinear measurement vector functioi~
and measurement error vector corresponding to Zj,, respectively.
We will solve the following isolated area state estimation prob-
lem:

where R j , is the covariance matrix of f j j , , contains xi::,
and and the values of x:,,. are set as constant with 1 p.u.
voltage magnitude and 0" phase angle in the above minimization
problem.
Backward propagation for notifying root node of the completion
of initial ,value calculation:

Let a flag d; denote the completion of the initial value calcula-
tion of the i th area. i; = l(0) represents completion (incomple-
tion). The following describes an accumulated way to inform the
root node the completion of the initial value processing. Once
any ith individual computer system in tier T completes the cal-
culation of initial values, it will send a flag i ~ , = l to its prede-
cessor in the radial tree. For any node j in the radial tree, let
jl, .. . ,jj denote all the followers of node j. If node j receives
the flag i; = 1, i = j l , . . . , j from all its followers, then it will
send a flag ij = 1 to its preiecessor.
Stopping criterza for initial value processing: Let r l , . . . , rf tle-
note the indices of the followers of the root node r. If the root
node receives the flag di = 1, i = r l , . . . , r from all its followers,
then the root node will initiate the partiahy asynchronous block
Jacobi method based distributed state estimation process.

4.2 T h e d is t r ibu ted state est imat ion based o n t h e
par t ia l ly asynchronous block Jacobi method.

WLS problem.

C,(x,) = f l , (~ ~) ~ R ; ' H ~ (x ~) , where H,(x,) = w. Then
the block Jacobi method for solving (5) uses the following itera-
tions:

where y is a positive stepsize, t denotes the iteration index, and .
Ax(t) is the solution of

First of all, we shall describe the block Jacobi method for the

4.2.1 The block Jacobz method. Let

x (t + 1) = x(t) + yAx(t) (6)

a x (t)) A x (t) = - v J(.(f)), (7)
where

1280

g J (x) = [z - h(x)]* I t - 'H(x) , and H (x) = 2. If we consider
the whole system as an area, then the above block Jacobi method
is the Newton-like method. Since
Ax = (Ax,, AX*,. . . , Ax,), v J (x) = (~ J I (x I) , . . . , v J k (x k)) ,
where v J , (x z) = (z, - 11, (x , ,x*,~))* R;'H,(x,), then from the
structure of C (x (t)) , we see that (7) can be decomposed into k
independent sets of linear equations as shown below:

C, (x ; (t))Ax , (t) = - v J i (x ; (t)) , i = 1 , 2 , . . . , k. (8)

Note that C;(x ; (t)) and v J ; (x , (t)) are functions of x ; (t) and
x , ,J t) . Therefore, if each local computer system receives the
updated values of x+(t) through the communication links from
the adjacent computer systems, it can perform (8) and update

x i (t + 1) = x ; (t) + yAx , (t) . (9)

4.2.2 The partially asynchronous algorithmic model for dis-
tributed state estimation. The execution of (8) and (9) for all
i = 1 , . . . , k in a centralized computer is carried out in a syn-
chronous mode. However, in a distributed computing environ-
ment, it is difficult to execute an iterative method using decen-
tralized computer systems and still maintain synchronization.
Thus, if it is to be implemented in a distributed computing en-
vironment, it is almost unavoidable that the iterative method
will be carried out somewhat asynchronously. However, in this
case, a totally asynchronous mode is not required by contempo-
rary sophisticated computer network technologies; rather, a par-
tially asynchronous mode more adequately reflects the comniu-
nication capability of computer networks. To precisely describe
the asynchronism between the decentralized computer systems,
we should consider the iteration index t in the previous subsec-
tion as a true time. Thus, t + 1 represents one time unit ahead
o f t but not the next iteration count as shown in (9). Note that
the time unit considered here is not a second or a minute; its
value depends on the processing speed of computer, the commu-
nication rate of the communication links, and the size (number
of buses) of the local area. The timing for the ith computer
system to carry out the calculation of (8) can be asynchronous
with other computer systems. Moreover, different frequencies of
computing (8) can occur in different computer systems due to
the different size of areas. Therefore, let T' denote the set of
times at which the local state vector is updated. Then, (9) un-
der the partially asynchronous model becomes x; (t + 1) = x ; (t)
if t 4 Ti, and x ; (t + 1) = x ; (t) + y A x ; (t) if t E 2';. More-
over, because the value of xi,+ stored in the memory of the ith
computer system was seut from adja.cent comput,er systems, x ; , ~
used in the itli computer system for solving (8) may not be the
current xi,? due to a delay in or loss of coinniunication between
computer systems. Let x ; , ~ , (T ; (~)) denote the value of x , , ~ ~ , the
state of the external reference boundary bus ej, at time ~ : , (t) .
Then x ; , ~ , (T : ~ (~)) denotes the value of stored in the ith com-
puter used in solving (8), where ~ i , (t) 5 t . Then, the partially
asynchronous algorithmic model is based on an asynchronous
measure B , which is a positive time unit, and makes the follow-
ing partially asynchronous assumptions:

(a) For every ith computer system and every t 2 0, at least
one of the elements of the set { t , t + 1,. . . , t + B - 1) belongs to
T'.

(b) For all i and ej , and all t 2 0 belonging to T',

t - B < T$) 5 t .

These assumptions imply that (a) each computer system per-
forms an update at least once during any time interval of length
B, and (b) the external information used by any computer is
outdated by at most B time units.

4.2.3 The partially asynchronous distributed state estimator.
It may happen that the ith computer system receives the up-
dated x ; , ~ while solving (8) . For such a case, we will not change
the value of xi,+ during computation. However, to avoid data
confusion, we will use two sets of memory locations to store the

value of xi,=. One set of memory locations is called the updating
memory, which stores the updated value of x ; , ~ received from
adjacent computer systems. The other set of memory locations
is called the executing memory, which will fetch the value of x , , ~
from the updating memory when the computer starts solving (8).
The stored value in the executing memory is kept unchanged be-
fore the computer finishes solving (8). Then, based on the above
partially asynchronous assumptions, we see that each computer
system can perform its designated computation without consid-
ering the situation of the other computer systems. Thus, the
partially asynchronous block Jacobi method based distributed
state estimator can be stated as follows:

Each local computer system continue performing the following
three steps after the initial values of x , are calculated.

Step 1: Solve (8) to obtain A x ; (t) based on the current value
of x;(t) and the value of in the executing memory, which
consists of (t)) for all external reference boundary buses
e, .

Step 2: Once Step 1 is completed, update x ; (t) by x ; (t) +
y A x , (t) and send the values of the states of the external refer-
ence boundary buses of the adjacent areas to the corresponding
computer systems through the communication links.

Step 3: If I Ax;@) I m (the largest magnitude of the compo-
nents in Ax,(t)) < E (a preselected accuracy), set a flag vi = 1.
If node i is a leaf node, set 3; = vi = 1. If node i is not a leaf
node, determine 3i = v; A i.;l A . . . A fi;, where il, i z , . . . , i f are
the indices of the followers of node i. Then, if the value 3; = 1,
this value will be sent to the predecessor of node i.

Stopping criteria: If i., = 1, where the subscript r denotes
the root node, then the distributed state estimation based on
the partially asynchronous block Jacobi method is completed.
Consequently, the root node will broadcast to all other nodes a
command to begin the process of distributed bad data detection
and identification along the directed radial tree.

4.2.4 Discussion concevning the convergence of the partially
asynchronous block JacoLi meihod based distributed state esti-
mation and the stepsire y. The general version of the partially
asynchronous block Jacobi method ha.s been applied to solve
numerical problems using parallel processors. A theorem of con-
vergence for the general version of this method has been shown
in (41. A version for our case is sta.ted in the Appendix.

The main concern of this theorem is to determine a range
(0, yp) and show that if the updating stepsize y E (0, yo), then the
partially asynchronous block Jacobi method based distributed
state estimator will converge. As can be seen from the formula
for determining the value o f yo given in the Remarks concerning
the theorem in the Appendix, the value of yo is inversely pro-
portional to the asynchronous measure B and the product of B
and the size of the system, N'(= 2N - 1). This conclusion is
reasonable because (1) if the degree of asynchronism is larger,
i.e., a larger B, the convergence is more difficult, thus the step-
size should be smaller; (2) if the asynchronism is present, the
convergence is more difficult for larger system, hence the step-
size should be smaller. However, the actual value of B can be
obtained only from testing the actual computer network and re-
lated power system, and this value may vary for the different
computer networks. This implies that the value yo will vary for
different computer networks and related power systems due to
different values of B and different size of the power systems.
Therefore, we may not have a typical value for yo. However, y
can be any value between 0 and -yo. Larger y makes the dis-
tributed state estimation converge fast but unsafe if the value
yo is overestimated. Smaller y makes the distributed state es-
tima.tion converge slow but safe. Thus, the stepsize y is best
determined b a e d on numerous simulations on the actual com-
puter network and related power system. Anyhow, the theorem
of convergence ensures the existence of the stepsize y.

4.2.5 Some features of the partially asynchronous block Ja-
cobi method based distributed state estimation. Based on the
partially asynchronous assumptions and the above convergence
theorem, this partially asynchronous block Jacohi method h s e d
distributed sta.te estimator clearly has the following features: (i)
each local computer system performs its computations indepen-
dent of the other local computer systems, (ii) even if communi-

1281

a chi-square distribution with d , degrees of freedom, where d , =
m, - N, + dimN(H,) , m, is the number of measurements of area
7 , and N(H,) is the null space of H,. We will perform bad data
detection based on a statistical hypothesis by testing the value
of J,(k,) and the value of the normalized residue, that is,

cation errors occur in the communication links between adjacent
computer systems, as long as such errors happen only occasion-
ally, they will not affect the convergence of the method, (iii)
various communication delays in different communication links
and different frequeiicies of computat,ion in different computer
systems are tolerable, and (iv) during the solution process, if
topological changes occur in certain area and the local control
center of this area is informed of these changes and update the
data base; then without stopping the ongoing solution process
of all areas, the final convergent solution is in accordance with
the most updated topology.

The above four features make the proposed distributed state
estimator implementable.
Remark 4 . 1 : About the fourth feature, when the computer of an
area correct its data, base on account of the topological changes,
the values of the s taks in the ongoing solution process can be
viewed as initial values of the states for the system with updated
topology. Thus, there is no need to inform other areas about
this topological change. Furthermore, it can be observed that
our block Jacobi method based distributed state estimator oiily
need to know the boundary connections to adjacent areas but
not the complete topology of the other areas.

V. Bad Data Detection and Identification
In some cases, the measurement data may be contaminated,

thereby making the estimated state invalid. Therefore, to detect
and identify all the possible bad data, eliminate them and then
re-estimate the states from a necessary procedure to obtain a
reliable set of estimated states. There are several good methods
available [6]-[9] for implementing bad data detection and identifi-
cation schemes in a central computer. However, for a distributed
computing environment, we should use distributed bad data de-
tection and identification schemes. The method we employ here
is based on the reduced model method proposed by Korres and
Contaxis (21.

5.1 Preliminaries
A measurement is called critical if its suppression from the

measurement set makes the syst,em unobservable. The connected
portion of the subnetwork consisting of branches incident to non-
critical measurements is called !.he maximal non-critical area [2].
Iilements, et al., have developed in [3] a topological algorithm to
determine t,he region of measurement error residual spread. Kor-
res and Contaxis have shown in [2] that the error residual spread
area equals the maximal non-critical area. Thus, the measure-
ment errors on non-critical measurements of different maximal
non-critical areas do not contaminate each other. This implies
that bad data processing for disjoint maximal non-critical areas
can be carried out independently. Furthermore, Ihmpholz , et
al., have shown in [5 that the criticality of measurements de-

Therefore, if we place the measurement meters properly, so that
each of the k areas is a. maximal non-critical area, then each
local computer system can process the bad data of the corre-
sponding area independently. From the t,opological algorithm
proposed by Klements, et al., in [5], we see that if we set up the
measurements so that (i) each area is an observable subnetwork
consisting of a t least one redundant measurement in the topolog-
ical sense [5], (ii) there are no flow measurements on a.11 tie-lines,
(iii) each area has a t lea.st one injection-measured boundary bus
and at least one external reference boundary bus, and (iv) for
any injection-mea.sured boundary bus, there are no power in-
jection measurements on the corresponding external reference
boundary buses. Then, each area will essentially be a maxinial
non-critical area. Furthermore, the above setup meets the !,WO
requirements pased in Section 11. However, it is important to
double check the above ineasurement setup to ensure that the
injection mea.surements on injcction-measured boundary buses
are really numerically critical for a case. Then, under this mea-
surement setup, we can perform distributed bad data processing
in the computer network.

5.2. Bad data detection and identification of each area
In each maximal non-critical area, let kj be the estimated

states for area i determined previously. Korres and Contaxis
showed in [2] that the performance index of area i , .J,(k,), has

pends essentially on t h e type and location of the measurements.

where r; is the normalized residue of the j t h bus in area i, a;
is the objective function detection threshold for area i , and Pi,,
is the normalized residue detection threshold for the j t h bus in
area i. Then, bad data are assumed to be present if any one
of the above two tests fails. Once the existence of bad data is
detected in an area, we will employ an existing bad data iden-
tification method, such as the method based on measurement
compensation and linear residual calculation presented in [9], to
identify either single or multiple bad data in that area.

5.3. The distributed bad data detection and identifica-
tion schemes

The distributed bad data detection and identification schemes
discussed in the preceding subsections can be stated as follows:

Each local computer system will perform the following opera-
tions once it receives from the root node the command to detect
bad data.

Step 1: Calculate the value J;(kt), the degrees of freedom d; ,
and the normalized residue r$ for all buses in area i. Then test
the value of J,(k;i) and I rfl: 1 based on (10) and (11) with a
properly selected a; and Pi,j to determine whether bad data are
present.

Step 2: If bad data are detected in Step 1, then use the method
based on measurement compensation and linear residual calcu-
lation to identify the bad data and eliminate them.

Step 3: Set flag 6; = 1 if area i has bad data; otherwise, set
6; = 0. Then, if node i is a leaf node, set b; = b;; otherwise,
perform 6j = bi A b;, A . . . A b;, when the values of the b,,'s from
all the followers of node i are received, where i l , i z , . . . ,if are
the indices of the followers of node i. Once the value of b, is
determined, it will be sent to the predecessor.

Criteria f o r terminating distributed state estimation or restart-
ing another cycle ojIhe distributed state estiyation: If the logical
value 6, corresponding to the roof, node is 6, = 0, then the root
node will broadca.st a signal to all other nodes to inform them
that the state estima.tion is complete; otherwise, the root node
will broadcast a signal to all other nodes to inform them that
the whole process of distributed state estimation needs to be
repeated using the new sets of measurement data.

VI. Test Results
The communication and broadcast of command and status

signals between computer systems requires computer prolocols.
From the viewpoint of computer network technologies, the de-
sign of such simple protocols is not difficult; however, it is be-
yond the scope of this paper. Therefore, we will not use an
actual computer network to simulate the proposed distributed
state estimator. For this reason, in this section, we will re-
fer to the partially asynchronous block Jacobi method as the
distributed block Jacobi method most of the time. We simu-
lated the numerical behavior induced by partial asynchronism
and communication errors between decentralized computer sys-
tems in a sequential computer. We tested the distributed state
estimator on the IEEE 30-bus and the IEEE 118-bus systems
using a Sun 4/60 workstation. Due to the limitation on the
length of this paper, we will present four test cases conducted on
the larger system, the IEEE 118-bus system. Before presenting
each individual case, we will describe the common setup of the
system.

Area Partition: The system is pxtitioned into eight areas,
as shown in Fig. 5 , where each area is enclosed by a dashed
contour. For easier addressing, we denote the eight areas by
Al-AS, as marked beside the contours.

Measurement Setup: The measurement setup for all the test
experiments is the flow measurements of all transmission lines

1282

-----------I L-- - - - - - - - - - - ,J

Fig. 5. The IEEE 118-bus system and its partioned 8 areas.

except for all the inter-area tie-lines, the real and reactive power
injection measurements on all the non-boundary buses of ea.ch
area, and the real and reactive power injection measurements on
injection-measured boundary buses 19, 30, 32, 46, 49, 64, 71,
82, 100, and 102. For the sake of clarity in reading Fig. 5, we
have marked the above 10 injection-measured boundary buses by
dotted triangles. Thus, each area is an observable subnetwork.
Furthermore, we have confirmed by testing that the above 10
real and reactive power injection measurements on the injection-
measured boundary buses are numerically critical for a normal
case. Hence, each area is a maximal non-critical a.rea.

A Comme,nt on Measurement Setup: As long as each area is a
maximal non-critical area., the proposed distributed bad data de-
tection and identification schemes presented in Section V always
work. Therefore, we may also consider to include critical mea-
surements of inter-area. tie-line flows in our measurement setup;
however, this will take considerable effort to explain why each
area is a maximal non-critical area in the topological sense and
cause confusion.

External Reference Boundary Buses: The external reference
boundary buses can be observed directly from the locations of
the injection-mea.sured boundary buses in Fig. 5 . Thus, the
external reference boundar buses of each area are as follows:
Al: 48, 54, 50, 51 , A2: 6 0) , A3: {47}, A4: {65}, A5: {77},
A6: 120, 34}, A7: 223, 27, 114, 26, 38}, and A8: {92, 94).

Tier Stmcture: Siiice swing bus 69 is contained in area Al ,
A1 forms tier 1. According to the locations of the reference
boundary buses, areas A2, A3, A4, and A5 form tier 2, and
areas A6, A7, and A8 form tier 3.

Initial Guesses in the Initial Value Processing: Thc initial
guesses of the d u e s of all the states in the initia.1 value process-
ing procedures are 1.00 p.u. in voltage magnitude a.nd 0 radians
in phase angle.

The Stepsize: we set y = 1 in all cases.
Test Case 1 and Results: In this case, we assumed that there

are no bad data, and the measured values were obtained from
a load flow solution. The sequence for solving the isolated area
state estimation problem in the initial value processing proce-

dures is based on the tier structure; the sequence started from
area AI, followed by areas A2, A3, A4, and A5, and finally areas
A6, A7, and A8. After the initial value processing procedures,
the distributed block Jacobi method converged in one iteration
for all areas, and the largest deviation of the voltage magnitude
(P.u.) and the phase angle (radians) from the standard solution
was less than Note that the effectiveness of the distributed
block Jacobi method credits to the initial value processing pro-
cedures, the values of the states obtained from which are already
close to the solution. The CPU time reported for our method on
the Sun 4/60 workstation was 1.04 seconds. We also tested this
case on the same workstation using the Newton-like method with
a sparse matrix techiiique with initial guesses of states as 1.0 LO';
this method took 2.03 seconds of CPU time, and the resulting
largest deviation of the voltage magnitude (P.u.) and phase an-
gle (radians) from the standard solution was also on the order
of lov4. This result shows that our method is not only good for
distributed state estimation; it may also serve as an efficient cen-
tralized state estimator. This result is reasonable because (i) the
initial value processing already makes the values of all the states
close to the solution even though the initial guesses of the states
in the initial value processing procedure are all from l.OLO", and
(ii) the IC isolated area state estimation problems in the initial
value processing procedures and the k independent sets of linear
equations in one iteration of the distributed block Jacobi method
are all small-scale problems and can be solved very fast.

Remark 6.1: The purpose of citing the CPU time in this and
subsequent test cases is simply for a comparison of the effective-
ness of our state estimator with a standard state estimator in the
sense of centralized state estimation. We have no intent to claim
that our state estimator is best among all the centralized state
estimators, because our emphasis is distributed state estimation.

Test Case 2 and Results: We assumed that bad data appear
in the case. Working from the load flow solution used in case 1.
we arbitrarily set the measurement errors on the real power flow
measurements of transmission lines 66 + 67,41 --t 42,29 --+
31, the reactive power flow measurements of transmission lines
2 4 1,68 + 65,116 --+ 68,95 --+ 94,108 4 109, the real

1283

power injection niea.surements on the non-boundary buses 25,
90, and 2, and t,he rea.ctive power injection measurements on the
non-boundary buses 55 a.nd 2. Note that some areas have multi-
ple bad data. After the initial value processing procedures, the
distributed block Jacobi method converged in 3 iterations for all
areas. The CPU time reported on the Sun 4/60 workstation was
1.32 seconds. When applied to this case, the Newton-like method
with a sparse matrix technique used 6.94 seconds of CPU time.
This result further confirms that our method is effective in the
sense of centralized state estimation. We applied the distributed
bad data detection method to ea.ch individual area by both chi-
square test (10) and normalized residual test (11). The values of
ai’s in (10) are deternlined by a false alarm probability 0.05, and
the .values of p;,j in (11) are set equal to 3 w ; , ~ u + for all i , j ,
where w;gj is the j t h diagonal terin of the sensitivity matrix Wj
of area i, and U+ is the j t h diagonal term of R,. Bad data were
detected in all eight areas. Then, using the measurement com-
pensation and linear residual calculation method, we successfully
identified the presumed single and/or multiple bad data in each
area. After eliminating the had data, we re-estimated the states
using our distributed state estimator and the new set of mea-
surements and found that the final estimated states agreed with
the standard solution. These results show that our method is a
complete distributed state estimator, because of its distributed
bad data processing ca.pability.

Test Case 3 and Ir’esults: We assumed in this case that there
were bad data in (,he nbeasurements, and the locations and mea-
sured values of thew bad data were assumcd to he the same as
in case 2. We arbitrarily assumed that there were some com-
munication errors during the execution of the distributed block
Jacobi method. In between the 1st and 2nd iteration of the
distributed block Jacobi method, there were communication er-
rors in the communication links from A1 to A4 and from A2 to
A7. The states involved were those of buses 65, 23, 26, 27, and
114. The false voltage magnitude and plmse angle of bus 65 were
0.535 p.u. less and 0.327 radians more than the correct values,
respectively. For bus 23, the false voltage magnitude and phase
angle were 0.427 p.u. more and 0.631 radians less than the cor-
rect values, respectively. For bus 26, the false voltage magnitude
and phase angle were 0.328 p.u. more and 0.519 radians more
than the correct values, respectively. For bus 27, the false volt-
age magnitude and pha.se angle were 0.147 p.u. less and 0.732
radians less than the correct values, respectively. For bus 114,
the false voltage magnitude and phase angle were 0.369 p.u. less
and 0.278 radians less than the correct values, respectively.

In’cluding this erroneous iteration, the distributed block Ja-
cobbi method converged in 4 iterations for all areas; compared
to test case 2, only one extra iteration is used in this case. This
is because (i) the communication errors occur only between the
1st and the 2nd iteration, and (ii) the areas A4 and A7 lie in
the outmost tier. In general, if the communication errors occur
between areas that lie in the tiers closer to tier 1, more iterations
are needed to correct those errors.

The estimated states were almost exa.ctly the same as those
in case 2. Consequently, the results of the distributed bad data
processing and the re-estimation of the states were exactly the
same as that of case 2.

Test Case 4 and Results: In this case, we simulated the nu-
merical outcomes in the presence of partial asychronism in the
distributed block Jacolii method. We assumed that thcre were
bad data, and the lociit.ions and the measured values of these bad
data were the same as in case 2. Due to the different size of the
areas and various communication delays between computer sys-
tems, in different areas the 1inea.r equations (8) may need to be
solved a different number of times in the partially asynchronous
block Jacobi method. We arbitrarily set the frequency of solv-
ing (8) in all areas as follows: when areas A3 and A5 solve (8)
once, then areas A4, A6, and A7 solve (8 twice, and areas Al ,

solving (8) in the above frequency as one cycle instead of one it-
eration of the partially asynchronous block Jacobi method. Note
that each area uses the available updated states of the external
reference boundary buses when solving (8). This is more or less
a partially asynchronous situation. In this case, after the ini-
tial value processing procedures, the partially distributed block
Jacobi method converged after 2 cycles. Then, using the same
distributed bad data detection and identification procedures as

A2, and A8 solve (8) three times. We wil 1‘ refer to the period of

in case 2, we identified all the bad measurements and eliminated
them. Next, when re-estimating the states based on the new set
of measurements, after the initial value processing procedures,
the partially asynchronous block Jacobi method took one cy-
cle to converge. The largest deviation of the voltage magnitude
(p.u) and phase anglc (radians) from the standard solution was
less than

Remark 6.2: The setup of testing the partial asynchronism
in this case seems simplistic; however, this is thc limitation of
simulating a partially asynchronous distributed algorithm in a
sequential computer. To overcome this limitation, we are cur-
rently conducting a research of using transputers to simulate our
distributed state estimator.

VII. Conclusion
We have presented an implementable distributed state esti-

mator and distributed bad data processing for electric power
systems. This iinplementahle distributed state estimator pro-
vides a foundation for the future development of decentralized
control for large electric power systems. To adapt to the real-
world system where the measurement system and areas of local
control center are predefined, only slight modifications on the
measurements placed on the boundaries of areas are needed; for
instance, it is possible that we may just disregard some redun-
dant measurements placed on the boundaries of areas to make
each area a maximal non-critical area.

One advantage of the proposed estimator that was not fore-
seen a t the beginning of this research is that this distributed
state estimator can serve as an efficient centralized state estima-
tor as well, as we have shown in our test results. Since each local
computer system in the nelwork can perform its own computa-
tions independently (in tlir sense of partial asynchronism), the
processing speed of the dibtributed state estimator carried out by
the computer network should be fast, because all the local com-
puter systems can process in parallel asynchronously. Thus, in
addition to being imple~nentable, the proposed distributed state
estimator is also a very efficient state estimator.

Acknowledgment
This work was supported by National Science Council of Re-

public of China under Graiit NSC82-0404-E009-166.

References

[I] S. Y. Lin, “A dishibuted state estimator for electric power
systems,” IEEE Trans. on Power Systems, vo1.7, 110.2,
pp.551-557, May 1992.

[2] G.N. Korres and G.C. Contaxis, “A reduced model for bad
data processing.” IEEE Trans. on Power Systems, ~01.6,
no.2, pp.550-557, May 1991.

[3] K.A. Clements, G.R. Krumpholz and P.W. Davis, “Power
system state estimation residual analysis: an algorithm
using network topology.” IEEE Trans. on Power Appara-
tus and Systems, vol. PAS-100, no.4, pp.1779-1786, April
1981.

[4] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and distributed
computation, Prentice-Hall International Limited, London,
1989.

[5] G.R. Krumpholz, K.A. Clements and P.W. Davis, “Power
system observability: a practical algorithm using network
topology.” IEEE Trans. on Power Apparatus and Systems,
vol. PAS-99, no.4, July/Aug 1980.

[6] A.Monticelli and A,Garcia, “Reliable bad data processing
for real-time state estimation.” IEEE Trans. on Power
Apparatus and Systems, vol. PAS-102, no.5, pp.1126-1139,
May 1983.

[7] A.Monticelli, F.F.Wu and Maosong Yen, “Multiple bad data
identification for state estimation by combinatorial opti-
mization.”Proc. of the PICA conf. pp.452-460, May 1985.

1284

[81 L. Mili, Th.Van Cut sem and M. Ri bbens- Pavella, “Hypothesis
testing identification: a new method for bad data analysis
in power system state estimation.” IEEE Trans. on Power
Apparatus and Systems, vol. PAS-103. no.11, pp.3239-
3254, November 1984.

[9] I.W.Slutsker, “Bad data identification in power system state
estimation based on nieasurement compensation and linear
residual calculation.” IEEE Trans. on Power Systems!
vo1.4, no.1, pp.53-GO, February 1989.

Appendix
Theorem of Convergence: (a) Let 11’1 be the Lipschitz constant

such that 11 v J (z) - vJ(y)llz 5 K1llz -y112,Vz,y E ?R”, where
N‘ = 2N-1 and N is the total number of the buses of the system.
(b) Let IC, be the largest number of lIC(x,(t));’/z, i = 1 , “ . , k,
that ever occurs in any timet. Then if the partial y asynchronous
assumptions hold, there exists a positive real number yo whose
value depends on N‘, B , Z i l , and Ii’2 such that if 0 < y < yo,
then limt-m vJ(x(t)) = 0.

Remark A . l : The value 70 = (l+B+$B)lilliz has been derived
in [4].

Remark A.2: The proof of this theorem follows directly from
the general theorem in [4].

Autobiography
SHIN-YEU LIN was born in Taiwan, ROC, on June 26, 1953.

He received the B.S. degree in electronics engineering from Na-
tional Chiao Tung University, the M.S. degree in electrical engi-
neering from University of Texas at El Paso and the D. Sc. degree
in systems science and mathematics from Washington University
in St. Louis, Missouri, in 1975, 1979, and 1983 respectively.

From 1984 to 1985, he was with Washington University work-
ing first as a Research Associate and then a Visiting Assistant
Professor. From 1985 to 1986, he was with GTE Laboratories
working in the Switching Department as a Senior hITS. He joined
the Department of Control Engineering at National Chiao Tung
University in 1987 and has been a Professor since 1992. His
major research interests are Large-scale Power Systems, Opti-
mization Theory and Applications, and Distributed and Parallel
Computations.

CH’I-HSIN LIN was born in Taiwan, ROC, on Aug. 29, 1965.
He received the B.S. degree from Feng Chia Universit,y, Taiwan,
and the M.S. degree from National Tsing Hua University, Tai-
wan, in 1989 and 1991, respectively, both in electrical engineer-
ing.

He has been studying for his Ph. D. degree in control en-
gineering a t Chiao Tung University, Taiwan, since September
1991.

