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Abstract—A novel composite resistive grating is presented. It is
formed by combining two complementary resistive patterns. The
problem of plane wave scattering by a two-dimensional resistive
grating is considered. The formulation involves the concept of
Fourier series expansion, which is manipulated to deal with the
resistive boundary condition. The advantage of the formulation
comparing with method of moments is that it can solve grating having
arbitrary admittance distribution without doing reformulation process.
Both conventional and composite resistive gratings are numerically
investigated and characterized. Additionally, the equivalent circuit
models of one-dimensional resistive gratings are acquired for TE
and TM polarizations. Finally, the design of multilayered Jaumann
absorbers incorporating conventional or composite resistive gratings
are taken as numerical examples, where the accuracy of equivalent
circuit models are verified. The proposed composite grating can
increase the originally unavoidable small gap width from 0.1mm to
0.4mm in the Jaumann absorber design, which is proved to possess
more design flexibility and higher tolerance to fabrication error than
conventional one.

1. INTRODUCTION

Electromagnetic wave scattering problem of periodic structures has
been extensively studied from early on. Periodic arrays made of metal
or dielectric have been widely used in a variety of applications including
frequency selective filters, beam polarizers, or dichroic subreflectors.

Many studies have dealt with the analysis of metallic grat-
ings [1, 2]. Except exclusive use of perfect electric conductor (PEC),
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gratings with lossy materials have also received considerable atten-
tion. Besides planar configuration [3], non-planar applications were
also demonstrated using resistive gratings. For instance, the multi-
layered absorber was bent and applied to the leading edge of a wing-
shaped structure [4]. Resistive grating is constructed of periodic re-
sistive sheet with specific pattern, which can be regarded as metal-
lic grating with finite conductivity, and it possesses greater control
of the grating’s reflection characteristic. In fact, the lossy laminate is
made of E-glass fiber/epoxy prepreg containing various kinds of carbon
nano materials [5]. The electromagnetic property can be controlled by
adding lossy nanofillers to the polymer matrix.

In order to compute scattering and other electromagnetic
phenomena in the presence of resistive grating, it is necessary to
introduce some simplification to make the problem tractable. Through
the use of approximate boundary condition, the complexity and
computational expenses of the analysis can be reduced [6]. Impedance
and resistive boundary conditions are two remarkable examples.
Impedance boundary condition is obtained by considering a plane
wave incident on a half plane [7–10], and it is assumed impenetrable.
However, the resistive boundary condition is closely related to
impedance boundary condition but has partial transparency [11, 12].
The idealized resistive sheet is infinitesimally thin so that the
tangential electric fields are the same on both sides. Since it supports
electric current at the surface, a discontinuity, referred to as a jump
condition, for the tangential magnetic field components across the
surface is originally proposed by Levi-Civita [13].

Using resistive boundary condition with a single edge-mode
expansion for the strip current, a closed-form solution was derived
for the TE mode scattering by a resistive strip array on a dielectric
layer [14]. The solution was based on the assumption of small-
width strips. Recently, an equivalent anisotropic resistive boundary
condition (ARBC) was developed by Whites and Mittra [15]. This
ARBC model can be used for infinite or finite periodic objects
provided that the structure has rotational symmetry and sufficiently
large surface resistance. A more complicated structure in the form
of multilayered mushroom-type high impedance surface has been
presented and characterized by a simple analytical model [16]. It is a
combination of metallic wire medium and resistive patch arrays. This
model gives accurate results when the slit between adjacent mushroom
structures is much smaller than the periodicity for small and moderate
values of surface resistance.

Many different formulations have been considered for analytical
solutions to the problem of resistive gratings, and the use of integral
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equations and the spectral-Galerkin method are most familiar.
The key processes of the integral equation approach with singular

kernel functions are to extract the logarithmic factor of the kernel
function, and then using a group of orthogonal eigenfunctions of
the singular element as the basis and testing functions in a moment
procedure. This is a sophisticated version of traditional moment
method, which is regarded as a regularization procedure, since the
resultant set of linear algebraic equations is in the form of Fredholm
second kind [2, 17].

The spectral-Galerkin method is another approach which has
been harnessed successfully to periodic structures with zero thickness
for both perfectly conducting and resistive surfaces. In the spectral
domain, the convolution form of the integral equation for the scattered
field reduces to product form by Fourier transformation. The unknown
induced currents on the surface are expanded in a set of basis functions,
and the matrix equation with expansion coefficients are then solved by
moment method techniques [18, 19].

However, the above methods intend to solve the problem where
the unit cell consists of only one kind of resistive strip. If there are
more resistive strips having different resistances inside the unit cell,
a reformulation process is needed according to the unit cell geometry
and the total number of resistive strips. To address the issue, Fourier
expansion of inhomogeneous admittance function is used in order to
synchronize with the Floquet mode matching analysis.

The paper is organized as follows. Section 2 provides the general
formulation of wave scattering by a two-dimensional resistive grating.
The concept of Fourier expansion is involved in the resistive boundary
condition. Section 3 extends the approach to retrieve the equivalent
circuit model of the resistive grating. Two kinds of resistive gratings
are investigated. The structure under consideration is confined to
one-dimensional periodicity to cope with different features caused
by TE and TM polarizations. In Section 4, we demonstrate two
numerical examples to validate the accuracy of circuit model. Section 5
summarizes the conclusions [23–25].

2. FORMULATION

In this section, we calculate the reflection and transmission
characteristics of a multilayered periodic structure packed in a
rectangular array. The structure is formed by a two-dimensional
resistive grating sandwiched in two different homogeneous dielectric
layers, which is depicted in Figure 1. The numerical analysis is
performed based on the resistive boundary condition (RBC). In the
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Figure 1. Unit cell of resistive grating inserted in the middle of two
distinct dielectric mediums.

following, a time variation of the form ejωt is assumed and suppressed,
and both transverse electric (TE) and transverse magnetic (TM)
polarizations are considered.

As noted by Levi-Civita [13], the RBCs at the resistive surface are

ẑ × [
Et

(
z = 0+

)− Et

(
z = 0−

)]
= 0 (1)

ẑ × [
Ht

(
z = 0+

)−Ht

(
z = 0−

)]
= J (2)

and
ẑ × [

ẑ ×Et

(
z = 0±

)]
= −Zs · J (3)

where the “+” and “−” signs refer to surfaces just above or below the
sheet. Zs is the surface impedance and J is the induced current on the
surface. Equation (1) implies that the tangential electric fields near the
sheet in medium 1 and 2 are continuous at z = 0, while (2) is analogous
to Kirchhoff’s current law as shown in Figure 2. Substituting (2)
into (3) gives

Ht

(
z = 0−

)−Ht

(
z = 0+

)
= Ys ·

[
ẑ × Et

(
z = 0±

)]
(4)

and Ys is the inverse of the surface impedance Zs.
To simulate the electromagnetic properties of such grating,

we employ the rigorous coupled wave analysis (RCWA) originally
presented by Moharam et al. [20, 21].

In accordance with Floquet’s theorem, the tangential electric and
magnetic fields within the homogeneous region are written as the
Fourier expansion of spatial harmonics given by

Et =
∞∑

m=−∞

∞∑
n=−∞

etmn(z) · exp(−j(kxmx + kyny))

Ht =
∞∑

m=−∞

∞∑
n=−∞

htmn(z) · exp(−j(kxmx + kyny))

(5)

and
kxm = k sin θ cosφ + 2πm/px

kyn = k sin θ sinφ + 2πn/py
(6)
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where etmn(z) and htmn(z) represent the modal amplitudes of spatial
harmonics for the electric and magnetic fields, respectively. In (6), k
denotes the wave vector, φ is the polar angle, and θ is the azimuth
angle of the incident plane wave.

In the resistive grating layer, the sheet (located at z = 0)
is assumed to be infinitely thin and having periodic admittance
distribution Ys(x, y). The period of grating along the x- and y-axes,
are denoted by px and py, respectively. In (4), the Fourier component
Ym,n of the admittance distribution Ys(x, y) is given by

Ym,n =
1

pxpy

px∫

0

py∫

0

Ys(x, y) · exp
(

j

(
2πm

px
x +

2πn

py
y

))
dxdy (7)

After substituting (5) and (7) into (1) and (4) and collecting the
expanded Fourier components leads to

et1 = et2

ht1 − ht2 = Yset1
(8)

where

et =
[−ey

ex

]
, ht =

[
hx

hy

]
(9)

The electric and magnetic field components in (8) is further
expressed in terms of eigenvectors in the homogeneous medium which
gives

Q1(a1 + b1) = Q2(a2 + b2)
Q1Y1(a1 − b1)−Q2Y2(−a2 + b2) = YsQ1(a1 + b1)

(10)

Parameters a and b are the incident and reflected wave amplitudes
along the z-axis, while the subscript denotes in which medium the fields
are. Q is a square matrix whose i-th column contains the eigenvector
q
i
. Y1 (or Y2) is a diagonal matrix having the admittance of each

eigenvector on its main entry. Specifically, Ys is the admittance matrix
of the resistive grating, and it will be a full matrix (a tensor) if the
resistive grating is inhomogeneous.

Rearranging (10), the scattering matrix is derived as

S11 =
(
Q−1

1 Q2Y2Q−1
2 Q1 + Y1 +Q−1

1 YsQ1

)−1

· (−Q−1
1 Q2Y2Q−1

2 Q1 + Y1 −Q−1
1 YsQ1

)

S12 =
(
Q−1

1 Q2Y2Q−1
2 Q1 + Y1 +Q−1

1 YsQ1

)−1 · (2 ·Q−1
1 Q2Y2

)

S21 =
(
Q−1

2 Q1Y1Q−1
1 Q2 + Y2 +Q−1

2 YsQ2

)−1 · (2 ·Q−1
2 Q1Y1

) (11)
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S22 =
(
Q−1

2 Q1Y1Q−1
1 Q2 + Y2 +Q−1

2 YsQ2

)−1

· (−Q−1
2 Q1Y1Q−1

1 Q2 + Y2 −Q−1
2 YsQ2

)

The scattering matrices in the above equations fully describe the
reflection and transmission properties of each eigenmode. And it is
intuitive to find the analogy between the sandwiched resistive grating
and two transmission lines with a shunt admittance in the middle,
which is illustrated in Figure 2. The scattering parameters of the
latter case can be derived directly when each matrix on the right-hand
side of (11) is replaced by a scalar.

S11 = (Y1 + Y2 + Ys)−1(Y1 − Y2 − Ys)

S12 = (Y1 + Y2 + Ys)−1(2 · Y2)

S21 = (Y1 + Y2 + Ys)−1(2 · Y1)

S22 = (Y1 + Y2 + Ys)−1(−Y1 + Y2 − Ys)

(12)

It is a meaningful way to interpret the resistive grating through
the equivalent circuit model. When Ys = 0, which means a shunt open
circuit is between two transmission lines, no power is consumed by the
grating; when Ys = ∞, which means a shunt short circuit is between
two transmission lines, the incident wave suffers a total reflection with
180◦ out of phase at the interface, and this case corresponds to a PEC
sheet in reality.

Our custom RCWA code using the Matlab programming
environment was employed to compute the complex scattering
parameters for such grating. We provide two examples: one is
the conventional resistive grating, and the other is the composite
resistive grating. The unit cell of conventional resistive grating
contains a resistive square patch. Meanwhile, the proposed composite
resistive grating is actually the combination of a square patch and
a square aperture as shown in Figure 3. The originally void region
in conventional resistive grating is now filled with resistive sheet. In
fact, the conventional resistive grating can be viewed as a special case

YsY1 Y2

z
z = 0+z = 0-

Figure 2. Equivalent transmission line model for structure shown in
Figure 1.
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of composite one when Rsc = ∞. In the examples, both gratings
are embedded in a medium with relative dielectric constant εr = 2.3
as shown in Figure 3. Background material also has εr = 2.3. The
admittance distribution is given below.

Ys(x, y) = 1
150 , −w

2 6 x, y 6 w
2

= 0, otherwise (conventional)
= 1

500 , otherwise (composite)

(13)

Computed magnitudes and phases under both TE and TM
incidence for the examples are shown in Figures 4 and 5. The numbers
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Figure 3. Unit cell of resistive grating in patch geometry. (a) Front
view of conventional resistive grating. (b) Front view of composite
resistive grating. (c) Side view of the grating.
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Figure 4. Numerical results of conventional resistive grating shown
in Figure 3. px = py = 3.6mm, w = 2.6mm, Rs = 150Ω/square,
εr = 2.3, dext = 5 mm, φ = 0◦, θ = 60◦. (a) Magnitude. (b) Phase.
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Figure 5. Numerical results of composite resistive grating shown
in Figure 3. px = py = 3.6mm, w = 2.6mm, Rs = 150Ω/square,
Rsc = 500Ω/square, εr = 2.3, dext = 5 mm, φ = 0◦, θ = 60◦.
(a) Magnitude. (b) Phase.

of Fourier orders (m, n) used in the examples are from −15 to 15.
The results from RCWA are compared with the commercial code
CST Microwave Studio and show little disagreement. Note that this
example suffers the Gibb’s phenomenon using only 31 modes, but
it is unobvious in virtue of the small contrast (1/150 − 0 = 1/150)
in the periodic admittance function. The mode number used here
is a compromise between the calculation accuracy and the matrix
dimension in (11). The matrix dimension also affects the time
consumption and memory storage requirements during calculation.

3. EQUIVALENT CIRCUIT MODEL AND COMPUTED
RESULTS

The purpose of this section is to derive the equivalent circuit model
based on the formulation reported previously. Although the numerical
analysis of a two-dimensional periodic resistive grating has been
established, the equivalent circuit model extraction is only aimed at
one-dimensional grating in this paper. For 1D periodic structure, the
scattering characteristics depend on the polarization of incidence, so
the equivalent circuit model extraction for TE and TM modes are
considered independently. We define that p is the period along the
x-axis, and the fields are independent of y (∂/∂y = 0). Thus, the
waves can be individually decomposed into TEz (Ez = 0) and TM z
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(Hz = 0).
To increase the accuracy of circuit model extraction in the periodic

structure, the grating period p must be sufficiently small compared
to the incident wavelength (λ0/

√
εr) such that only the fundamental

diffractive order (m = 0) will propagate while other higher-order modes
will be evanescent. This condition is written mathematically as

p <
λ0/

√
εr

1 + sin θ
(14)

where θ is the azimuth angle of the incident plane wave on XZ plane.
In the following, the conventional and composite resistive gratings

will be investigated numerically. The grating is embedded in the
middle of air (εr = 1), as shown in Figure 6, and is illuminated by
a normally incident plane wave. The period p of unitcell is 3.6mm and
the calculation domain of frequency is from 1 to 40GHz. Diffractive
order (m) for 1D RCWA calculation is from −240 to 240 through this
paper.
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Figure 6. Unit cell of resistive grating in strip geometry. The
structure is infinite in y-direction. (a) Front view of conventional
resistive grating. (b) Front view of composite resistive grating. (c) Side
view of the grating.

Using the RCWA code, the complete scattering matrix of the
structure shown in Figure 1 can be obtained. Then, a single-mode
extraction is performed by keeping the results of matrix element
from fundamental modes (0th-0th order) while neglecting the others.
Subsequently, the original matrix is reshaped into a 2-by-2 matrix,
and the equivalent admittance of the grating can be retrieved for the
given circuit model. The scattering matrix of the circuit model shown
in Figure 2, where the RLC values involved in Ys are unknowns, is
employed for curve fitting with the previous 2-by-2 scattering matrix.
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We have investigated the relation between mode number and
the admittance function through convergence test. When the filling
ratio w/p (shown in Figures 3 and 6) is close to 0 or 1, indicating
narrow strip or narrow gap, or the contrast of the two-tone admittance
function (1/Rs − 1/Rsc) is too large, these situations will lead to slow
convergence and more modes should be considered for computation. In
the two-dimensional case of Section 2, we intend to demonstrate the
validity of our RCWA code via comparison with commercial software.
Therefore, we choose the admittance function (shown in (13)) with
medium filling ratio and low contrast, so 31 Fourier modes are sufficient
to give a harsh but accurate results. However, in the one-dimensional
case of the following subsections, the minimum value of filling ratio
taken into account in Figure 8 is 0.0278, which requires at least 481
Fourier modes to satisfy our convergence criterion. The mode number
can be reduced if we increase the considered minimum filling ratio.

3.1. Conventional Resistive Grating

Referring to the conventional resistive grating illustrated in Figure 7,
it transforms into PEC strip grating when Rs is set to zero, and its
equivalent circuit model was reported by Marcuvitz [22] in the form
of either a shunt capacitance or shunt inductance. To characterize the
resistive grating instead of PEC grating, the lumped element R has
been added into the model which accounts for the lossy property.

R

L

R

C

Rs

E

H

Rs

E

H

w

w

(a) (b)

Figure 7. The equivalent circuit models of conventional resistive
grating for (a) TE and (b) TM polarizations.

The extracted values of circuit model are affected by two variables,
the surface resistance Rs and filling ratio w/p. To visualize the
relationship between the physical dimensions and extracted RLC
values, either the surface resistance or the filling ratio is swept
while keeping the other one constant. In Figure 8, low filling ratio
results in large inductance for TE mode but small capacitance for
TM mode. Note that when the filling ratio approaches zero, the
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Figure 8. The extracted RLC values against filling ratio while
Rs = 100 Ω/square. (a) TE mode: R/Rs. (b) TE mode: L. (c) TM
mode: R/Rs. (d) TM mode: C.

impedance approaches infinity because the resistive sheet is about
to disappear physically, and the circuit model becomes a shunt open
circuit. However, when the filling ratio approaches one, the reactance
will be zero, and thus leads to a homogeneous condition R = Rs. This
condition applies to both TE and TM modes.

Figure 9 reveals that, by sweeping the surface resistance Rs, the
reactance is nearly constant for TM mode and drops slightly for TE
mode if Rs is small. This is a useful property in realizing actual
RL or RC circuits. Since changing Rs doesn’t affect the inductance
or capacitance substantially, the required sheet reactance can be
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Figure 9. The extracted RLC values against surface resistance while
w/p = 0.5. (a) TE mode: R. (b) TE mode: L. (c) TM mode: R.
(d) TM mode: C.

synthesized by considering only the filling ratio of periodic strips. On
the contrary, the extracted resistance is a monotonically increasing
function of Rs, and it ranges between zero and positive infinity, which
correspond to PEC strip grating and open circuit, separately.

3.2. Composite Resistive Grating

To clarify the composite resistive grating, it can be viewed as the
combination of two complementary conventional resistive gratings with
different surface resistances. Specifically, there is no blank space inside
the composite resistive grating. It is regarded as an intermediate
between the homogeneous resistive sheet and conventional resistive
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Figure 10. The equivalent circuit models of composite resistive
grating for (a) TE and (b) TM polarizations.
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grating, which can be easily verified by substituting Rs or infinity into
Rsc in Figure 6. Since a new variable Rsc appears, we can infer that one
more lumped element is required in the equivalent circuit model. After
a sequence of trial and error, we discover that adding a shunt resistance
in the original circuit model is sufficient to describe the composite
grating, as depicted in Figure 10. However, the second resistance
appears ineffective for TE mode, so its circuit model remains the same.
The new form of circuit model for TM mode is relatively complex, so
the curve fitting technique is applied to retrieve the equivalent lumped
element values.

For the succinctness of this paper, only Rsc is swept in this
subsection since varying Rs and w/p will give similar results as
discussed previously. The lower bound of Rsc is chosen to be Rs in
order not to overlap other cases. For example, if w/p is 0.5, Rs is 100,
and Rsc is 50, it is equal to another case where Rs is 50 and Rsc is 100.

Figure 11 exhibits that the extracted impedance starts from a pure
resistance and then approaches a constant complex value progressively
when Rsc varies from Rs to 1000Rs for both TE and TM modes.
Particularly, the behavior of circuit model for TM mode is explicitly
discussed in next paragraph.

As shown in Figure 12, in the homogeneous condition (Rsc = Rs),
the capacitance becomes zero, and the effect of R2 predominates the
whole circuit. On the other hand, when Rsc is much greater than Rs,
both R1 and C converge to constants while R2 becomes an extremely
large number which can be neglected in the circuit model. In general,
the RCR circuit model will degenerate into either R or RC depending
on the value of complementary surface resistance.

To obtain the explicit impedance formula for RLC circuit will be
useful, but it is beyond the scope of this paper. However, the interested
readers may refer to [14] for more detail. The closed-from expression for
complex resistivity of periodic resistive strip array has been derived for

R1

C

R 2

Rsc =R s

R1

C

R2

Rsc>  Rs>

Figure 12. The behavior of RCR circuit model when Rsc is equal to
or much greater than Rs.
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TE scattering. Although this approach can provide physical insights
for the circuit analysis, it is less accurate than the proposed RCWA
method, since the solution is based on the assumption of small-width
strips and single edge-mode for the strip current.

4. NUMERICAL EXAMPLES

For years, the circuit analog absorbers using resonating FSS
elements investigated by Munk [23–25] were believed to outperform
the conventional Jaumann absorbers regarding the bandwidth and
thickness. The bandwidth ratio of 10 : 1 as a figure of merit has been
claimed by Munk [24] without any evidence. Due to the resonating
characteristic of FSS element, the harmonics of fundamental resonance,
which occur at frequencies 2 or 3 times higher than the intrinsic
resonating frequency, must be taken into account in the wideband
absorber design. Therefore, designing a circuit analog absorber with
bandwidth over 10 : 1 incorporating FSS would be a complicated task
and has not yet been reported in public literature.

The absorber design for oblique incidence angle using Smith chart
is explored [24, 25], but it is restricted to only one resistive layer,
and this method is expected to be modified for multilayered case.
Since numerous parameters are involved in a multilayered absorber
design, and oblique incidence for both polarizations leads to a multi-
objective problem, the Smith chart matching technique suggested by
Munk becomes infeasible to handle. Consequently, the computer
optimization with educated guesses serves as the best strategy to
accomplish the design process.

The main purpose of this research is aimed at the characterization
of composite resistive grating rather than designing an ultra-wideband
absorber for oblique angle of incidence. Although our approach
employing RC or RCR elements can provide a reasonable solution
achieving all the requirements stated above, the detail is omitted in
this paper.

In this section, we present two examples of multilayered Jaumann
absorbers. The structure is based on the work of Kazemzadeh
and Karlsson [3], and the proposed composite resistive grating is
employed and integrated into the absorber. The schematic of the
Jaumann absorber is depicted in Figure 13. Type A and Type B
represent conventional resistive grating and composite resistive grating,
respectively. All the resistive sheets are inserted in the middle of
identical dielectric covers in purple. Note that there are three kinds
of resistive gratings for each type. The first resistive layer is a
homogeneous sheet, the second layer is a resistive grating with period
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Figure 13. The schematic of the multilayered Jaumann absorber
incorporating conventional (type A) or composite (type B) resistive
gratings. The parameters are listed in Tables 1 and 3.

Table 1. Parameters of each dielectric layer and dielectric cover.

Homogeneous Dielectric Layer Dielectric

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Cover

d (mm) 3.4 2.6 2.4 3.3 4 0.4

εr 1.8 1.7 1.33 1.8 1.33 2.3

p, and the third one is also a resistive grating but with period p/2.
In this design, the parameters of the dielectric layers are tabulated in
Table 1.

The lumped values of the whole structure are obtained through
optimization process and listed in Table 2. Note that the goal of
optimization is to achieve a −20 dB absorptivity from 5 to 30 GHz
for TM incident wave. To convert the lumped circuit model into the
dimension and surface resistance of a practical resistive grating, we
need to proceed root finding procedure. The charts in Figures 8–11
can help us determine appropriate initial guesses. The synthesized
values are shown in Table 3.

For TM polarization, the conventional resistive grating is regarded
as a low-pass RC element, and is an appropriate candidate for ultra-
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Table 2. Optimized values of the equivalent circuit model in each
resistive layer.

TM

Layer 1 Layer 2 Layer 3

Type A
R (Ω) 148.77 359.32 612.73
C (pF) - 0.13481 0.02763

Type B
R1 (Ω) 154.89 398.72 798.27
R2 (Ω) - 3036.62 1142.71
C (pF) - 0.06377 0.01278

Table 3. Synthesized parameters of each resistive layer.

Resistive Layer
Layer 1 Layer 2 Layer 3

Type A
Rs (Ω/square) 148.77 336.37 460.87

w (mm) 3.6 3.5 1.45

Type B
Rs (Ω/square) 154.89 297.75 354.16
Rsc (Ω/square) - 32499.37 4021.52

w (mm) 3.6 3.2 1.4

wideband absorber design. However, there are some restrictions
to realize a large capacitance in reality. One way is to embed
the resistive grating into a medium with high dielectric constant,
which increases the equivalent capacitance but introduces higher-order
propagating modes that destroys the consistency between circuit model
and grating. Another solution is to reduce the gap width between
resistive strips, and this factor is directly influenced by the accuracy
of manufacturing process. In the current example, the gap width
for Type A at the second resistive layer is only 0.1mm in order
to synthesize a capacitance of 0.135 pF, shown in Tables 2 and 3.
Specifically, a novel RCR element is presented in this paper, which
can be practically realized by the composite resistive grating, and
it provides more degrees of freedom for absorber design. Namely,
the same absorbing performance can be accomplished while large
capacitance is unnecessary. In the current design, the minimal gap
width of composite resistive grating is extended to 0.4 mm. Therefore,
the proposed grating has higher tolerance against deviations from
realistic fabrication comparing to conventional one.
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Figure 14. The reflection coefficients of Jaumann absorbers shown
in Figure 13 under normal incidence (θ = 0◦) with TM polarization.
(a) Type A. (b) Type B.

Figure 14 shows very close agreement between the frequency
responses calculated from the equivalent circuit model, full-wave
simulation (CST Microwave Studio), and RCWA. This is unlikely to
happen unless the resistive gratings have been modeled with very high
accuracy.

5. CONCLUSION

In this paper we present a novel composite resistive grating. It is
similar to the conventional resistive grating, but with two different
surface resistances. Based on the RBC, the general formulation
to calculate the scattering parameters of two-dimensional resistive
gratings is obtained. Different from spectral domain analysis using
periodic Green’s function, the proposed method based on Fourier
series expansion can handle resistive grating with arbitrary admittance
distribution. Both conventional and composite resistive gratings with
1D periodicity are analyzed and characterized by equivalent circuit
models. Design examples of multilayered Jaumann absorbers are
demonstrated to validate the consistency between resistive grating and
corresponding circuit model. Moreover, the composite resistive grating
can provide more degrees of freedom for absorber design.
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APPENDIX A. DERIVATION OF (12)

We consider the transmission line model shown in Figure 2. Using
Kirchhoff’s voltage and current law gives

V1 = V2

I1 − I2 = YsV1
(A1)

The quantity of voltage and current can be separated into
transmitted and reflected parts.

a1 + b1 = a2 + b2 (A2)
Y1(a1 − b1)− Y2(−a2 + b2) = Ys(a1 + b1) (A3)

First we transpose (A2)

b2 = a1 + b1 − a2 (A4)

and then substitute (A4) into (A3), which results in

(Y1 + Y2 + Ys)b1 = (Y1 − Y2 − Ys)a1 + 2Y2a2 (A5)

Similarly, transposing (A2) again

b1 = a2 + b2 − a1 (A6)
After substitution, the term b1 is also eliminated.

(Y1 + Y2 + Ys)b2 = 2Y1a1 + (−Y1 + Y2 − Ys)a2 (A7)

Rearranging (A5) and (A7) leads to the complete description of
scattering matrix (12) for Figure 2.
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