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Abstract

Optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biol-

ogy. However, there is still a lack of a sophisticated model for optical tweezers on trapping cells. In this paper, we pre-

sent a novel model for optical tweezers to calculate the stiffness of trapping force upon a spherically symmetric Rayleigh

sphere, which stimulates a common biological cell. A numerical simulation of this model shows that the stiffness of an

optical tweezers system in trapping a cell is significantly smaller than that in trapping a polystyrene bead of the same

size. Furthermore, under a small variant condition of the refractive index, the proposed model provides an approximate

method which requires only the radial distribution of the trapped cell�s refractive index for calculating the stiffness.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Since Ashkin et al. [1] first trapped a micron

size bead with a focused laser beam in 1986, opti-
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cal tweezers have become a popular tool for

manipulation [2–5] and force measurement in cel-

lular and molecular biology [6–9]. Up to now,

there are two major models describing the trap-

ping mechanism of optical tweezers; namely, a
ray-optics (RO) model by Ashkin [10] and an

electromagnetics (EM) model by Harada and

Asakura [11]. The RO model is valid as the ra-

dius of the trapped particle is larger than ten
ed.
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Fig. 1. The structure of the proposed multi-layer spherically

symmetric Rayleigh sphere.
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times the wavelength of the laser. However, the

EM model is valid as the radius of the trapped

particle is much smaller than the wavelength of

the laser. Although there are some other models

dealing with particle whose radius is near the
wavelength of the laser [12–14], all the mentioned

models assume that the trapped particle has a

uniform refractive index. Unfortunately, this

assumption is not true for biological cells. There-

fore, it is desired to have a sophisticated model

for optical tweezers on trapping a non-uniform

particle like organelles and cells.

In this work, we assume the non-uniform parti-
cle as a small Rayleigh sphere with spherically

symmetric refractive index. To be more specific,

we assume that this sphere is composed of multiple

concentric layers with different refractive indices.

In this regard, as the thickness of each layer ap-

proaches infinitely small and the variation of the

refractive indices of adjacent layers is small en-

ough, the structure of this spherically symmetric
Rayleigh sphere could be analogous to that of

the common biological cells.

In Section 2, we first solve for the electric

potential of the proposed cell-like sphere of mul-

tiple concentric layers in a laser beam. Under the

small variant condition of the refractive indices of

adjacent layers as mentioned above, it can be

shown that such a cell-like sphere functions as a
single effective electric dipole induced by the sur-

rounding electric field. Then, in Section 3, substi-

tuting the induced electric dipole moment into

Harada and Asakura�s EM model, we obtain a

trapping force produced by an optical tweezers

system upon the cell-like sphere. Lastly, in Sec-

tion 4, we will compare the difference in magni-

tude between the trapping force upon a uniform
sphere and that upon a non-uniform cell of the

same size. In this exercise, a Chinese hamster

ovary (CHO) cell at an artificially reduced size

is used as an example of the non-uniform cell.

The same reduced-size CHO cell but of an artifi-

cially single uniform layer, a silica bead and a

polystyrene bead are used as the uniform sphere,

separately. The selection of the four samples is
simply due to the availability of the information

on their structures and distributions of refractive

indices.
2. Theoretical analysis

2.1. Electric dipole moment of a spherically

symmetric sphere

To illustrate the induced electric dipole moment

of a cell-like sphere by the electric field of a fo-

cused laser beam, we consider in Fig. 1(a), N-layer

sphere of radius R in an electric field E
*

o. Suppose

that the radius rk and the index of refraction nk of

each concentric layer is known, where the sub-

script k refers to the kth layer. For simplicity, we

assume the cell-like sphere a Rayleigh particle,
which means that it is such a very small particle

that the electric field around it is nearly un-

changed. As shown in Fig. 1, the electric field out-

side the sphere is assumed E
*

o ¼ ẑEo þ D~Eo � ẑEo,

where Eo is the average amplitude of the electric

field, and DE
*

o is a variation term.

It can be shown that the electric potential Uk of

the kth layer of the multi-layer sphere for rk� 1

< r < rk is usually given in the general form [15]

Ukðr; hÞ ¼
X1
l¼0

Al;krl þ Bl;kr�ðlþ1Þ� �
P lðcos hÞ; ð1Þ

where r and h are of spherical coordinates, Al,k and

Bl,k are two coefficients, and Pl(cosh) is the Legen-
dre polynomial of order l. Here, in our case, many

of the coefficients Al,k and Bl,k would vanish.
Firstly, as r approaches infinity, the boundary

condition UN+1(r ! 1) = �Eoz = �EorP1(cosh)
leads to the vanishment of all coefficients Al,N+1

except for A1,N+1 = �Eo. Secondly, as r ap-
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proaches the origin, Bl,1 = 0 because the potential

near the center of the sphere must be finite within

the first layer where k = 1. Finally, the rest of the

coefficients are left to be determined according to

the following boundary conditions:

� 1

rk

oUk

oh

����
r¼rk

¼ � 1

rk

oUkþ1

oh

����
r¼rk

ð2Þ

and

�n2k
1

rk

oUk

or

����
r¼rk

¼ �n2kþ1

oUkþ1

or

����
r¼rk

: ð3Þ

Substituting Eq. (1) for UN+1(r,h) into Eqs. (2)

and (3), we obtain

Al;k þ Bl;k=r2lþ1
k ¼ Al;kþ1 þ Bl;kþ1=r2lþ1

k ð4Þ

and

nk
nkþ1

� �2

lAl;k �
nk
nkþ1

� �2

ðlþ 1ÞBl;k=r2lþ1
k

¼ lAl;kþ1 � ðlþ 1ÞBl;kþ1=r2lþ1
k : ð5Þ

From Eqs. (4) and (5), we can relate the coeffi-

cients Al,N+1(=�Eo) and Bl,N+1 of the space out-

side the sphere to the coefficients Al,1 and

Bl,1(=0) of the first layer inside the sphere as

below.

For l = 1, we have
�E0

Bl;Nþ1

� �
¼

2þm2
N

3

2ð1�m2
N Þ

3r3N
ð1�m2

N Þr
3
N

3

1þ2m2
N

3

2
4

3
5 � � � � �

2þm2
2

3

2ð1�m2
2
Þ

3r3
2

ð1�m2
2
Þr3

2

3

1þ2m2
2

3

2
4

3
5 �

2þm2
1

3

2ð1�m2
1
Þ

3r3
1

ð1�m2
1
Þr3

1

3

1þ2m2
1

3

2
4

3
5 � A1;1

0

� �
¼ M11 M12

M21 M22

� �
� A1;1

0

� �
;

ð6Þ
where mk ” nk/nk+1 and the matrix of M11, M12,

M21, and M22 results from the N � 1 inner prod-

ucts of N interface matrices of various functions

of mk.

Similarly, for l 6¼ 1, we have
0

Bl;Nþ1

� �
¼

lþ1þlm2
N

2lþ1

ðlþ1Þð1�m2
N Þ

ð2lþ1Þr2lþ1
N

ðl�m2
N Þr

2lþ1
N

2lþ1

lþlðlþ1Þm2
N

2lþ1

2
4

3
5 � � � � �

lþ1þlm2
2

2lþ1

ðl�m2
2
Þr2lþ1

2

2lþ1

2
4

Eq. (7) reveals that all Al,k and Bl,k vanish for

l 6¼ 1. This leads to a simplified form for the elec-

tric potential outside the sphere, UN+1(r,h) =
�Eoz + B1,N+1 z/r3, in which only the coefficient

B1,N+1 is left to be solved. Eq. (6) indicates that
B1,N+1 and, thus, the electric potential outside

the sphere, UN+1(r,h), can be directly related to

A1,1 or U1(r,h) = A11z of the most inner layer via

M11, M12, M21 and M22 as given by

UNþ1 r; hð Þ ¼ �Eor cos h� Eo

M21 cos h
M11r2

: ð8Þ

It can be seen that the overall electric potential

outside the cell-like sphere is simply the sum of the
electric potential of the originally applied field Eo

and the electric potential of an electric dipole at

the origin. Conventionally, the sphere is treated

as a single effective electric dipole which is induced

by the surrounding electric field. Classical electro-

dynamics tells us that this effective electric dipole

will generate a dipole moment p = 4peoutEo(M21/

M11), where eout is the dielectric constant of the
medium outside the sphere. This results in an effec-

tive polarizability a = p/(eoutEo) for the cell-like

sphere, as given by

a ¼ �4pM21=M11: ð9Þ
It is worth to point out that the availability of

this effective polarizability for a cell-like sphere is
due to the analogy between a cell and a spherically

symmetric multi-layer sphere. As will be seen in

the following section, this effective polarizability

a is a key factor in deriving the trapping force

produced by an optical tweezers system upon a
ðlþ1Þð1�m2
2
Þ

ð2lþ1Þr2lþ1
2

lþlðlþ1Þm2
2

2lþ1

3
5 �

lþ1þlm2
1

2lþ1

ðlþ1Þð1�m2
1
Þ

ð2lþ1Þr2lþ1
1

ðl�m2
1
Þr2lþ1

1

2lþ1

lþlðlþ1Þm2
1

2lþ1

2
4

3
5 �

A1;1

0

� �
: ð7Þ
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cell-like sphere. Yet the calculation for a is still dif-

ficult, because it is complicated to calculate for the

matrix elements M11, M12, M21, and M22 Accord-

ing to Eq. (6), calculating for the matrix elements

requires a series of inner production of the inter-
face matrices of the N layers, involving various

functions of different mk, as shown above.

To overcome this problem, we further develop

an approximate method for calculating a by apply-
ing a small variant condition of the refractive indi-

ces of adjacent layers. For this purpose, we assume

that the thickness of each layer, R/(N � 1), ap-

proaches infinitely small, which implies N ! 1.
Under this condition, the structure of such a Ray-

leigh sphere of infinitely multiple layers could be

analogous to that of a common cell. Consequently,

it can be shown that the four elements M11, M12,

M21, and M22 are simplified in the approximate

forms of

M11 � 1þ 2

3
� lim
N!1

XN
k¼1

dmk

¼ 1þ 2

3
� lim
N!1

XN
k¼1

1

nðk R=NÞ

� nðk R=NÞ � nððk þ 1ÞR=NÞ
R=N

� R
N

¼ 1þ 2

3
� ln½nð0Þ=nðRÞ�; ð10Þ

M12 � � 4

3
� lim
N!1

XN
k¼1

dmk=r3k

¼ 4

3
�
Z R

0

n0ðr0Þ
nðr0Þ � r03 dr

0; ð11Þ

M21 � � 2

3
� lim
N!1

XN
k¼1

dmkr3k

¼ 2

3
�
Z R

0

n0ðr0Þ:r03
nðr0Þ dr0; ð12Þ

and

M22 � 1þ 4

3
� lim
N!1

XN
k¼1

dmk

¼ 1þ 4

3
� ln½nð0Þ=nðRÞ�; ð13Þ
where n(0) and n(R) are the refractive indices of

the layers at the center and the edge of the cell-like

sphere, respectively.

Substituting Eqs. (10)–(13) into Eq. (6), we may

rewrite the coefficient A1,1 and B1,N+1 in terms of
the electric field outside the sphere, Eo, and the

radial distribution of the refractive indices of the

sphere, n(r), as given by

A1;1 � �Eo 1þ 2

3
� ln nð0Þ=nðRÞ½ �

� ��
ð14Þ

and

B1;Nþ1 � �Eo

2
3
�
R R
0

n0ðr0Þ�r03
nðr0Þ dr0

1þ 2
3
� ln½nð0Þ=nðRÞ� : ð15Þ

As a result, the electric potential outside the sphere

is approximately in the form of

UðrÞ � �Eor cos h� Eo

�
2
3
�
R R
0

n0ðr0Þ�r03
nðr0Þ dr0

1þ 2
3
� ln½nð0Þ=nðRÞ� �

1

r2
cosh: ð16Þ

Consequently, the dipole moment p of the effective
electric dipole is given by

p ¼ 4peoutB1ðRÞ

� 4peoutEo �
2
3
�
R 0

R
n0ðr0Þ�r03
nðr0Þ dr0

1þ 2
3
� ln½nð0Þ=nðRÞ� : ð17Þ

And the effective polarizability a of the cell-like

sphere is approximated as given by

a � 8p
3

�
R 0

R
n0ðr0Þ�r03
nðr0Þ dr0

1þ 2
3
� ln½nð0Þ=nðRÞ� : ð18Þ

Eq. (18) signifies that only the radial distribution of

the refractive index n(r) of a cell is required for a.
Obviously, the calculation for a becomes simple

under the small variant condition of refractive in-
dex. As will be shown in the following section, this

approximate method for calculating a also simpli-

fies the calculation for the trapping force produced

by an optical tweezers system upon a spherical cell.

2.2. Light force

In the preceding section, we propose a Rayleigh
sphere of multiple concentric layers to simulate a
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common biological cell. In addition, we have

proved that such a cell-like Rayleigh sphere is

equivalent to a single effective electric dipole. This

model enables us to further derive the trapping

force induced by an optical tweezers system upon
the cell-like sphere. This is done by substituting

into Harada and Asakura�s model the dipole mo-

ment p
*

of this effective electric dipole, which is

induced in a focused laser beam of wavelength k,
as shown in Fig. 2.

It can be shown that an electric dipole moment

induced in a non-uniform electric field will experi-

ence a trapping force produced by the focused
laser beam due to a gradient dipole force [11]

F
*

gradð r
*Þ ¼ ½p*ð r*Þ � r

*

�E
*

ð r*Þ ¼ a
2
� nout

c
r
*

Ið r*Þ; ð19Þ

in which a is the effective polarizability of the cell-

like sphere as given in Eq. (18), nout is the refrac-

tive index of the medium surrounding the sphere,
c is the speed of light in vacuum, and Ið r*Þ is the

intensity distribution of the focused laser beam.

Substituting for a from Eqs. (18) and (19) for the

gradient dipole force F
*

gradð r
*Þ can be rewritten in

the form

F
*

gradð r
*Þ � 4pnout

3c
�

R R
0

n0ðr0Þ�r03
nðr0Þ dr0

1þ 2
3
� ln½nð0Þ=nðRÞ� r

*

Ið r*Þ:

ð20Þ
Similar to Harada and Asakura�s EM model,

we also consider a Gaussian laser beam of inten-

sity as given by
Fig. 2. The schematic of a Rayleigh sphere in a non-uniform

electric field.
Ið r*Þ ¼ 2P
pw0

� �
1

1þð2~z=kwoÞ2
exp � 2ð~x2 þ~y2Þ

1þð2~z=kw0Þ2

" #
;

ð21Þ

where P, w0, k = 2p/k are the power, the beam
waist, and the wave number of the laser beam,

respectively. And ð~x; ~y;~zÞ ¼ ðx=w0; y=w0; z=woÞ are

the normalized coordinates with respect to w0 Sub-

stituting for Ið r*Þ from Eq. (21), the gradient dipole

force F
*

gradð r
*Þ in Eq. (20) can be decomposed into

the following three components:

F
*

grad;xð r
*Þ ¼ �x̂

anout
c

P
pw2

0

� �
4~x=w0

½1þ ð2~z=kw0Þ2�2

� exp � 2ð~x2 þ ~y2Þ
1þ ð2~z=kw0Þ2

" #
;

ð22Þ

F
*

grad;yð r
*Þ ¼ �ŷ

anout
c

P
pw2

0

� �
4~y=w0

½1þ ð2~z=kw0Þ2�2

� exp � 2ð~x2 þ ~y2Þ
1þ ð2~z=kw0Þ2

" #
;

ð23Þ

and

F
*

grad;zð r
*Þ ¼ �ẑ

anout
c

P
pw2

0

� �
16~z=k2w3

0

½1þ ð2~z=kw0Þ2�2

� 1� 2ð~x2 þ ~y2Þ
1þ ð2~z=kw0Þ2

" #

� exp � 2ð~x2 þ ~y2Þ
1þ ð2~z=kw0Þ2

" #
: ð24Þ

Conventionally, optical tweezers are analogous

to a three-dimensional optical spring. This is easily

seen from Eqs. (22)–(24) that, to the first order

approximation, each component of the trapping

force is linearly proportional to its corresponding

coordinate, which is indeed the displacement from
the center of the trapped sphere to the center of the

laser beam waist. Therefore, the three components

of the stiffness of the 3-D optical spring are given by

kx ¼ ky ¼
4anout

c
P
pw4

0

� �
ð25Þ



102 Y.-R. Chang et al. / Optics Communications 246 (2005) 97–105
and

kz ¼
16anout

c
P

pk2w6
0

 !
: ð26Þ

Obviously, both the trapping force itself and the

stiffness of the trapping force are linearly propor-

tional to the induced palrizability a.
By the way, in addition to the gradient dipole

force, there is an undesired scattering force exerted
on the cell-like Rayleigh sphere. Essentially, the

scattering force corresponds to a radiative-damping

force. This results from the emission of electromag-

netic radiation by the accelerating effective electric

dipole, acting as an antenna, in the oscillating elec-

tric field of the laser beam.According to the antenna

theory, the scattering force is along the Poynting

vector of the laser beam as given by

F
*

scatðR
*

Þ ¼ ẑð8p3=3ÞIa2 � nout=c

� ẑ
512p5nout

27c

R 0

R
n0ðr0Þ�r03
nðr0Þ dr0

1þ 2
3
� ln½nð0Þ=nðRÞ�

2
4

3
5

2

� 2P
pw0

� �
1

1þ ð2~z=kw0Þ2

� exp � 2ð~xþ ~y2Þ
1þ ð2~z=kw0Þ2

" #
: ð27Þ

After all, the total light force F
*

tot exerted on the
cell-like Rayleigh sphere is the sum of the gradient

dipole force F
*

grad and the scattering force F
*

scat.
3. Numerical results

3.1. Data of refractive indices and sizes of

Chinese hamster ovary cell

Practically, detailed refractive indices of organ-

elles and bacterial cells are rarely characterized.

Here, we only find a rough estimate on the refrac-

tive index of mammalian cells in Brunsting and

Mullaney�s work [16]. They modeled the CHO cell

as a coated sphere in an optical and morphological

fashion. In their model, the nucleus of the mam-
malian suspension cell is surrounded by its

cytoplasm.
On one hand, the magnitudes of the refractive

index of the cytoplasm, ncyt and the refractive in-

dex of the nucleus, nnuc were measured to be

1.3703 and 1.392 ± 0.005, respectively. On the

other hand, they found a linear relationship be-
tween the radius of the nucleus, rnuc and the radius

of the cell, R, for many CHO cells of various sizes

as given by

R ¼ ð1:38� 0:02Þrnuc þ ð0:03� 0:05Þ: ð28Þ
In average, the magnitudes of Ærnucæ and ÆRæ were
measured to be 8.1 ± 0.9 and 11.2 ± 0.5 lm,
respectively.

Unfortunately, the sizes of CHO cell and even

mammalian cells are too large to fit in Rayleigh re-

gime. However, these data are still meaningful in

the following simulation in Section 3.2 for two

artificially reduced-size CHO cells for comparison.

Here, we take an artificial CHO cell at a reduced

size with a radius of R = 50 nm as an example to
our cell-like model. A similar assumption was once

adopted in [17]. According to Eq. (28), this sug-

gests that the radius of its nuclear is approximately

rnuc = 36.2 ± 0.5 nm. Presumably, we further as-

sume the radial distribution of refractive index of

this artificial CHO cell as given by

nðrÞ ¼
1:392� 0:005 for 06 r < rnuc ðcytoplasmÞ
1:3703 for rnuc 6 r 6 R ðnuclearÞ:

	
ð29Þ

In this regard, n(0) = 1.392 ± 0.005 and n(R) =

1.3703.

Then, we take another CHO cell at the same re-

duced size but of an artificially uniform refractive
index of 1.379 as an example of uniform sphere

to our cell-like model. Note that the value of

1.379 is the averaged refractive index of the

CHO cell.

3.2. Numerical analysis

The validity of our model is numerically exam-
ined by comparing the difference in magnitude be-

tween the effective polarizabilities a of the trapped

samples as well as the resulting stiffnesses k of opti-

cal tweezers for a uniform sphere and those for a

non-uniform cell of the same size. In this exercise,

other than the uniform artificial CHO cell, a silica
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bead and a polystyrene bead are also ideal to be

used as the uniform sphere, because they are often

used in cellular and molecular biology experiments

with optical tweezers. And the non-uniform artifi-

cial CHO cell seems an adequate example of the
non-uniform cell. Surely, the radii of the two beads

are taken to be the same as that of the two artificial

CHO cells, which is 50 nm. Note that the refractive

indices of uniform silica bead and polystyrene

bead are 1.45 and 1.56, respectively. The samples

are trapped in water, whose refractive index is

1.33. Additionally, the optical tweezers system is

assumed consisting of a 10-mW Nd:YAG laser at
a wavelength of k = 1064 nm and a microscope

objective of N.A. = 1.25.

On the one hand, by substituting the appropriate

values into Eqs. (9) and (18) for the effective polar-

izabilities of the non-uniform artificial CHO cell of

50 nm in radius, we obtain an exact solution,

anon-uni-CHO,exact = (3.798 ± 0.263) · 10�23 m3, and

an approximate solution, anon-uni-CHO,appr =
(3.691 ± 0.221) · 10�23 m3, separately. Similarly,

we obtain, auni-CHO = 3.833 · 10�23 m3, asilica =
9.291 · 10�23 m3 and apoly = 17.48 · 10�23 m3 for

the uniform artificial CHO cell, the silica bead and

the polystyrene bead, respectively.

On the other hand, by substituting the appro-

priate values into Eqs. (25) and (26), we obtain

the values of the transverse and the longitudinal
components of the optical tweezers� stiffness result-
ing from the effective polarizabilities, as given

above. All data for the two kinds of artificial

CHO cells, the silica bead, and the polystyrene

bead are listed in Table 1.
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4. Discussion

From Table 1, it can be seen that the effective

polarizabilities a and the three components of the

optical tweezers� stiffness k of a silica bead and

of a polystyrene bead are about 2.5–4.5 times

those of either artificial CHO cell. The difference

in a and k between the beads and the artificial

CHO cells mainly results from the difference in
the refractive indices between them. According to

Eq. (20), this relationship should be applicable to

the trapping forces, the gradient dipole forces pro-
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duced by the optical tweezers upon them. This

predication somehow agrees with the experimental

result in Liang et al.�s work [18]. They found that

the trapping force upon a polystyrene bead is three

to four times that upon an Escherichia coli cell.
Similarly, we also found in our measurement that

the trapping force upon a 1-lm-in-diameter poly-

styrene bead is approximately 3.8 times that upon

a Klebsiella pneumoniane cell whose long axis is 1.2

lm and short axis is 0.98 lm. It is worth to note

that even the sizes and shapes of the uniform bead

and the K. pneumoniane cell are not really in the

Rayleigh regime, similar relationship of the trap-
ping forces between them remains the same.

In general, it seems that the larger the refractive

index is, the larger the corresponding a, k, and

trapping force are. However, on the contrary, the

uniform artificial CHO cell gives rise to a slightly

larger a and k than the non-uniform artificial

CHO cell of the same size, as shown in Table 1.

Note that the refractive index of the former is only
the average of that of the latter. Most importantly,

this particular case emphasizes the dependence of

trapping force upon the distribution of refractive

index of the trapped cell.

Moreover, we see that the exact solution

3.798 ± 0.263 and the approximate solution

3.691 ± 0.221 to the effective polarizability of the

non-uniform artificial CHO cell are nearly the
same, only differing by 2.5%. This proves the valid-

ity of the approximate method in our model for

the effective polarizability under the small variant

condition of the refractive index.
5. Conclusion

As a summary, we have successfully developed a

model to simulate a common biological cell as a

spherically symmetrical Rayleigh sphere. This

model is an extension of Harada and Asakura�s
EMmodel from a uniform sphere to a non-uniform

cell. In this model, only the radial distribution of

the refractive index of a cell is required for the fol-

lowing calculations: the effective polarizability of
the cell, the resulting trapping force produced by

an optical tweezers system upon the trapped cell,

and the stiffness of the optical tweezers.
The numerical simulation of this model analyt-

ically predicts a three- to fivefold difference in

trapping forces between an artificial CHO cell

at a reduced size and a commonly used bead of

the same size, which is mostly due to the differ-
ence in refractive index. On the one hand, the

trapping force is dependent upon the distribution

of refractive index of the trapped cell. The exact

value of the trapping force can be derived by

applying the accurate method of this model,

which requires a series of matrix calculation. On

the other hand, it is simple and convenient to

estimate the trapping force by applying the
approximate method of this model under the

small variant condition of refractive index. Addi-

tionally, it is appropriate as well to estimate the

trapping force by approximating the trapped cell

as a uniform cell with an effectively averaged

refractive index of the cell.
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