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a b s t r a c t

In Huang and Weng (2004), Huang and Weng introduced pooling spaces, and constructed
pooling designs from a pooling space. In this paper, we introduce the concept of pooling
semilattices and prove that a pooling semilattice is a pooling space, then show how to
construct pooling designs from a pooling semilattice. Moreover, we give many examples
of pooling semilattices and thus obtain the corresponding pooling designs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The basic problem of group testing is to identify the set of defective items in a large population of items. A group testing
algorithm is non-adaptive if all testsmust be specifiedwithout knowing the outcomes of other tests. A group test is applicable
to an arbitrary subset of items with two possible outcomes: a negative outcome indicates that all items in the subset are
negative, and a positive outcome indicates otherwise. A pooling design is a specification of all tests such that they can be
performed simultaneously with the goal being to identify all positive items with a small number of tests [3]. A non-adaptive
pooling design is usually represented by a binary matrix with columns indexed with items and rows indexed with pools.
A cell (i, j) contains a 1-entry if and only if the ith pool contains the jth item. By treating a column as a set of row indices
intersecting the column with a 1-entry, we can talk about the union of several columns. A binary matrix is se-disjunct if
every column has at least e + 1 1-entries not contained in the union of any other s columns [13]. An s0-disjunct matrix is
also called s-disjunct. An se-disjunct matrix is called fully se-disjunct if it is neither (s + 1)e-disjunct nor se+1-disjunct. An
se-disjunct matrix is ⌊e/2⌋-error-correcting [5,11].

Macula [12] proposed a novel way of constructing disjunct matrices by means of the containment relation of subsets in
a finite set. D’yachkov et al. [5] discussed the error-correcting capability of Macula’s designs. Ngo and Du [14] constructed
a family of disjunct matrices by means of the containment relation of subspaces in a finite vector space. D’yachkov et al. [4]
discussed the error-tolerance capability of Ngo–Du’s designs. In [7,8], the first two authors of this paper proposed a new
model for pooling designs—the intersection type incidence construction, and generalized Macula’s and Ngo–Du’s designs.
Under this model, the pooling designs have surprisingly high degree of error correction. Huang and Weng [11] generalized
the containment matrix construction of pooling designs to pooling spaces.

Let (X, ≼) be a finite partially ordered set (poset) with the least element 0. For x, y ∈ X , if x ≼ y, we say that y contains
x. Moreover, if there does not exist element z such that x ≺ z ≺ y, we say that y covers x. An atom in X is an element in X
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Fig. 1. A pooling space that is not a pooling semilattice.

that covers 0. The poset X is ranked and has rank function, if there is a function ℓ from X to the integer set such that ℓ(0) = 0
and ℓ(y) = ℓ(x) + 1 if y covers x. The maximum value of ℓ(x) is called the rank of X , denoted by N . The fibers (or levels)
X0, X1, . . . , XN of the poset are the subsets of X given by Xi = {x ∈ X | ℓ(x) = i}. Pick any x, y ∈ X such that x ≼ y. By
the interval [x, y], we mean the subposet [x, y] := {z ∈ X | x ≼ z ≼ y} of X . A ranked poset X is called atomic whenever
each element x ∈ X \ {0} is the least upper bound of the set [0, x] ∩ X1. A pooling space is a finite poset (X, ≼) such that the
subposet induced on w+

= {w ≼ y | y ∈ X} is atomic for each w ∈ X . Huang and Weng [11] showed that how to construct
pooling designs from pooling spaces.

Theorem 1 ([11]). Let X be a pooling space with rank N ≥ 1. For 1 ≤ d ≤ k ≤ N, let M(k,N) be the binary matrix with rows
indexed with Xk and columns indexed with XN such that M(x, y) = 1 if and only if x ≼ y. Then M(k,N) is de-disjunct, where

e = min | ∪ ([y, x] ∩ Xk)| − 1,

the minimum is taken over all pairs (x, T ) with T ⊆ XN , |T | ≤ d and x ∈ XN \ T ; the union is taken over all y ∈ [0, x] ∩ Xd such
that y ⋠ z for all z ∈ T .

Let (X, ≼) be a finite poset with the rank function ℓ and fibers X0, . . . , XN . We call X a semilattice, if any two elements x
and y of X have the greatest lower bound, denoted by x ∧ y. As usual, we denote by x ∨ y the least upper bound of x and y
if it exists. Note that if X is a semilattice and x, y ∈ X have a common upper bound, then x ∨ y exists; indeed x ∨ y is the
greatest lower bound of the set of upper bounds of x and y. X is a lattice if x ∨ y exists for any x, y ∈ X .

Let X denote a semilattice with the rank function ℓ and fibers X0, . . . , XN . We are concerned with the following axioms:
(A1) For u ∈ Xr and z ∈ Xt with u ≺ z, the number |[u, z] ∩ Xr+1| is a constant µ(r, r + 1, t), where 0 ≤ r < t ≤ N .

Moreover, the function µ(0, 1, t) is strictly increasing about t , i.e. 1 = µ(0, 1, 1) < µ(0, 1, 2) < · · · < µ(0, 1,N).
(A2) For x, y ∈ X , if x ∨ y exists, then ℓ(x ∨ y) ≤ ℓ(x) + ℓ(y) − ℓ(x ∧ y).
(A3) For x, y ∈ X , if x ∨ y exists, then ℓ(x ∨ y) = ℓ(x) + ℓ(y) − ℓ(x ∧ y).

We call X a pooling semilattice, if it satisfies (A1) and (A2). We call X a regular pooling semilattice, if it satisfies (A1) and
(A3). Note that (A3) implies (A2) and thus a regular pooling semilattice is a pooling semilattice. In addition if X is a lattice,
we use a lattice to replace the above semilattice. We call X a geometric lattice if X is a finite atomic lattice and satisfies (A2).

In this paper, we focus on the construction of pooling designs from a pooling semilattice. In Section 2, we first discuss
some properties of pooling semilattices, then showhow to construct pooling designs from a pooling semilattice. In Section 3,
we give many families of examples of pooling semilattices. They fall into three categories: regular pooling semilattices
from sets, vector spaces and maps in Section 3.1, non-regular pooling semilattices from affine spaces in Section 3.2,
pooling semilattices from distance-regular graphs in Section 3.3. In Section 4, we generalize the intersection type incidence
construction to pooling lattices and give four families of examples of pooling lattices.

2. Pooling semilattices

In this section, we always assume that X denotes a pooling semilattice with the rank function ℓ and fibers X0, . . . , XN .
A poset can be described by a diagram in the plane in which y covers x if and only if there is a line moving upwards from

x to y. Fig. 1 is a diagram of a pooling space with seven elements. It is not a pooling semilattice since z ∧ w does not exist.

Lemma 2. A pooling semilattice X is atomic.

Proof. Pick any element w ∈ X \ {0}. Suppose that u is the least upper bound of the set [0, w] ∩ X1. Then u ≼ w and
µ(0, 1, ℓ(w)) ≤ µ(0, 1, ℓ(u)). By (A1), one gets ℓ(w) = ℓ(u) and u = w, as desired. �

The usage of the term ‘‘pooling semilattice’’ is justified by the following proposition.

Proposition 3. Let X be a pooling semilattice with rank N. Then X is a pooling space. In particular, for each 1 ≤ r < N, the
function µ(r, r + 1, t) is strictly increasing about t where r + 1 ≤ t ≤ N.

Proof. Let w ∈ Xr be given. We shall prove that the subposet w+ is atomic. Pick any x ∈ w+. Then [0, x] is a semilattice.
By Lemma 2, [0, x] is a atomic and hence is a geometric lattice. It is well-known that an interval in a geometric lattice is a
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geometric lattice [15, p. 307], [9, Lemma 5.2]. Hence [w, x] is geometric. Theorem 5.4 in [9] tells us that a geometric lattice
is a pooling space, which implies that [w, x] is a pooling space. In particular x is the least upper bound of [w, x] ∩ Xr+1. This
proves the first statement. Fix u1 ∈ Xt−1 and u2 ∈ Xt with w ≺ u1 ≺ u2. Since u1 (resp. u2) is the least upper bound of the
ℓ(r, r+1, t−1) (resp. ℓ(r, r+1, t)) elements in [w, u1]∩Xr+1 (resp. [w, u2]∩Xr+1), we have ℓ(r, r+1, t−1) < ℓ(r, r+1, t)
to conclude the second statement. �

The following lemma says that the local assumption of (A1) can imply a global property on X .

Lemma 4. Let X be a pooling semilattice and 0 ≤ r ≤ s ≤ t ≤ N. Then for u ∈ Xr and z ∈ Xt with u ≼ z, the number
µ(r, s, t) := |[u, z] ∩ Xs| is a constant. Moreover for given r, s with 0 ≤ r ≤ s ≤ N, the function µ(r, s, t) is strictly increasing
about t, where s ≤ t ≤ N.

Proof. Note that µ(r, r, t) = µ(r, t, t) = 1, µ(r, r + 1, t) is a constant by (A1) and µ(r, r + 1, t − 1) < µ(r, r + 1, t) by
Proposition 3, where r + 1 ≤ t ≤ N . We prove the lemma by induction on t − r , and assume in the nontrivial situation
r + 2 ≤ s ≤ t − 1. Fix u ∈ Xr and z ∈ Xt with u ≺ z. Counting pairs (v, w) ∈ Xr+1 × Xs with u ≺ v ≺ w ≺ z in two ways
yields a constant

µ(r, s, t) = µ(r, r + 1, t)µ(r + 1, s, t)/µ(r, r + 1, s) (1)

by induction. Alsoµ(r, s, t−1) = µ(r, r+1, t−1)µ(r+1, s, t−1)/µ(r, r+1, s) < µ(r, r+1, t)µ(r+1, s, t)/µ(r, r+1, s) =

µ(r, s, t) since µ(r, r + 1, t − 1) < µ(r, r + 1, t) by Proposition 3, and µ(r + 1, s, t − 1) < µ(r + 1, s, t) by induction. �

Lemma 5. Let X be a pooling semilattice and 1 ≤ s < t ≤ N. Then the function µ(r, s, t) is strictly decreasing about r, where
1 ≤ r < s, i.e. µ(1, s, t) > µ(2, s, t) > · · · > µ(s − 1, s, t) > µ(s, s, t) = 1.

Proof. As the above two-way counting argument,

µ(r, s, t)
µ(r + 1, s, t)

=
µ(r, r + 1, t)
µ(r, r + 1, s)

> 1

by Lemma 4. �

Definition 1. Suppose that X is a pooling semilattice. For positive integers 1 ≤ d < k < N , let M(d, k;N) be the binary
matrix with rows indexed with Xd and columns indexed with Xk such that M(x, y) = 1 if and only if x ≼ y.

Theorem 6. Let X be a pooling semilattice. Then the following results hold.
(i) If 1 ≤ s ≤ d, then M(d, k;N) is an se-disjunct matrix, where e = µ(s, d, k) − 1.
(ii) If 1 ≤ s < µ(0, d, k)/µ(0, d, k− 1), then M(d, k;N) is an se-disjunct matrix, where e = µ(0, d, k) − sµ(0, d, k− 1) − 1.

Proof. (i) Let y0, y1, . . . , ys be any s+1 distinct columns ofM(d, k;N). Note that ℓ(y0∧yj) ≤ k−1 for each j ∈ {1, 2, . . . , s}.
By (A1) we have µ(0, 1, k) > µ(0, 1, ℓ(y0 ∧ yj)), which implies that there exists some aj ∈ X1 such that aj ≼ y0 but aj ⋠ yj
for each j ∈ {1, 2, . . . , s}. Since y0 is a common upper bound of a1, a2, . . . , as, the least upper bound of these elements
exists. Suppose that x0 = a1 ∨ a2 ∨ · · · ∨ as. Then x0 ≼ y0 and x0 ⋠ yj for each j ∈ {1, 2, . . . , s}. By (A2) we have
1 ≤ ℓ(x0) ≤ s. By Lemma 4, the size of Xd ∩ [x0, y0] is µ(ℓ(x0), d, k). From Lemma 5, we deduce that µ(ℓ(x0), d, k) is
decreasing for 1 ≤ ℓ(x0) ≤ s and gets its minimum at ℓ(x0) = s, which implies that the size of Xd ∩ [x0, y0] is at least
µ(s, d, k), as desired.

(ii) Let y0, y1, . . . , ys be any s+1 distinct columns ofM(d, k;N). Note that y0 containsµ(0, d, k)many elements in Xd and
ℓ(y0 ∧ yj) ≤ k − 1 for each j ∈ {1, 2, . . . , s}. By Lemma 4, each y0 ∧ yj contains at most µ(0, d, k − 1) elements in Xd. Thus,
the number of elements in Xd contained in y0 but not in yj for each j ∈ {1, 2, . . . , s} is at least µ(0, d, k) − sµ(0, d, k − 1),
as desired. �

Theorem 7. Let X be a regular pooling semilattice. If k − d ≥ 2 and 1 ≤ s ≤ (µ(0, d, k) − µ(0, d, k − 1))/(µ(0, d, k − 1) −

µ(0, d, k− 2)), then M(d, k;N) is an se-disjunct matrix, where e = µ(0, d, k)− sµ(0, d, k− 1)+ (s− 1)µ(0, d, k− 2)− 1. In
particular, if s ≤ min{µ(k − 2, k − 1, k), (µ(0, d, k) − µ(0, d, k − 1))/(µ(0, d, k − 1) − µ(0, d, k − 2))} and |x+

∩ Xk| > 1
for any x ∈ Xk−1, then M(d, k;N) is fully se-disjunct.

Proof. Let y0, y1, . . . , ys be any s + 1 distinct columns of M(d, k;N). Note that y0 contains µ(0, d, k) many elements in Xd
and ℓ(y0∧yj) ≤ k−1 for each j ∈ {1, 2, . . . , s}. To obtain themaximumelementswith rank d in

s
j=1{x ∈ Xd | x ≼ (y0∧yj)},

by Lemma 4 we may assume that y0 ∧ y1, . . . , y0 ∧ ys are s distinct elements in Xk−1. Then the element y0 ∧ y1 contains at
most µ(0, d, k − 1) elements in Xd. Since (y0 ∧ y1) ∨ (y0 ∧ yj) ≼ y0 and ℓ(y0 ∧ y1 ∧ yj) ≤ k − 2 for each j ∈ {2, . . . , s}, by
(A3) ℓ((y0 ∧ y1) ∨ (y0 ∧ yj)) = k and ℓ(y0 ∧ y1 ∧ yj) = k − 2. By Lemma 4, each of y0 ∧ y2, . . . , y0 ∧ ys can contain at most
µ(0, d, k − 1) − µ(0, d, k − 2) elements in Xd not contained in y0 ∧ y1. Thus, the number of elements in Xd contained in y0
but not in yj for each j ∈ {1, 2, . . . , s} is at least µ(0, d, k)−µ(0, d, k− 1)− (s− 1)(µ(0, d, k− 1)−µ(0, d, k− 2)). Hence
M(d, k;N) is se-disjunct.

Let s ≤ min{µ(k − 2, k − 1, k), (µ(0, d, k) − µ(0, d, k − 1))/(µ(0, d, k − 1) − µ(0, d, k − 2))} and |x+
∩ Xk| > 1

for any x ∈ Xk−1. We show that M(d, k;N) is fully se-disjunct. Let u ∈ Xk−2 with u ≼ y0. By Lemma 4 the number of
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elements x ∈ Xk−1 such that u ≼ x ≼ y0 is µ(k − 2, k − 1, k), and so we can choose s distinct ones among them, say
xj (1 ≤ j ≤ s). Since |x+

j ∩ Xk| > 1 we can choose pairwise distinct yj in Xk \ {y0} such that xj = y0 ∧ yj. Then the number
of elements in Xd contained in y0 but not in yj for each j ∈ {1, 2, . . . , s} is e + 1. Therefore M(d, k;N) is not se+1-disjunct.
View the function e = e(s) = µ(0, d, k) − sµ(0, d, k − 1) + (s − 1)µ(0, d, k − 2) − 1 as a function of s, and notice that
e(s + 1) − e(s) = µ(0, d, k − 2) − µ(0, d, k − 1) < 0. The above argument with s + 1 to replace s implies that M(d, k;N)
is not (s + 1)e-disjunct. �

3. Examples

In this section we give many examples of pooling semilattices, and give their parameters. By Theorems 6 and 7, we can
construct pooling designs from these pooling semilattices.

Let q be a positive integer. Fix a positive integer n. The Gaussian binomial coefficients with basis q is defined by

n
i


q
=


i−1
j=0

n − j
i − j

if q = 1,

i−1
j=0

qn − qj

qi − qj
if q ≠ 1.

In the case q = 1, for convenience, we write
 n

i


instead of

 n
i


1.

3.1. Regular pooling semilattices from sets, vector spaces and maps

In this subsection we give thirteen families of regular pooling semilattices with rank N .

Example 1 ([5,12] The Boolean Algebra). Let X be the collection of all subsets of [N] := {1, 2, . . . ,N}. Ordered by inclusion,
X is a regular pooling semilattice with the rank function ℓ(x) = |x| and the parameters

|Xr | =


N
r


, µ(r, s, t) =


t − r
s − r


.

Example 2 ([4,14] The Projective Geometry). Let FN
q be the N-dimensional vector space over the finite field Fq and X be the

collection of all subspaces of FN
q . Ordered by inclusion, X is a regular pooling semilattice with the rank function ℓ(x) = dim x

and the parameters

|Xr | =


N
r


q
, µ(r, s, t) =


t − r
s − r


q
.

Example 3 ([11] The Attenuated Space). For fixed positive integers n and N , let w be a fixed n-dimensional subspace of Fn+N
q .

Let X be the collection of all subspaces x of Fn+N
q with x ∩ w = {0}. Ordered by inclusion, X is a regular pooling semilattice

with the rank function ℓ(x) = dim x and the parameters

|Xr | = qrn

N
r


q
, µ(r, s, t) =


t − r
s − r


q
.

Example 4 ([10] The Classical Polar Space). Classical finite polar spaces are incidence structures, consisting of all the totally
isotropic subspaces of Fn

q with respect to a certain non-degenerate sesquilinear or quadratic form f . The rank of the polar
space is the algebraic dimension of the maximal totally isotropic subspaces, denoted by N . The summary is given in the
following table:

Name n Form |Xr |

[CN(q)] 2N Symplectic

N
r


q

r−1
i=0 (qN−i

+ 1)

[BN(q)] 2N + 1 Quadratic

N
r


q

r−1
i=0 (qN−i

+ 1)

[DN(q)] 2N Quadratic (with rank N)

N
r


q

r−1
i=0 (qN−i−1

+ 1)

[
2DN+1(q)] 2N + 2 Quadratic (with rank N)


N
r


q

r−1
i=0 (qN−i+1

+ 1)

[
2A2N(r)] 2N + 1 Hermitian (q = r2)


N
r


q

r−1
i=0 (qN−i+1/2

+ 1)

[
2A2N−1(r)] 2N Hermitian (q = r2)


N
r


q

r−1
i=0 (qN−i−1/2

+ 1)
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Let X be the collection of all totally isotropic subspaces of Fn
q . Ordered by inclusion, X is a regular pooling semilattice with

the rank function ℓ(x) = dim x and the parameters

|Xr | =


N
r


q

r−1
i=0

(qN+e−i−1
+ 1), µ(r, s, t) =


t − r
s − r


q

where e = 1, 1, 0, 2, 3/2, 1/2 according to [CN(q)], [BN(q)], [DN(q)], [2DN+1(q)], [2A2N(r)], [2A2N−1(r)], respectively.

For fixed positive integers n andm, let w be an l-dimensional subspace of Fn+m
q , denote also by w an l × (n + m) matrix

of rank l whose rows span the subspace w and call the matrix w a matrix representation of the subspace w.

Example 5 (The Attenuated Classical Polar Space). For fixed positive integers n andm, let Fn
q be the classical polar space with

rank N as in Example 4 and w = (0(m,n) I(m)). Then the quotient space Fn+m
q /w is isomorphic to Fn

q . Let X be the collection of
all subspaces x = (x1 x2) of Fn+m

q with x∩ w = {0}, where x1 is a totally isotropic subspace of Fn
q and x2 is a matrix. Ordered

by inclusion, X is a regular pooling semilattice with the rank function ℓ(x) = dim x and the parameters

|Xr | = qrm

N
r


q

r−1
i=0

(qN+e−i−1
+ 1), µ(r, s, t) =


t − r
s − r


q

where e as in Example 4.

Example 6 (TheMap). Let X be the collection of all pairs (w, f ), wherew is a subset of [N] := {1, 2, . . . ,N} and f : w → [N]

is a map. Ordered by inclusion, that is (w, f ) ≼ (u, g) if w ⊆ u and g|w = f , X is a regular pooling semilattice with the rank
function ℓ(w, f ) = |w| and the parameters

|Xr | = N r

N
r


, µ(r, s, t) =


t − r
s − r


.

Example 7 (The Injective Map). Let X be the collection of all pairs (w, f ), where w is a subset of [N] and f : w → [N] is
an injective map. Ordered by inclusion, X is a regular pooling semilattice with the rank function ℓ(w, f ) = |w| and the
parameters

|Xr | =


N
r


N(N − 1) · · · (N − r + 1), µ(r, s, t) =


t − r
s − r


.

Example 8 (The Bilinear Form). Let X be the collection of all pair (w, f ), where w is a subspace of FN
q and f : w → FN

q
is a linear map. Ordered by inclusion, X is a regular pooling semilattice with the rank function ℓ(w, f ) = dimw and the
parameters

|Xr | = qrN

N
r


q
, µ(r, s, t) =


t − r
s − r


q
.

Example 9 (The Injective Linear Map). Let X be the collection of all pair (w, f ), where w is a subspace of FN
q and f : w → FN

q
is an injective linear map. Ordered by inclusion, X is a regular pooling semilattice with the rank function ℓ(w, f ) = dimw
and the parameters

|Xr | = qr(r−1)/2
N

i=N−r+1

(qi − 1)

N
r


q
, µ(r, s, t) =


t − r
s − r


q
.

Example 10 (The Square Bilinear Form). Let X be the collection of all pair (w, f ), wherew is a subspace of FN
q and f : w → w

is a bilinear form on w. Ordered by inclusion, X is a regular pooling semilattice with the rank function ℓ(w, f ) = dimw and
the parameters

|Xr | = qr
2

N
r


q
, µ(r, s, t) =


t − r
s − r


q
.

Example 11 (The Alternating Form). Let X be the collection of all pair (w, f ), where w is a subspace of FN
q and f : w → w

is an alternating bilinear form on w. Ordered by inclusion, X is a regular pooling semilattice with the rank function
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ℓ(w, f ) = dimw and the parameters

|Xr | = qr(r−1)/2

N
r


q
, µ(r, s, t) =


t − r
s − r


q
.

Example 12 (The Hermitian Form). Let X be the collection of all pair (w, f ), where w is a subspace of FN
q and f : w → w is a

Hermitian form onw, where q = r2 is square. Ordered by inclusion, X is a regular pooling semilattice with the rank function
ℓ(w, f ) = dimw and the parameters

|Xr | = qr
2/2


N
r


q
, µ(r, s, t) =


t − r
s − r


q
.

Example 13 (The Symmetric Bilinear Form). Let X be the collection of all pair (w, f ), where w is a subspace of FN
q and

f : w → w is a symmetric bilinear form on w. Ordered by inclusion, X is a regular pooling semilattice with the rank
function ℓ(w, f ) = dimw and the parameters

|Xr | = qr(r+1)/2

N
r


q
, µ(r, s, t) =


t − r
s − r


q
.

3.2. Pooling semilattices from affine spaces

In this subsection we give four families of examples of non-regular pooling semilattices with rank N +1. These examples
are from an affine space.

Example 14 ([9,10] The Affine Geometry). Let FN
q and X be as in Example 2. Let X ′ be the collection of all cosets of subspaces

in X together with the empty set ∅. We define ℓ(∅) = 0. Ordered by inclusion, X ′ is a pooling semilattice with the rank
function ℓ(x) = dim x + 1 and the parameters

|X ′

r+1| = qN−r

N
r


q
, µ(r + 1, s + 1, t + 1) =


t − r
s − r


q
.

Example 15 (The Affine Attenuated Space). LetFn+N
q andX be as in Example 3. LetX ′ be the collection of all cosets of subspaces

in X together with the empty set ∅. Ordered by inclusion, X ′ is a pooling semilattice with the rank function ℓ(x) = dim x+1
and the parameters

|X ′

r+1| = qn+N+rn−r

N
r


q
, µ(r + 1, s + 1, t + 1) =


t − r
s − r


q
.

Example 16 ([10] The Affine Classical Polar Space). Let Fn
q and X be as in Example 4. Let X ′ be the collection of all cosets

of subspaces in X together with the empty set ∅. Ordered by inclusion, X ′ is a pooling semilattice with the rank function
ℓ(x) = dim x + 1 and the parameters

|X ′

r+1| = q2N+δ−r

N
r


q

r−1
i=0

(qN+e−i−1
+ 1), µ(r + 1, s + 1, t + 1) =


t − r
s − r


q
,

where δ = 0, 1, 0, 2, 1, 0 according to [CN(q)], [BN(q)], [DN(q)], [2DN+1(q)], [2A2N(r)], [2A2N−1(r)], respectively, and e is as
in Example 4.

Example 17 (The Affine Attenuated Classical Polar Space). Let Fn+m
q and X be as in Example 5. Let X ′ be the collection of all

cosets of subspaces in X together with the empty set ∅. Ordered by inclusion, X ′ is a pooling semilattice with the rank
function ℓ(x) = dim x + 1 and the parameters

|X ′

r+1| = q2N+δ+m+rm−r

N
r


q

r−1
i=0

(qN+e−i−1
+ 1), µ(r + 1, s + 1, t + 1) =


t − r
s − r


q
.

3.3. Pooling semilattices from distance-regular graphs

In this subsection, we give four families of examples of pooling semilattices with rank N . These examples are from
distance-regular graphs.
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Let Γ be a connected regular graph. We identify Γ with the set of vertices. For two vertices u and v, let ∂(u, v) denote
the usual distance between u and v. The maximum value of the distance function in Γ is called the diameter of Γ , denoted
by D(Γ ). For vertices u and v at distance i, define

C(u, v) = Ci(u, v) = {w | ∂(u, w) = i − 1, ∂(w, v) = 1},
A(u, v) = Ai(u, v) = {w | ∂(u, w) = i, ∂(w, v) = 1}.

For the cardinalities of these sets we use lower case letters ci(u, v) and ai(u, v). A connected regular graph Γ with diameter
D is called distance-regular if ci(u, v) and ai(u, v) depend only on i for all 1 ≤ i ≤ D. The reader is referred to [2] for general
theory of distance-regular graphs.

Let Γ be a distance-regular graph. A r-subset {x1, x2, . . . , xr} ⊆ Γ is said to be a t-clique of Γ with size r if any two
distinct vertices in {x1, x2, . . . , xr} are at distance t .

Example 18 ([1,17] The Johnson Graph). Let N = ⌊n/t⌋ and X be the collection of all t-cliques of the Johnson graph J(n, t)
together with the empty set ∅. Ordered by inclusion, X is a regular pooling semilattice with the rank function ℓ(x) = |x| and
the parameters

|Xr | =

 n
rt


(rt)!/(t!)r r!, µ(r, s, t) =


t − r
s − r


.

A distance-regular graph Γ with diameter D ≥ 2 is said to be antipodal, if ∂(x, y) = ∂(x, z) = D and y ≠ z implies
∂(y, z) = D. For u ∈ Γ , the size of the set {v ∈ Γ | ∂(u, v) = D} depends only on D, denoted by kD.

Example 19 ([1] The Antipodal Distance-Regular Graph). Suppose thatΓ is an antipodal distance-regular graphwith diameter
D. Let N = kD + 1 and X be the collection of all D-cliques of Γ together with the empty set ∅. Ordered by inclusion, X is a
regular pooling semilattice with the rank function ℓ(x) = |x| and the parameters

|Xr | =


kD + 1

r


|Γ |/(kD + 1), µ(r, s, t) =


t − r
s − r


.

A distance-regular graph Γ is said to be of order (l, k) if, for each vertex x ∈ Γ , the induced subgraph on Γ (x) is a disjoint
union of k + 1 cliques with size l. Then each maximal clique is of size l + 1, and each vertex is contained in k + 1 maximal
cliques.

Example 20 ([1] The Distance-Regular Graph of Order (l, k)). Suppose that Γ is a distance-regular graph of order (l, k). Let
N = l + 1 and X be the collection of all cliques of Γ together with the empty set ∅. Ordered by inclusion, X is a regular
pooling semilattice with the rank function ℓ(x) = |x| and the parameters

|Xr | =


l + 1
r


n(k + 1)/(l + 1), µ(r, s, t) =


t − r
s − r


.

Recall that a subgraph induced on a subset ∆ of Γ is called strongly closed if C(u, v) ∪ A(u, v) ⊆ ∆ for every pair of
vertices u, v ∈ ∆. A distance-regular graph Γ with diameter D is called D-bounded, if every strongly closed subgraph of
Γ is regular, and any two vertices x and y are contained in a common strongly closed subgraph with diameter ∂(x, y). A
regular strongly closed subgraph of Γ is called a subspace of Γ . For any two subspaces ∆1 and ∆2 of Γ , ∆1 + ∆2 denotes
the minimum subspace containing ∆1 and ∆2.

Proposition 8 ([6, Lemma 2.1]). Let Γ be a D-bounded distance-regular graph with diameter D ≥ 2. For 1 ≤ i + 1 ≤ i + s ≤

i + s + t ≤ D, suppose that ∆ and ∆′ are two subspaces satisfying 1 ⊆ ∆′, D(∆) = i and D(∆′) = i + s + t. Then the number
of the subspaces with diameter i + s containing ∆ and contained in ∆′, denoted by N(i, i + s, i + s + t), is

(bi − bi+s+t)(bi+1 − bi+s+t) · · · (bi+s−1 − bi+s+t)

(bi − bi+s)(bi+1 − bi+s) · · · (bi+s−1 − bi+s)
.

Example 21 ([16] The D-Bounded Distance-Regular Graph). Let Γ be a D-bounded distance-regular graph with D = N . For
x ∈ Γ , let X be the collection of all subspaces ∆ containing x in Γ . Ordered by inclusion, X is a pooling semilattice with the
rank function ℓ(∆) = D(∆) and the parameters

|Xr | = N(0, r,D), µ(r, s, t) = N(r, s, t).

In particular, if D(∆1)+D(∆2) = D(∆1 +∆2)+D(∆1 ∩∆2) for any ∆1, ∆2 ∈ X , then the pooling semilattice X is a regular
pooling semilattice.
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4. Pooling lattices

In this section, we show how to construct pooling designs from the pooling lattices by the intersection type incidence
method.

Lemma 9. Let X be a pooling lattice with rank N and 0 ≤ r ≤ s, t ≤ N. For u ∈ Xr , x ∈ Xs with u ≼ x, the number of elements
z ∈ Xt such that x ∧ z = u is a constant π(r, s, t). Moreover, for given r and t, the function π(r, s, t) is decreasing about s and
is indeed strictly decreasing until its value is zero, i.e. π(r, r, t) > π(r, r + 1, t) > · · · > π(r, p, t) > π(r, p + j, t) = 0 for
some p ≥ r and any 1 ≤ j ≤ N − p.

Proof. We prove the first statement by induction on s − r . The case s − r = 0 follows from Lemma 4 with π(r, r, t) =

|[u, 1] ∩ Xt | = µ(r, t,N), where the element 1 is the greatest element of X . Suppose s − r ≥ 1. Choose any u ∈ Xr and
x ∈ Xs with u ≼ x. Note that the set u+

∩ Xt is partitioned into Ui = {z | z ∈ u+
∩ Xt , ℓ(x ∧ z) = i} for r ≤ i ≤ s. Since each

element z ∈ Ui has the greatest lower bound x ∧ z ∈ [u, x] ∩ Xi, |Ui| = µ(r, i, s)π(i, s, t) by induction for r < i. Hence

π(r, s, t) = µ(r, t,N) −

s
i=r+1

µ(r, i, s)π(i, s, t) (2)

is a constant, where π(i, s, t) = 0 if i > t . The first statement follows. Let x1 ∈ Xs and x2 ∈ Xs+1 with u ≼ x1 ≺ x2, where
r ≤ s ≤ N −1. Then {z ∈ Xt | x1 ∧ z = u} ⊇ {z ∈ Xt | x2 ∧ z = u}, which implies that π(r, s, t) ≥ π(r, s+1, t). Choose the
largest p ≤ N such thatπ(r, p, t) > 0, and restrict to s ≤ p−1 in the aboveproof. Pick y ∈ Xt with x1∧y = u, a ∈ [u, y]∩Xr+1
and let x2 = x1 ∨ a. Then x1 ∧ a = u and a ≼ x2 ∧ y, which implies that ℓ(x2) = s + 1. Hence y ∉ {z ∈ Xt | x2 ∧ z = u}. The
second statement follows. �

Lemma 10. Let X be a pooling lattice with rank N and 1 ≤ r ≤ s, t ≤ N. For x ∈ Xs, the number of elements z ∈ Xt such that
ℓ(x ∧ z) = r is µ(0, r, s)π(r, s, t).

Proof. This is clear by Lemma 9, since for x ∈ Xs the number µ(0, r, s)π(r, s, t) = |[0, x] ∩ Xr |π(r, s, t) counts the desired
z. �

Definition 2. Suppose thatX is a pooling semilattice. For positive integers i, d, k,N with1 ≤ i ≤ d < k < N , letM(i; d, k;N)
be the binarymatrixwith rows indexedwith Xd and columns indexedwith Xk such thatM(x, y) = 1 if and only if ℓ(x∧y) = i.

Theorem 11. Suppose that X is a pooling lattice and 1 ≤ i ≤ d < k < N. Then the following results hold.

(i) Let s satisfy 1 ≤ s ≤ i and N − (s + 1)k ≥ d − i. Then M(i; d, k;N) is an se-disjunct matrix, where e = µ(s, i, k)π(i, (s +

1)k, d) − 1.
(ii) Let s satisfies 1 ≤ s < µ(0, i, k)/µ(0, i, k− 1) and N − (s+ 1)k ≥ d− i. Then M(i; d, k;N) is an se-disjunct matrix, where

e = (µ(0, i, k) − sµ(0, i, k − 1))π(i, (s + 1)k, d) − 1.

Proof. (i) Let y0, y1, . . . , ys be any s+1 distinct columns ofM(i; d, k;N). Similar to the proof of Theorem 6(i), there exists an
aj ∈ X1 such that aj ≼ y0 but aj ⋠ yj for each j ∈ {1, 2, . . . , s}. Suppose a0 = a1 ∨ a2 ∨ · · · ∨ as. By the proof of Theorem 6(i),
the size of Xi∩[a0, y0] is at leastµ(s, i, k). Let x0 ∈ [a0, y0]∩Xi and x ∈ Xd satisfy x∧(y0∨y1∨· · ·∨ys) = x0. Then x∧y0 = x0
and x ∧ yj ≼ x0 for each j ∈ {1, 2, . . . , s}, which implies that ℓ(x ∧ yj) < i by a0 ⋠ yj. Since x ∧ (y0 ∨ y1 ∨ · · · ∨ ys) = x0,
by (A2) ℓ(y0 ∨ y1 ∨ · · · ∨ ys) ≤ (s + 1)k and ℓ(x ∨ y0 ∨ y1 ∨ · · · ∨ ys) ≤ d + (s + 1)k − i ≤ N . By Lemma 9, the number
of elements x ∈ Xd satisfying x ∧ (y0 ∨ y1 ∨ · · · ∨ ys) = x0 is at least π(i, (s + 1)k, d). Therefore, the number of elements
x ∈ Xd satisfying ℓ(x ∧ y0) = i and ℓ(x ∧ yj) ≠ i for each j ∈ {1, 2, . . . , s} is at least µ(s, i, k)π(i, (s + 1)k, d), as desired.

(ii) Let y0, y1, . . . , ys be any s + 1 distinct columns of M(i; d, k;N). By Theorem 6(ii), the number of elements in Xi
contained in y0 but not in yj for each j ∈ {1, 2, . . . , s} is at least µ(0, i, k) − sµ(0, i, k − 1). Given x0 ∈ Xi with x0 ≼ y0
but x0 ⋠ yj for each j ∈ {1, 2, . . . , s}. By the proof of (i), the number of elements x ∈ Xd satisfying x ∧ y0 = x0 and
ℓ(x ∧ yj) < i for each j ∈ {1, 2, . . . , s} is at least π(i, (s + 1)k, d). Therefore, the desired result follows. �

Theorem 12. Suppose that X is a regular pooling lattice. Let s, i, d, k and N satisfy k − i ≥ 2, 1 ≤ s ≤ (µ(0, i, k) − µ(0, i, k −

1))/(µ(0, i, k − 1) − µ(0, i, k − 2)) and N − k − s(k − max{2i − d, 0}) ≥ d − i. Then M(i; d, k;N) is an se-disjunct matrix,
where e = (µ(0, i, k) − µ(0, i, k − 1) − (s − 1)(µ(0, i, k − 1) − µ(0, i, k − 2)))π(i, k + s(k − max{2i − d, 0}), d) − 1.

Proof. Let y0, y1, . . . , ys be any s+1 distinct columns ofM(i; d, k;N). By Theorem 7 the number of elements of Xi contained
in y0 but not in yj for each 1 ≤ j ≤ s is at least µ(0, i, k) − µ(0, i, k− 1) − (s− 1)(µ(0, i, k− 1) − µ(0, i, k− 2)). Let x ∈ Xd
satisfy ℓ(x ∧ y0) = i. If there exists j ∈ {1, 2, . . . , s} such that ℓ(x ∧ yj) = i, by (x ∧ y0) ∨ (x ∧ yj) ≼ x and (A3), we have

ℓ(y0 ∧ yj) ≥ ℓ(x ∧ y0 ∧ yj)
= ℓ(x ∧ y0) + ℓ(x ∧ yj) − ℓ((x ∧ y0) ∨ (x ∧ yj))
≥ max{2i − d, 0}.
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Suppose ℓ(y0 ∧ yj) ≥ max{2i − d, 0} for each j ∈ {1, 2, . . . , s}. By (A3) we have

ℓ(y0 ∨ y1 ∨ · · · ∨ ys) = ℓ(y0 ∨ y1 ∨ · · · ∨ ys−1) + ℓ(ys) − ℓ((y0 ∨ y1 ∨ · · · ∨ ys−1) ∧ ys)
≤ ℓ(y0 ∨ y1 ∨ · · · ∨ ys−1) + ℓ(ys) − ℓ(y0 ∧ ys)
≤ ℓ(y0 ∨ y1 ∨ · · · ∨ ys−1) + k − max{2i − d, 0}
≤ ℓ(y0) + s(k − max{2i − d, 0})
= k + s(k − max{2i − d, 0}).

Given x0 ∈ Xi with x0 ≼ y0 but x0 ⋠ yj for each j ∈ {1, 2, . . . , s}. By the proof of Theorem 11, the number of elements x ∈ Xd
satisfying x∧ y0 = x0 and ℓ(x∧ yj) < i for each j ∈ {1, 2, . . . , s} is at least π(i, k+ s(k−max{2i− d, 0}), d). Therefore, the
desired result follows. �

Now we give four families of pooling lattices. By Theorems 11 and 12, we can construct pooling designs from these
lattices.

Example 22 ([7] The Boolean Algebra). Let X be as in Example 1. Then X is a regular pooling lattice with the parameters

|Xr | =


N
r


, µ(r, s, t) =


t − r
s − r


, π(r, s, t) =


N − s
t − r


.

Example 23 ([8] The Projective Geometry). Let X be as in Example 2. Then X is a regular pooling lattice with the parameters

|Xr | =


N
r


q
, µ(r, s, t) =


t − r
s − r


q
, π(r, s, t) = q(s−r)(t−r)


N − s
t − r


q
.

Example 24 (The Affine Geometry). Let X ′ be as in Example 14. Then X ′ is a pooling lattice with the parameters

|X ′

r+1| = qN−r

N
r


q
, µ(r + 1, s + 1, t + 1) =


t − r
s − r


q
,

π(r + 1, s + 1, t + 1) = q(s−r)(t−r)+s−r

N − s
t − r


q
.

Example 25 (The D-Bounded Distance-Regular Graph). Let X be as in Example 21. Then X is a pooling lattice with the
parameters

|Xr | = N(0, r,D), µ(r, s, t) = N(r, s, t), π(r, s, t),

whereπ(r, s, t) can be computed using (2). In particular, ifD(∆1)+D(∆2) = D(∆1+∆2)+D(∆1∩∆2) for any∆1, ∆2 ∈ X ,
then the pooling lattice X is a regular pooling lattice.
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