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Abstract A partition of a set of n points in d-dimensional space into p parts is
called an (almost) separable partition if the convex hulls formed by the parts are
(almost) pairwise disjoint. These two partition classes are the most encountered ones
in clustering and other partition problems for high-dimensional points and their use-
fulness depends critically on the issue whether their numbers are small. The problem
of bounding separable partitions has been well studied in the literature (Alon and Onn
in Discrete Appl. Math. 91:39–51, 1999; Barnes et al. in Math. Program. 54:69–86,
1992; Harding in Proc. Edinb. Math. Soc. 15:285–289, 1967; Hwang et al. in SIAM
J. Optim. 10:70–81, 1999; Hwang and Rothblum in J. Comb. Optim. 21:423–433,
2011a). In this paper, we prove that for d ≤ 2 or p ≤ 2, the maximum number of
almost separable partitions is equal to the maximum number of separable partitions.

Keywords Partition · Separable partition · Optimal partition · Almost separable
partition

1 Introduction

Let d ≥ 1 and let A = {A1,A2, . . . ,An} be a multi-set of n points (not necessarily
distinct) in R

d (denoted by A ∈ R
d×n). For p ≥ 1, a p-partition of A is an ordered
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p-tuple π = (π1, . . . , πp), where π1, . . . , πp are (possibly empty) pairwise disjoint
subsets of A whose union is A. Note that when points are not necessarily distinct, then
two partitions are considered the same if they differ only in equivalent elements. For
example, if A = {A1,A2,A3,A4} with A1 = A2 = A3 �= A4, then π1 = (π1

1 ,π1
2 ,π1

3 )

and π2 = (π2
1 ,π2

2 ,π2
3 ) are the same partition for π1

1 = {A1}, π1
2 = {A2,A4}, π1

3 =
{A3} and π2

1 = {A2}, π2
2 = {A3,A4}, π2

3 = {A1}. We refer to π1,π2, . . . , πp as the
parts of π , to p as the size of π and to (|π1|, . . . , |πp|), where |πi | is the cardinality
of πi , as the shape of π . A typical partition problem is to find an optimal partition
over a given family for a given objective function F(π). The most general family is
the constrained-shape family which requires the shape of each member partition to
be in a given set Ω of shapes. This family includes four special cases which almost
cover all partition families studied in the literature:

(i) A single-shape family. Ω consists of a single shape.
(ii) A bounded-shape family. For a fixed positive integer p, Ω consists of all

shapes (|π1|, . . . , |πp|) satisfying
∑p

j=1 |πj | = n and �j ≤ |πj | ≤ uj for all
j = 1, . . . , p where {�j } and {uj } are given.

(iii) A size family. Given a fixed p, it is indeed a bounded-shape family with �j = 0
and uj = n for all 1 ≤ j ≤ p.

(iv) An open family. Ω contains all shapes, i.e., without any constraint on size or
shape.

If a partition problem is to maximize an objective over an X-family, then we call the
problem an X problem.

In this paper we treat d and p as constants but n can be large, as is usually the
case in applications. It is impractical to solve a partition problem by brute force since
even for d = 1 and p = 2, the number of single-shape partitions is exponential in n

as long as min{|π1|, |π2|} > αn with α > 0 a constant, not to mention for larger d

and p and the other three types of problem (see the book by Hwang and Rothblum
2011b). Therefore, it is useful to identify a class of partitions known to contain an
optimal partition so that we need only to search this class. A crucial condition is of
course this class must be small, i.e., its cardinality is polynomial in n. Such a class is
usually characterized by a partition property which every member must observe.

Barnes et al. (1992) first studied the property of “separability” with the above pur-
pose in mind (the special cases p = 2 and d = 1 were studied by Harding (1967) and
Hwang et al. (1985), respectively, earlier), which has become the most studied prop-
erty in the literature of partition problems. A partition π = (π1, . . . , πp) is separable
if for any two parts πj and πh of π , their convex hulls conv(πj ) and conv(πh) are
disjoint, i.e., conv(πj ) ∩ conv(πh) = ∅. Let T A

S (n,p, d) be the number of separable
p-partitions of A ∈ R

d . Call A generic if no k + 1 points of A lie in a common j -flat
for any j < k ≤ d . Define

H(n,d) =
d∑

j=0

(
n − 1

j

)

.

Harding (1967) proved T A
S (n,2, d) = 2H(n,d), thus establishing an upper bound

of O(nd) for separable 2-partitions of generic A. Hwang et al. (1999) used this upper
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bound to obtain an upper bound O(nd(p
2)) for separable p-partitions, still assum-

ing A is generic. Recently, Hwang and Rothblum (2012) extended this upper bound
O(nd(p

2)) to arbitrary A in R
d where A does not have to be generic and its members

do not have to be distinct.
Note that the Harding’s result not only yields a bound, but it is an equality. Is the

equality preserved in the extension to arbitrary A? Unfortunately, it is not. To see this,
call a point multi-point if it appears more than once in the multi-set A. Note that when
A is not distinct, two partitions are considered the same (hence counted only once) if
one can be obtained from the other by interchanging the same number (including 0)
of copies of each multi-point. Now let A be generic and let A′ consist of n copies of
the same point. Then

T A′
S (n,2, d) = n + 1 �= 2H(n,d) = T A

S (n,2, d).

To study the equality issue, we have to modify the Harding’s result somewhat. Define

TS(n,p, d) = max
A

T A
S (n,p, d).

Hwang and Rothblum (2011a) proved TS(n,2, d) = 2H(n,d).
In real world problems, there is no reason to expect the points satisfy the general

position assumption, in particular, two points can be the same due to the discreteness
of most measurements. When A contains multi-points, then a separable partition must
have all copies of a multi-point go to the same part to preserve “disjointness”. But
this is too strong a requirement for a practical partition to satisfy. In particular, this
requirement makes it difficult, sometimes impossible, to meet the shape constraint.
Therefore, it is desirable to weaken the “strictly disjoint” condition in separable par-
titions to “almost disjoint” in the following sense: A partition π = (π1, . . . , πp) is
called almost separable if for any two parts πj and πh of π , conv(πj )∩conv(πh) = ∅
or {v} where v in A is a vertex1 of both conv(πj ) and conv(πh).

We use the same notation of separable partitions to denote numbers of almost
separable partitions by substituting the subscript S by AS. Hwang and Rothblum
(2012) proved the number of almost separable partitions has the same bound as the
number of separable partitions for any of shape, size or open partitions. In particular,
they proved TAS(n,2, d) = TS(n,2, d) by an algebraic approach and raised the open
problem whether the equality holds for other values of p and d . In this paper we will
give a geometric approach to study the equality problem. Our approach works for
d ≤ 2 or p ≤ 2, but not for p > 2 and d > 2.

2 Main results

While our apparent goal is to prove the equality for the size family, as confirming
with the literature, we will actually prove a stronger result by proving the equality for
the single-shape family. Note that the equality for the single-shape family not only
implies the same for the size family, but also for the constrained-shape family since

1A special kind of point that describes the corners of geometric shapes.
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the cardinality of each of these families is simply the sum of cardinalities of all its
component shapes.

Let T A
S (n, (n1, . . . , np), d) denote the number of separable partitions of A with a

given shape (n1, . . . , np), and define

TS

(
n, (n1, . . . , np), d

) = max
A

T A
S

(
n, (n1, . . . , np), d

)
.

Similarly, we define these terms for almost separable partitions by simply changing
the subscript S to AS.

By definition, every separable partition is also an almost separable partition. Thus,
we obtain the following results immediately.

Lemma 1 TS(n, (n1, . . . , np), d) ≤ TAS(n, (n1, . . . , np), d).

We now prove TS(n, (n1, . . . , np), d) ≥ TAS(n, (n1, . . . , np), d) when d ≤ 2 or
p ≤ 2, and then, together with Lemma 1, obtain the equality between the two terms.

Let A = {A1,A2, . . . ,An} be a multi-set. Suppose v is a point which appears in
A mv > 1 times. Then mv is the multiplicity of v. For any ε > 0 and any fixed point
v ∈ R

d , denote by B(v, ε) a d-dimension ball centered at the point v with radius ε

and denote by vε an arbitrary point in B(v, ε). Without loss of generality, assume
A1 = A2 = · · · = Amv = v. Notice again that there is no difference among those
partitions induced by interchanging A1,A2, . . . ,Amv .

Lemma 2 Suppose π = (π1, . . . , πp) is an almost separable partition of A ∈ R
d×n

and v is a multi-point with a unique πj containing all copies of v. Then there exists
a sufficiently small real number επ > 0 such that π = (π1, . . . , πj , . . . , πp), where
πj is obtained from πj by replacing one copy A∗ of v in πj with vεπ , is an almost
separable partition of A = A ∪ {vεπ } \ {A∗}.

Proof To prove the lemma, it suffices to show that there exists a sufficiently small
επ > 0 such that conv(πj ) ∩ conv(πh) ⊆ conv(πj ) ∩ conv(πh) for all h �= j .

Since π = (π1, . . . , πp) is an almost separable partition of A, for each πh with
h �= j we can find a separating hyperplane Hj,h of πh and πj and Hj,h does not
contain the point v (this can be done by perturbing Hj,h slightly if Hj,h contains v).
Let επ > 0 be the minimum distance from v to all these Hj,h’s. Then it is easy to see
that, for any fixed point vεπ ∈ B(v, επ ), conv(πj ) ∩ conv(πh) ⊆ conv(πj ) ∩ conv(πh)

for all h �= j . �

Lemma 3 Let π = (π1, . . . , πp) be an almost separable partition of A ∈ R
d×n and

let v belong to t parts, say π1,π2, . . . , πt , with 2 ≤ t ≤ mv . If d ≤ 2 or t = 2,
then there exists a sufficiently small real number επ > 0 such that A, obtained
from A by replacing a copy A∗ of v with vεπ , has an almost separable partition
π = (π1, . . . , πj , . . . , πp) where πj is obtained from πj , for some 1 ≤ j ≤ t , by re-
placing A∗ with vεπ .

Proof Since v belongs to at least two parts, we cannot simply apply Lemma 2 here.
However, if we consider only one part πj , j ∈ {1,2, . . . , t}, and its separability with
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parts not containing v, then the proof of Lemma 2 applies to conclude the existence
of a small enough επ > 0 such that conv(πj ) ∩ conv(πh) ⊆ conv(πj ) ∩ conv(πh) for
all h with πh not containing v.

Next, we consider the separability between πj and other parts containing v. Our
argument does not apply to any such πj , but to a specific πj chosen in the following
way. It suffices to show that for an arbitrary point vεπ ∈ B(v, επ ) there exists a part
πj ∈ {π1,π2, . . . , πt } such that conv(πj ) ∩ conv(πh) ⊆ conv(πj ) ∩ conv(πh) for all
1 ≤ h ≤ t and h �= j . This, together with conv(πj )∩conv(πh) ⊆ conv(πj )∩conv(πh)

for all h �∈ {1,2, . . . , t}, implies π = (π1, . . . , πj , . . . , πp) is an almost separable par-
tition of A.

To this aim, we claim the following and prove later: For d ≤ 2 or t = 2, R
d can

be split at v into t convex spaces γ1, . . . , γt with overlapping boundaries but disjoint
interiors such that every conv(πh) is contained in the corresponding convex space
γh for h = 1,2, . . . , t . Consequently, the point vεπ in R

d must lie in at least one of
these t convex spaces, say γj (no matter whether it lies in the boundary or in the
interior). Then conv(πj ∪ {vεπ }) ∩ conv(πh) \ {v} = ∅, which implies conv(πj ) ∩
conv(πh) \ {v} = ∅, for all 1 ≤ h ≤ t and h �= j . Therefore the resultant partition
π = (π1, . . . , πj , . . . , πp) is an almost separable partition of A.

We now prove the above claim to complete the proof. In the case t = 2, one hyper-
plane is sufficient to separate conv(π1) and conv(π2); hence R

d can be split into two
half spaces γ1 and γ2 such that conv(πh) is contained in the corresponding convex
space γh for h = 1,2. In the case d ≤ 2, the space considered here is either a line
or a plane. For d = 1, then necessarily t = 2 and we are done. For d = 2, then there
exists a clockwise ordering of these t convex hulls (meeting at v) such that we can
completely split R

d into t convex spaces as desired by using separating hyperplanes
between each neighbor pair of convex hulls in this ordering. This completes the proof
of this lemma. �

The restrictions on d and t are necessary in Lemma 3. Figure 1 demonstrates a
counterexample for the case t = d = 3. With Lemma 3, we are now ready to prove
the main result that the equality holds in Lemma 1 when d ≤ 2 or p ≤ 2.

Denote n∗(A) as the number of distinct points of A = {A1,A2, . . . ,An}.

Theorem 1 TS(n, (n1, . . . , np), d) = TAS(n, (n1, . . . , np), d), when d ≤ 2 or p ≤ 2.

Proof By Lemma 1, it suffices to prove that TS(n, (n1, . . . , np), d) ≥ TAS(n, (n1,

. . . , np), d) when d ≤ 2 or p ≤ 2. Let A = {A1,A2, . . . ,An} satisfy T A
AS(n, (n1,

. . . , np), d) = TAS(n, (n1, . . . , np), d) and n∗(A) is maximum among all such A. If
n∗(A) = n, then all points of A are distinct, which implies that any almost separa-
ble partition of A is also a separable partition of A. Hence, TS(n, (n1, . . . , np), d) ≥
T A

S (n, (n1, . . . , np), d) ≥ T A
AS(n, (n1, . . . , np), d) = TAS(n, (n1, . . . , np), d), as de-

sired.
Suppose that n∗(A) < n, which implies the existence of a multi-point v with mul-

tiplicity mv > 1. For each almost separable partition π = (π1, . . . , πp) of A with
shape (n1, . . . , np), there are only two cases: all copies of v belong to either ex-
actly one part πj for some j , or to t parts with t ≥ 2. By Lemmas 2 and 3, for each
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Fig. 1 Consider the multi-set A = {(0,0,1), (0,0,1), (0,0,1), (−1,4,0), (−2,−3,0), (−3,−4,0),

(3,−2,0), (−1,3,0), (4,−3,0)}. Let π1 = {(0,0,1), (−1,4,0), (−2,−3,0)}, π2 = {(0,0,1),

(−3,−4,0), (3,−2,0)}, π3 = {(0,0,1), (−1,3,0), (4,−3,0)}. This figure shows only the plane Z = 0
for convenience. Obviously, π = (π1,π2,π3) is an almost separable partition. But one cannot find a
partition of R

3 into 3 convex subspaces each containing a part exclusively, as described in the proof of
Lemma 3, since no γj , j = 1,2,3, can move into the center area of the cone-like shape (encircled by
π1,π2 and π3)

almost separable partition π of A we can find an almost separable partition π of
A = A ∪ {vεπ } \ A∗, where A∗ is a copy of v, for sufficiently small επ . Moreover,
the shape is preserved. Since there are finitely many almost separable partitions of A,
we can choose the smallest επ over all almost separable partitions to be ε. Accord-
ingly, for every almost separable partition π of A = {A1,A2, . . . ,An} there exists a
corresponding π which is an almost separable partition of A = A ∪ {vε} \ A∗ and the
shape is preserved. Finally, the corresponding partitions of A must be all distinct, thus
implies a one-to-one correspondence. To see this, suppose that two distinct almost
separable partitions π1 = (π1

1 , . . . , π1
p) and π2 = (π2

1 , . . . , π2
p) of A map to two al-

most separable partitions π1 = (π1
1 , . . . , π1

r , . . . , π1
p) and π2 = (π2

1 , . . . , π2
s , . . . , π2

p)

of A and π1 = π2. Then we have r = s since π1
r and π2

s are the only two parts
containing vε which is unique. Further, π1

h = π2
h for all h �= r . Obviously, if we iden-

tify vε with A∗, then π1
r = π2

s because of π1
r = π2

s (notice that vε and A∗ are the
only difference between π and π ). It follows π1 = π2, a contradiction to the as-
sumption that they are distinct. As a result, there is a one-to-one correspondence
from almost separable partitions of A to almost separable partitions of A. Then
T A

AS(n, (n1, . . . , np), d) ≥ T A
AS(n, (n1, . . . , np), d) with n∗(A) = n∗(A)+1 > n∗(A),

a contradiction to the assumption that n∗(A) is maximum. Thus n∗(A) = n and The-
orem 1 is proved. �

Corollary 1 TS(n,p, d) = TAS(n,p, d) for d ≤ 2 or p ≤ 2.
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Fig. 2 This figure shows a partition π = (π1,π2) with a separating line H1,2, where π1 = {a, b, v}
and π2 = {c, d, v} shares a multi-point v with two copies. The boundary of the two corresponding
convex spaces is H1,2. Suppose v1 = vε lies on the separating line H1,2 and is assigned to the π1
side, as determined in Lemma 3. Then π is mapped to π = ({a, b, v1}, {c, d, v}). In this case the par-
tition π ′ = ({a, b, v}, {c, d, v1}), which is almost separable, is left unmapped. Instead, suppose v2 = vε

lies on the π2 side. Then π is mapped to π = ({a, b, v}, {c, d, v2}) while the unmapped partition
π ′ = ({a, b, v2}, {c, d, v}) violates the almost-separability property

Remarks In the proof of Theorem 1, for any multi-point v, there exists a one to one
mapping from the set of almost separable partitions on A to the set of almost sep-
arable partitions on A which differs from A by replacing a copy A∗ of v with vε .
An interesting question is whether this mapping is bijective, i.e., whether a mem-
ber of A is left unmapped. The example given in Fig. 2 gives a positive answer and
also shows that the solution depends greatly on the position where vε is placed. Ac-
tually, for a specific partition we can put the point vε ∈ B(v, ε) in the boundary of
two (out of t) convex spaces as described in Lemma 3. If vε is assigned to the left
space, we obtain an almost separable partition; if to the right space, we obtain an-
other. Since we can choose only one such space to place vε , one of the two almost
separable partitions is left unmapped (see Fig. 2 as an example). As a result, we can
conclude that a set A satisfying T A

AS(n, (n1, . . . , np), d) = TAS(n, (n1, . . . , np), d)

contain no multi-points when d = 2 and when p = 2 and d �= 1. The condition d �= 1
is necessary for otherwise the two 1-dimensional convex spaces must be two intervals
(allowing the degenerating interval {v}) meeting exactly at v, such that vε must lie
in only one such interval. In other words, maximum of TAS(n, (n1, . . . , np),2) is al-
ways achieved by a set A consisting of distinct Ai ’s. Hence all elements contributing
to TAS(n, (n1, . . . , np),2) are separable partitions.
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