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It is often frustrating for drivers to find parking spaces, and parking itself is costly in almost every major
city in the world. Here we propose a crowdsourcing solution by exploiting sensors in smart-phones to
collect real-time parking availability information. We design a phone-based system to track a driver’s
trajectory to detect when they are about to leave their parking spot. We focus on the efficiency and accu-
racy of using a phone to monitor the driver’s walking trajectory, applying a waist-mounted PDR method
that can measure the driver’s moving distance with a high accuracy. In addition, we design a map match-
ing algorithm to calibrate the direction errors when the driver is in an indoor environment, using widely-
available building floor plans. The results of our experiment show that we can achieve about 98%
accuracy in estimating the user’s walking distance, with an overall location error of about 0.48 m.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Searching for street parking in crowded urban areas creates
many problems and frustrations for drivers. It has been shown that
over 40% of the total traffic volume in urban areas is composed of
vehicles cruising for parking (Shoup, 2006). A long queue of cruis-
ing vehicles can cause serious congestion with the blocking of only
a few streets. In addition, low speed cruising can produce signifi-
cant amounts of automobile emissions (Arnott & Inci, 2006),
increasing air pollution. A prior study (Mathur et al., 2010) found
that in one area of Los Angeles vehicles searching for parking pro-
duced 730 tons of carbon dioxide, and burned 47,000 gallons of
gasoline (Ayala, Wolfson, Xu, Lin, & Dasgupta, 2011) over one year.

In this work, we propose a solution that utilizes the sensors
(such as a GPS, accelerometer, gyroscope, and digital compass) in
a smart-phone to detect the driver’s parking/un-parking activities.
Such information can then be broadcast (e.g. through the Internet)
to people who are trying to find a parking space. To detect parking,
a prior work has shown that it is possible to detect the driver’s
transportation mode (e.g., driving, stationary, and walking)
(Stenneth, Wolfson, Yu, & Xu, 2011) using the sensors in a smart-
phone. For example, if we detect a transition pattern like driv-
ing ? stationary ? walking, we may conclude the car has been
parked at the stationary point. In this paper, we focus on how to
detect the unparking activity by tracking the walking trajectory
of the driver using the smart-phone’s sensors. The idea is a simple
one. If the phone detects that the driver is approaching the place
where they parked their car, it is likely the driver is about to leave
the area and the parking space will become available very soon.

In this paper, we consider a social network formed by drivers,
similar to the Crowdpark (Yan et al., 2011) platform. In our archi-
tecture, a driver who is currently parked can provide advance
notification about when they plan to leave, and this information
may be sold to another driver who is willing to pay (via a virtual
currency (Lan & Wang, 2013), such as BitCoin) to reserve the park-
ing spot. The buyer arrives at the reserved parking spot close to the
leaving time of the seller, and can occupy the spot when the seller
leaves. Since the drivers transact only parking availability informa-
tion, our paradigm presents a loose reservation model for the park-
ing spot, and the buyer is charged only when they successfully park
their car in the focal location. Our system provides an incentive for
sellers to contribute their leaving information, and also encourages
the buyers to re-sell the parking spaces when they leave. Each
participant in this system is assigned a random unique ID when
joining the social network, and thus their real identity will not
be revealed to the other users.

While crowdsourcing-based approaches to parking are not new
(Yan et al., 2011), but, as far as we know, all of the prior works in
this area (such as Google OpenSpot (OpenSpot) require the drivers
to manually report when they leave their parking spots. In
contrast, we utilize the sensors in the user’s smart-phone to auto-
matically infer the parking space’s availability in advance by track-
ing the trajectory of the driver. How to accurately and efficiently
monitor the walking trajectory of the driver is thus the key issue
in our method, and the focus of this paper.

Tracking the walking trajectories of people in an environment
has long been considered an important component of ubiquitous
networking. Generally, in an outdoor environment, the driver’s
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Fig. 2. The entire system architecture.
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walking trajectory can be obtained through GPS data, although it is
more challenging to localize the driver in an indoor environment.
In this paper, we consider the use of a personal dead reckoning
or pedestrian dead reckoning (PDR) system to localize the driver,
particularly when they are in a building. The PDR technique only
requires a couple of inertial sensors to be put on the user, so that
it can be used in any building without pre-installing beacon nodes
or pre-building RF maps/propagation models based on surveys of
the environment. These inertial sensors (such as an accelerometer,
gyroscope, or digital compass, which smart-phones usually have)
are used to measure step length and heading direction.

Generally, depending on where the sensors are placed, previous
studies classified PDR systems into two types: foot- and waist-
mounted. The foot-mounted method (Alvarez, Gonzalez, Alvarez,
Lopez, & Rodriguez-Uria, 2007; Dippold, 2006; Eric, 2005; Feliz,
Zalama, & García-Bermejo, 2009; Jimenez, Seco, Prieto, & Guevara,
2009; Ojeda & Borenstein, 2006; Ojeda & Borenstein, 2007a; Ojeda
& Borenstein, 2007b; Oliver & Robert, 2008; Sagawa, Inooka, &
Satoh, 2000; Xiaoping, Bachmann, Moore, & Calusdian, 2007) uses
a double integral on horizontal acceleration to estimate distance,
and a gyroscope or compass to measure the heading direction.
On the other hand, the waist-mounted (Alvarez, Gonzalez, Lopez,
& Alvarez, 2006; Lei et al., 2005; Shin, Park, Hong, & Lee, 2005;
Weinberg, 2002) method tries to detect each step event to
calculate the total number of steps, and then multiplies this by a
constant step length which is based on the pedestrian’s character-
istics (weight, height, and age) to estimate the total moving dis-
tance. Some waist-mounted methods use linear regression to
find the relationship between the acceleration, walking speed,
and step length (Shin, Park, Kim, Hong, & Lee, 2007). But when
the pedestrian’s walking pattern is different from the predefined
step length model, the accuracy in distance estimation could be ad-
versely affected. Finally, although a waist-mounted method is gen-
erally more feasible to be implemented on a hand-held device, its
accuracy in estimating the step length is typically worse than that
of a foot-mounted method which, in contrast, performs poorly
with regard to obtaining an accurate orientation (Stirling, Collin,
Fyfe, & Lachapelle, 2003).

Sensor drift (Titterton & Weston, 1997) is a well-known prob-
lem in PDR systems. Given that the hardware used in such systems
is not perfect, the inertial sensors constantly have some small er-
rors when estimating the distance and direction, and signal noise
Fig. 1. (a) A detailed map
(such as the vibrations of the user’s body) can further exacerbate
this problem (Feliz et al., 2009; Sagawa et al., 2000). In an outdoor
environment, sensor drift can be mitigated through the use of GPS
measurements (Godha, Lachapelle, & Cannon, 2006; Ladetto &
Merminod, 2002), while in an indoor environment some PDR sys-
tems use a map matching mechanism to calibrate these errors
(Ascher, Kessler, Wankerl, & Trommer, 2010; Gusenbauer, Isert, &
Krösche, 2010; Ishikawa, Kourogi, Okuma, & Kurata, 2009), and
these can be categorized into two types. One tries to matches the
user trajectory to the closest junction and road on the map
(Gusenbauer et al., 2010), while the other one utilizes the map to
filter out positions where the user is unlikely to move (e.g., walls,
obstacles, and so on) (Ascher et al., 2010; Ishikawa, 2009). Both
techniques require the use of a detailed scaled map of the building,
as shown in Fig. 1(a), although in practice this is usually difficult to
obtain.

In this paper, we consider a scenario in which the user has a
smart-phone and can access the floor plan of the building, like
the one shown in Fig. 1(b), as these are widely available. The sys-
tem utilizes the sensors on the smart-phone to compute the user’s
moving distance and direction. Combining the walking trajectory
with the map allows the system to estimate the driver’s current
position in a building. The system architecture is shown in Fig. 2.
Our system can also be implemented as an add-onto a traditional
outdoor navigation app (e.g., Google Latitude, although this service
has now been discontinued) so that the starting position of the
user in the building can be estimated using the last-recorded GPS
position.

We make the following assumptions in this paper.
and (b) a floor plan.
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1. The floor plan can be characterized using a link-node model
(Gillieron & Merminod, 2003), in which pathways are the links
and the intersections of pathways are the nodes. Note that the
limitation of a link-node model is that it does not consider open
indoor spaces (e.g., a big hotel lobby), and we leave this for
future work.

2. The phone is placed inside the pocket of the user, which is often
the case in real life (however, some prior works, such as
(Mohan, Padmanabhan, & Ramjee,2008), discussed the situation
of when the phone is held in the hand).

3. We assume the initial heading direction is known. This can be
achieved by having the user point the phone in the direction
they are heading before putting the phone in their pocket.

4. During walking, the position of the phone is relatively stable in
relation to the leg movements.

5. In this work, we do not consider the multi-floor building sce-
nario, since most of smart-phones do not have a barometer to
detect the change to a different floor, and we leave this as a fur-
ther direction for future work.

The contribution of this paper is threefold. First, unlike previous
crowdsourcing-based methods that required the drivers to manu-
ally report when they leave their parking spots, we utilize the
phone sensors to automatically infer the parking space availability
and notify the other drivers in advance by tracking the trajectory of
the driver. Second, we implement a waist-mounted-based PDR
method on the smart-phone to accurately estimate the driver’s
moving distance with no need for a training phase. The accuracy
of our distance estimation is about 98%. Finally, when the driver
is indoors, based on the geometric similarity between the driver’s
trajectory and the floor map, we design a map-matching algorithm
to calibrate sensor errors using building floor plans, which are
widely available. We find that the location error is about 0.48 m
in our test scenarios.

The rest of this paper is structured as follows: In Section 2, we
describe the related work. We discuss the details of our step-length
estimation and map-matching algorithms in Sections 3 and 4,
respectively. The results of our experiment are shown in Section
5. Finally, we conclude this paper in Section 6.
2. Related work

Our work is built on some previous studies of parking guidance,
PDR, step length estimation, and map matching, and these are out-
lined below.
2.1. Parking-guidance

Online real-time parking information systems have recently at-
tracted significant interest in both industry and academia. They
can generally be classified into infrastructure-based and crowd-
sourcing-based approaches. The infrastructure-based methods,
such as SFpark and ParkNet, require the installation of occupancy
sensors and wireless transceivers on the parking spot and/or vehi-
cle. For example, ParkNet installs ultra-sonic sensors on vehicles to
detect parking availability when vehicles drive by. However, these
approaches are generally costly and not scalable. On the other
hand, a number of mobile crowdsourcing applications have been
developed that allow drivers to share empty parking spot informa-
tion, such as OpenSpot, Roadify, Primospot, and SpotScout. These
work by having the drivers report when they are leaving their
parking spots. That data gets fed into the applications, and then
drivers can see where people have recently left an open parking
spot. However, such data could have a very short lifespan, since
empty spots in crowded areas are quickly used. In other words,
by the time when the driver figures out how to get to an open spot,
it is likely to have already been taken. In contrast to these prior
works, we utilize the sensors on the phone to automatically infer
parking space availability by tracking the trajectory of the driver,
which requires no additional infrastructure or man-power support,
and is more practical for deployment in the real world.
Furthermore, our system provides an incentive for the driver to
offer parking availability information in advance to others, by sell-
ing it, so that the potential buyer can arrive at the parking spot
close to the leaving time of the seller.

To illustrate the usefulness of such advance parking availability
notification, we performed the following experiments in an urban
area. We had two cars (A and B) travel around in the area. We
performed two sets of experiments using our system and Open-
Spot. Each set of experiments was executed for three days. The idea
here is to have car A update its parking information online, and
then observe how many times car B can successfully occupy the
parking spot that car A has previously taken. We found the success
rate for car B to arrive at car A’s spot in time was 87% using our
application, and only 59% using OpenSpot.

2.2. PDR system

Some prior studies use a PDR system to estimate the trajectory
of a user by placing some sensors on the body. Inertial sensors,
such as accelerometers, gyroscopes, and compasses, are commonly
used in such systems. Some PDR systems also include GPS sensors
(Godha et al., 2006; Ladetto & Merminod, 2002), and use these to
calibrate the PDR drift as long as a GPS signal is available. When
the GPS signal is obstructed, the system can then be changed to
the PDR mode and continue to record the trajectory. Our study is
based on the PDR system, which has the advantage of avoiding
the deployment overhead of the signal-based methods. On the
other hand, the performance of our system can be enhanced by a
signal-based system if available. For example, one limitation of
our map-matching approach is its need to collect ‘‘enough’’ trajec-
tory data before it can uniquely identify the user’s position on the
map. When there is not enough trajectory information, we make
use of the known locations of existing WiFi base stations in the
building to help estimate the user’s location (Ji, Biaz, Pandey, &
Agrawal, 2006; Krishna, Anand Padmanabha, & Venkata, 2010;
Lim, Kung, Hou, & Luo, 2006).

2.3. Step length estimation

A PDR system can be classified into two types depending on
where the sensor is mounted: foot-mounted (Alvarez et al., 2007;
Dippold, 2006; Eric, 2005; Feliz et al., 2009; Jimenez et al., 2009;
Ojeda & Borenstein, 2006; Ojeda & Borenstein, 2007a; Ojeda &
Borenstein, 2007b; Oliver & Robert, 2008; Sagawa et al., 2000;
Xiaoping et al., 2007) and waist-mounted (Alvarez et al., 2006;
Lei et al., 2005; Shin et al., 2005; Weinberg, 2002). To calculate
the step length, the foot-mounted methods typically perform a
double integral on the horizontal acceleration. However, without
further calibration, the problem of sensor drift (Titterton & Weston,
1997) could introduce serious inaccuracies when estimating the
step length. One way to calibrate the sensor drift error is called
zero velocity update (ZUPT). When the swinging-foot touches the
ground, the angular velocity of this foot will be close to zero, which
can be used to reset the system to avoid sensor drift errors accu-
mulating into the length estimation of the next step.

On the other hand, for a waist-mounted PDR system, ZUPT is
not directly applicable, since one will not be able to find zero
velocity in the horizontal direction. Some waist-mounted PDR sys-
tems use a constant step length (Jorgensen, 2008; Martin &
Michael, 2009; Schneider, Crouter, Lukajic, & Bassett, 2003; Shih,



Fig. 3. Walking diagram.
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2010) while the others (Li et al., 2012; Shin et al., 2005) use a trace-
driven approach, by first collecting empirical data from multiple
users and then using linear regression to find the relation between
step length, walking frequency, and the variance of acceleration.
The limitation of this approach is that one might need to collect
new training data for a new user. Weinberg (2002) observed that
the upper body moves vertically when walking, and suggested that
one can estimate the step length as follows

StepLength ¼ 2� heightchange=a

where a is the swinging angle of the leg from the body, and the
heightchange can be estimated based on the vertical acceleration.
However, he did not discuss how to measure a. Our idea is similar
to Weinberg’s, but we estimate the step length based on the height
change and length of the leg using the Pythagorean Theorem. In
addition, we use the concept of Simple Harmonic Motion (SHM)
to find the zero velocity in the vertical direction, and apply ZUPT
to avoid the accumulation of sensor drift errors on the vertical-axis.

2.4. Map-matching algorithm

In some prior PDR systems, a map-matching mechanism is used
to match the user trajectory onto the map (Ascher et al., 2010;
Gusenbauer et al., 2010; Ishikawa, 2009) in order to calibrate the
sensor errors. There are two ways this is achieved. The first tries
to match the user trajectory to the closest junction and road on
the map (Gusenbauer et al., 2010), while the other utilizes the
map information to filter out positions where the user is unlikely
to walk (e.g., walls and obstacles) (Ascher et al., 2010; Ishikawa,
2009). However, both techniques require the use of a detailed
scaled map of the building (i.e., with detailed distance information
for each route on the map), which is usually not easy to obtain. In
our work, we utilize the more widely available building floor plans
instead of detailed scaled maps. Based on the geometric similarity
between the trajectory data and the map, we propose a new map-
matching method that uses the floor plan to locate the user. As
shown later in Section 5, our approach has similar performance
to those methods that rely on detailed scaled map information.
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Fig. 4. The orientation of the device.
3. Implement a waist-mounted PDR method using a smart-
phone

Weinberg (2002) proposed that one can estimate the step
length using the height change of the waist and the swinging angle
of the leg during walking (Weinberg, 2002). However, he did not
discuss how to measure this angle, and we found that, in practice,
it is difficult to measure such a small angle during walking. Based
on Pythagorean Theorem, in our prior work Lan and Shih, (2012)
we proposed a different way to estimate step length using the
change in height. During walking, a person’s body moves up and
down. If we assume the length of the leg is L, the waist-line will
move up-and-down between L and (L � h) from the ground, where
h is the change in the height of the waist. Considering the triangle
in Fig. 3, formed by two feet of a person and their step length D.
Given that L is known, using the Pythagorean Theorem, we can
estimate D if we know the height of this triangle, i.e., (L � h). To ob-
tain (L � h), we first need to calculate h, which is the change in
height of the waist during walking. Therefore, if we mount an
accelerometer on the user’s waist, the readings of this can be used
to estimate the height change h, which can then be used to calcu-
late the step length D based on the Pythagorean Theorem (the
length of the leg (i.e. L) and half of the step length (i.e. D/2) forms
a right triangle in which leg length is the hypotenuse).

In this paper, we extend the above-mentioned waist-mounted
method for a smart-phone. When implementing a PDR system on
a smart-phone, two cases can be considered. The first is when
the user holds the phone (e.g., when talking on the phone), and
the other is when the phone is put in a pocket or a bag. Prior re-
search (Su, Chou, Yi, Tseng, & Tsai, 2010) has shown the feasibility
of using a waist-mounted method for the first case. Therefore, in
this section we focus on how to extend the results of a
waist-mounted method for the second case. To implement a
waist-mounted method, two issues need to be considered: the ori-
entation and placement of the phone. The orientation of the phone
may change from time to time when it is put in a pocket or bag
during walking, and this affects the influence of gravity on the
three axes of the accelerometer, and results in different readings
from the sensor. To resolve this problem, we adopt a method
similar to that in an earlier work, Su et al. (2010), which used a
gyroscope to record changes in orientation and to calibrate the
system, as shown in Fig. 4. Next, in a waist-mounted method, the
vertical movement displacement of the phone is the key parameter
to estimate the step length. When the phone is positioned above
the waist-line, its vertical displacement during walking will be
the same as when it is mounted on the waist. On the other hand,
when the phone is placed below the waist-line (e.g., in a pants
pocket), we can estimate the vertical displacement of the waist
as follows. Assuming the leg length (L) and the pocket position
from the ground (L’) are already known, we can find two similar
triangles DABC and DPQR, as shown in Fig. 5. Based on the Pythag-
orean Theorem, we can obtain QR by first measuring L’ and h’ (i.e.,
the vertical displacement of the pocket during the walking). Then,
using triangle similarity, we can find BC ¼ D=2 ¼ ðL� QRÞ=L0. h’ can
be measured in a similar way as to measure h .

To use the smart-phone to estimate the walking distance, the
following practical issues need to be considered:

1. How to remove signal noise, such as vibrations from the body?
2. How to prevent sensor drift errors accumulating from one step to

the next?
3. How to deal with when the user moves at irregular speeds?

Our system architecture is shown in Fig. 6. We first filter the
noise using a low-pass filter. The filtered signal is fed into the step
recognition module to identify each new step. We adopt the
concept of simple harmonic motion (SHM) to reset the vertical
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velocity at the beginning of each new step, which prevents sensor
drift errors from being accumulated over to the next one. Finally,
the step length is estimated based on the filtered sensor data and
foot length.

3.1. Noise filtering

During walking, some unexpected and unpredictable body
vibrations might cause some higher-frequency noise in the sensor
readings. In this section, we discuss how to filter such noise.
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Fig. 6. Flow chart of
Intuitively, one can use a low pass filter and preset a cut-off fre-
quency to filter noise. Some prior work has shown that the
frequency of human muscle movement is lower than 16 Hz (Gerald
& Andreas, 2008), and the human step frequency is never higher
than 3 Hz (Lei et al., 2005). Therefore, some step recognition
systems use 3 Hz as their cut-off frequency to filter noise signal
(Martin & Michael, 2009). Initially, we also used 3 Hz, but then
found our results became worse. This shows that, while it is good
enough to detect a new step event, a 3 Hz threshold is too low for
our purposes, and will remove data which is not noise. Some prior
research (Chen & Bassett, 2005) analyzed the acceleration of the
waist during walking, and found the maximum acceleration is
8 Hz. We thus set our cut-off frequency at 8 Hz for filtering the
noise, and this threshold worked well under repeated experiments
with different subjects.
3.2. Step recognition module

In order to recognize a step, we first analyze the components of
one step that can cause vertical changes to the body. There are
three major events which may affect the height of the waist, as
shown in Fig. 7.1. The first one is a heel-touching-ground event,
which happens when the heel just hits the ground and the waist
is in its lowest position during the entire step. The event that
comes after this is the stance, which occurs when the foot is flat
on the ground. Finally, the heel-off-ground event occurs right after
the stance. Generally, as shown in Fig. 7.2, the vertical acceleration
of a heel-touching-ground event is the local minimum within a
step. In addition, previous studies (Gafurov, Snekkenes, & Bours,
2007; Shih, 2010) showed that human walking frequency is never
over 3 Hz. Therefore, the duration between two consecutive
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Fig. 7.1. Walking diagram (modified from Walking diagram).
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heel-touching-ground events must be over 0.33 s. Based on the
above, we use a sliding window algorithm to detect every
heel-touching-ground event, and define one step as from a
heel-touching-ground event to the next heel-touching-ground
event. Once a new step is identified, the sensor data between
two consecutive heel-touching-ground events will be used to
estimate the step length.

3.3. Step length estimator

1) Our step model
To measure the walking distance from point A to point B, we

sum up the step length of all steps. We model a complete step as
from one heel-touching-ground-event to the next. Therefore,
we consider the first step (i.e., from the stance event to the
heel-touching-ground event, as shown in Fig. 7.1) and the last step
(i.e., from the heel-touching-ground event to the stance event) as
half a step. When the first or last step is detected, our system will
divide the calculated step length by 2.

2) Avoid accumulation of sensor drift errors

Once each step can be identified, we can then do the double
integral to calculate the height change of the waist and then use
this information to estimate the length of each stride based on
the Pythagorean Theorem. However, as discussed previously, if
the system only naively does the double integral on the accelerom-
eter data, the sensor drifts errors could accumulate from one step
to the next. To avoid this, we previously proposed a zero velocity
Fig. 7.2. The vertical acce
update method (Lan & Shih, 2012) to calibrate the sensor data: if
we mount a sensor on the waist of a pedestrian, then while they
are walking the trajectory of the sensor can be approximated by
Simple Harmonic Motion (SHM). In addition, given that the velocity
of the highest and lowest points of the sensor will be zero, we can
utilize these characteristics to detect when the user starts a new
step. Finally, once the points with zero velocity in the vertical
direction (where the vertical acceleration reaches its local
maximum, i.e., points A and B in Fig. 7.2) are identified, we can
then reset the vertical velocity to zero before doing the double
integral for calculating the height change of the user’s waist. The
height change can then be used to estimate the step distance based
on the Pythagorean Theorem.

Specifically, there are three major events during one step,
namely heel-touching-ground, stance, and heel-off-ground. As
shown in Fig. 7.2, the lowest valley (point A) of the wave indicates
when the heel is touching the ground (corresponding to the fifth
posture in Fig. 7.1), the first peak occurs (point B) when the walker
is in the stance state (corresponding to the first posture in Fig. 7.1).
Following the stance event, the body starts to lean forward and the
foot is now on its toes, which will give a force to push the body up,
so that the vertical acceleration will change to the opposite
direction and cause the second valley in Fig. 7.2 (i.e., point C,
corresponding to the second posture in Fig. 7.1), due to the law
of inertia.

As shown in Fig. 7.1, when the stance and heel-touching-ground
events occur, the waist has the largest displacement from its equi-
librium position. Therefore, we reset the vertical velocity to zero at
these points. We performed an experiment to observe the effect of
leration of walking.
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doing such a zero velocity update (ZUPT). As shown in Fig. 8,
implementing ZUPT can indeed avoid the accumulation of sensor
drift errors.

The first and last steps are considered as special cases. There is
only one point where the velocity needs to be reset, because the
initial velocity of the first step is already zero, and the last step
does not need to reset this when the body is in its stance state.

3) Moving at high speed or on the same spot

As shown in Fig. 7.2, when one walks at a normal speed, the
stance event generally occurs as the first peak after the heel-touch-
ing-event. However, during high speed movement, we observe that
the counter-force from the ground could introduce an extra pulse
between the heel-touching-ground and stance events, as shown
in Fig. 9 (points A’ and B’) and Fig. 10. Without taking this into
consideration, our system could reset the velocity at the wrong
point. Previous studies in kinesiology (Chintalapudi, Iyer, &
Padmanabhan, 2010; Gusenbauer et al.,2010) showed that the dura-
tion from the heel-touching-ground event to the stance event nor-
mally accounts for at least 16.7% of the time in a step. Based on this
observation, we can identify the right point where the stance event
occurs and reset the velocity when calculating the step length.

When one is moving on the same spot, the acceleration data
should not be considered in the calculation of step length. In addi-
tion, when one is walking on the same spot, the height of the waist
does not usually change significantly. Therefore, we use a simple
threshold-based filter to detect this phenomenon by looking at
whether the acceleration data in all three directions (vertical, hor-
izontal, and lateral) are lower than a certain threshold, e, as shown
below, and then reset the vertical acceleration accordingly (in our
implementation, e is set to 1 m/s2).

verticalAcc ¼ 0;
if jlateralAccj < e & jhorizontalAccj < e & jverticalAccj < e
4. Gyroscope error calibration with map matching

The effectiveness of a PDR system lies in its success in accu-
rately estimating the user’s moving distance and direction. In the
previous section, we discussed how to use ZUPT to reduce the sen-
sor drift error when measuring the distance. In a PDR system, the
direction in which the user is moving is usually obtained from a
gyroscope sensor. However, a gyroscope can only produce the
relative angular displacement (RAD) of a device with respect to a
specific direction, and this is not necessarily the absolute direction.
Therefore, while we could track the user’s trajectory using the
gyroscope, this trajectory might be biased by the error in its initial
direction, and appear as a rotated version of the true path, as in the
example shown in Fig. 11. When the error of the gyroscope is
significant, and if left uncorrected, it can make the entire PDR sys-
tem unusable. Map-matching is the process of comparing the
Fig. 8. The velocity with ZUPT versus without ZUPT.
pedestrian’s trajectory data with a digital map of the environment
to match the trajectory data to the route segment on which the
pedestrian is walking, and it can be used to correct the heading er-
ror of a PDR system (Aggarwal, Thomas, Ojeda, & Borenstein, 2011).
In this study we propose a new map-matching method utilizing
widely available building floor plans (instead of a detailed scaled
map, as in some earlier works (Ascher et al., 2010; Ishikawa,
2009) to calibrate the gyroscope errors. We assume that a floor
plan is an ‘‘approximate’’ scaled down version of the physical
layout of the floor. Our basic idea is to utilize the geometric simi-
larity between the trajectory data and the floor plan to infer the
last-visited corner by the user. The flow chart of our algorithm is
shown in Fig. 12. Before starting the map matching, we adopt an
approach similar to that in a prior work (Gillieron & Merminod,
2003) by first converting the floor plan into a link-node model.
The turning angels of the corners and comparative ratios of the
lengths between any two corridors are then estimated, as shown
in Fig. 13. The link-node model is used to approximate the layout
of corridors and corners. We then compare the geometry of the
user trajectory with the link-node model to find the possible routes
that the user has travelled. Here we consider the map and the
trajectory as two independent graphs, say M and T. We list all
the sub-graphs of M and compare T with all these to find the most
similar one. We define the ‘‘similarity’’ between two graphs by
comparing their shapes, vertex angles (i.e., the angle between
two connected edges) and relative edge lengths (normalized). Once
a unique route is identified, this can then be used to calibrate the
trajectory data and identify the most recently visited corner. Since
the location of every corner is known within the floor plan, the
system can then localize the user while they move between
corners using the dead-reckoning data from the accelerometer, as
previously discussed in Section 3. Note that, given that the link-
node model is only an approximation of the physical layout of
the building (e.g., the link length might not be an exact scaled
down version of the corridor length), the results of this comparison
between the map and trajectory could generate multiple candidate
routes. Therefore, we also implement an RSSI-based filter by using
the existing WiFi-signal-based landmarks (e.g., a corridor-corner
may overhear a unique set of WiFi APs, but the set may change
at short distances away from that spot, and some dead spots inside
a building may not overhear any WiFi signals, which by itself is a
signature). When a WiFi AP signal is available, we can use this
RSSI-filter to select the correct route from multiple candidates.
For example, if we know the user has passed a certain landmark,
we can remove those routes that do not contain it. This approach
is similar to the method used by a recent study (Wang et al.,
2012). The map-matching process is performed every time the
system detects that the user makes a turn.

4.1. Turn detection

The first step in our map matching process is to find out all the
turnings in the trajectory data and use these as a signature to
match all possible routes on the map. However, given that the
gyroscope can only provide the relative angular displacement
(RAD), we use a sliding-window-based algorithm to infer the user’s
possible turnings from the data. To determine if a person is making
a turn, we compare the standard deviation of the window with a
threshold which is estimated during the period when the user is
walking straight. A turning event is considered to have occurred
when the standard deviation of the window exceeds the threshold.
Note that, since it could take several steps to turn around a corridor
corner, we record all the turning events that are related to a possi-
ble corner-turning event in order to compute the angle of making a
complete turn of this corner. One example is shown in Fig. 14. The
turning angle (CT) of a possible corner can be estimated as
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Fig. 10. The acceleration at different high speeds.
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CT = AT � BT Here AT is the heading angle after making a turn
around a corner, and BT is the heading angle before making a turn
around a corner. For the example in Fig. 14, CT = AT
� BT = 90 � 0 = 90. However, in reality, it is not necessary that
one only makes a turn when encountering a corner. For example,
one might walk back and forth along the same corridor/aisle. In
addition, possible gyroscope drift errors can also produce false
turning events. Therefore, detection of a turning event is not nec-
essarily an indication that the user is indeed passing a corner.
We consider these kinds of turning events, which are detected
when the user is not passing a corner, as ‘fake’ turnings. Neverthe-
less, it is difficult to distinguish normal corner turnings from fake
ones based only on accelerometer and gyroscope data. In this study
we thus utilize the floor map information to resolve the issue of
fake turnings, as follows. The assumption we make here is that
once the fake turnings are removed from the trajectory data, the
trajectory data should be geometrically similar to a possible route
on the map.
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We first try to find all the possible routes that a user might take
(say, RT) based on all the possible combinations of detected turn-
ings from the trajectory data. We then compare these routes (i.e.
RT) with all the possible routes on the map (say, RM). The objective
here is to find an (RT, RM) pair which is ‘‘the most geometrically sim-
ilar’’. We use some methods from image processing theory to solve
this problem. We first model the map as a graph, GM(VM,EM). VM is
the corner of map, such as A in Fig. 11(a), and the EM denotes the
corridor between two adjacent corners. We also define the graph
GMi(VMi, EMi) as the sub-graph of GM, which is used to model all pos-
sible routes on a map. In addition, we model the user trajectory as
a graph GT(VT, ET), where VT stands for an ordered set of detected
turnings (including fake ones), such as A’, B’, C’, D’ in Fig. 11(b),
and ET is the edge set whose element is the connection between
two adjacent detected turnings. That is, assuming VT = {V1,
V2, . . .,Vk}, Vk is the k-th detected turning, then
ET = {V1V2;V2V3; . . . ;Vk�1Vk}. We next define the graph GTj(VTj,
ETj) as follows. There exists a set V’ which is the power set of VT

(the set that contains all subsets of VT), i.e., V’ = {F, {V1}, {V2}, . . .

{V1,V2}, {V1 ,V3}, . . .{V1 ,V2 ,V3 ,. . .Vk}}. Here we let VTj be an ordered
set, VTj 2 V’ and |VTj| > 1. The ETj is the edge set which contains
the edge between any two adjacent elements in VTj. In other words,
Fig. 13. The link-node mo
GTj is used to model all possible routes that could be generated
based on the detected turnings (including fake ones), and GMi

stands for the accessible route on the map.
Again, the idea here is to find a (GMi, GTj) pair which is the most

geometrically similar. In other words, we want to eliminate those
hypothetical routes generated in GTj that cannot be found on the
real map. We design a two-phase filtering mechanism and employ
three filters: shape filter, angle filter and edge filter. In phase one,
we input all (GMi, GT) pairs into these three filters to remove those
which are not geometrically similar. The purpose of phase two is to
remove the non-existing routes caused by fake turnings by using
these filters for all possible (GMi, GTj) pairs.
4.2. Two-phase filtering mechanism

One possibility is that we might not have ‘‘sufficient’’ trajectory
data (e.g., when there is no detected turning in the trajectory data),
and that multiple candidate routes remain after the geometry-sim-
ilarity filtering. Therefore, we also employ an RSSI-based filter by
using the existing WiFi-signal-based landmarks, as described
previously, to further select the correct one among multiple candi-
dates. Next, we discuss the details of each filter.

1) The shape filter

We adopt the idea of a shape descriptor (Belongie, Malik, &
Puzicha, 2002; Hao & Malik, 2003) to compare the shapes of two
graphs. Considering the nature of our input data and the computa-
tional overhead, we modify the original shape descriptor method
to suit our scenario. To reduce the computational overhead, we
calculate the (Centroid; Johnson, 1929) of each graph and create
a line every 10 degrees from 0� to 180� to pass through this. We
then calculate how many crossing points on the edge can be made
by each line and record them in a one-dimensional array, as shown
in Fig. 15. Finally, we compare the arrays generated based the two
graphs to determine their similarity using Euclidean distance (L-2
norm) Dunford & Schwartz, 1958. We set a threshold to judge
the similarity between these two graphs. If the value is over the
threshold, the system will consider these two graphs are different
and remove them from the set of candidates.

1) The angle filter

We adopt the concept of a chain code (Saghri & Freeman, 1981)
to implement the angle filter. The chain code uses a sequence of
numbers to represent a series of different moving directions and
transform a graph into a one-dimensional expression. However,
we cannot directly apply a full-fledged chain code to our system.
First, it is difficult to decide the number of sampling points for
the trajectory data, since each step distance could be different.
Second, the computational overhead of using the chain code is pro-
portional to the number of steps in the trajectory data, and the
number of candidate routes on the map. Given that what we
del from a floor plan.
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consider here is a real-time localization system and the computa-
tional capability of a smart-phone is limited, we cannot just na-
ively use the chain code. Therefore, we adopt the concept of the
chain code and implement it separately via two different filters:
the angle filter and the edge filter. Conceptually, the outputs of
the chain code include the angle information (e.g., A and A’ in
Fig. 11), the direction of the edge and the normalized edge ratio
(i.e., divide the distance of each edge by the distance of the longest
edge). In our angle filter, for example, we compare every matching
angle and the direction of each edge between GT and GMi, and use a
threshold to determine whether they are all close enough, as
shown in Fig. 16. After filtering out those GMi which do not have
similar angles, we then implement the second part of the chain
code with an edge filter, as described below.

2) The edge filter

With this filter, we check whether the normalized edge ratios
between two graphs, for example, GTj and GMi, are similar or not.
The system calculates the displacement between any two adjacent
vertices in the graph and stores these displacements as a vector.
Fig. 17 shows an example input to the edge filter. We then use
the Euclidean distance and set a threshold to determine whether
the vectors produced for GTj and GMi are similar or not. If the value
of the L-p norm of these two graphs is over the threshold, the
system then removes the corresponding (GTj, GMi) pair from the
candidates.
Fig. 15. Example of
5. Evaluation

In this section, we discuss the performance of our PDR-based
localization system. We first discuss the results of our step length
estimation method, and then show the performance of the above-
mentioned map matching algorithm.

5.1. Experiment setup

To implement our algorithm, we use a variety of Android
phones from HTC and Samsung. We perform two set of experi-
ments on the smart-phones. One is placing the smart-phone in a
shirt pocket and the other is putting it in a pants pocket. We use
a laser distance meter to measure the actual travel distance of
the user. In addition, to record the user’s actual location, we pasted
markers on the ground at precisely known locations. Each of these
markers had a number on it, and the user recorded the numbers
when they walked passed them.

5.2. Step length estimation

As discussed previously, we use a low-pass filter to filter out the
noise in our step length estimation algorithm. We choose 8 Hz as
our cut-off frequency for filtering the noise. To examine whether
this frequency produces the best results, we perform a set of exper-
iments using different frequencies for the low-pass filter, ranging
from 3 Hz to 12 Hz, and compare their accuracies in estimating
step length. As shown in Fig. 18, the use of 8 Hz as the cut-off fre-
quency produces the most accurate results.

Some of the state-of-the-art pedometers on the market can also
output walking distance. We compare our method with these
pedometers, and find that they only achieve up to 90% accuracy,
which is significantly lower than our results (98%). Furthermore,
as discussed previously, our approach is based on the idea of using
the change in height of the waist to estimate step length, which is
similar to the method used in Weinberg (2002). In his work, he
proposed an equation to estimate distance by observing the
the shape filter.
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vertical acceleration during walking. We implement Weinberg’s
method and find that its accuracy is about 96.7%. In addition, one
limitation of Weinberg’s approach is that its system parameters
need to be re-trained for every new user.

In our system, we use a low-pass filter (LPF) to filter out the
noise and employ zero velocity update (ZUPT) to calibrate the drift
Table 1
comparison with other waist mounted methods and the influence of the mechanism.

Pedometer

Method Constant step length � step number

Accuracy (Estimation ground truth) 90.09%
Standard deviation 1.83%
error of the accelerometer. To understand the effects of these
mechanisms, we enable only one of them at a time. As shown in
Table 1, ZUPT has a higher impact on the system performance than
the implementation of the low-pass filter. When ZUPT is disabled,
the accuracy drops from 98.25% to 84.1%.

Considering the variations that might exist in different individ-
uals’ walking gaits, we performed an experiment in which we
asked the subject to walk with different speeds, as shown in
Fig. 19. Here the step frequency is defined as the number of walk-
ing steps in one second. The average accuracy is about 98.26% and
standard deviation is about 1.09%. In addition, we asked two other
people (one male and one female) to perform the same experiment
for the walking distance measurements. Again, each experiment
was repeated for 10 times. The average accuracies and standard
deviations are (98.42%, 0.98%) and (97.93%, 1.86%) respectively,
which are similar to the results shown in Table 1.

Finally, to understand the effects of moving uphill of downhill
on the accuracy of walking distance estimation, we carried out a
set of experiments in which the user walked on with different
slope inclinations of 0�, 5�, 10�, 15� and 20�. The results show that
the step length is shorter when the slope becomes steeper. The
accuracy of walking distance estimation also degrades as we in-
crease the level of inclination from 0� to 20�, as shown in Fig. 20.
In addition, the accuracy in the downhill direction is generally low-
er than that in the uphill direction.
5.3. Map matching

As discussed above, we use a sliding-window-based algorithm
to detect the user’s possible turnings from the gyroscope data. To
determine if a person is making a turn, we compare the standard
Weinberg Ours (A: LPF, B: ZUPT)

k� n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Accmax � Accmin

4
p

Original A B None

96.78% 98.25% 84.1% 95.29% 75.53%
3.18% 1.29% 7.41% 2.22% 16.3%



Fig. 21. The number of walking steps between two corners is larger than the window size.
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deviation of the window with a threshold. Generally, when the
chosen window size is too small, all the walking steps that happen
during a turning might not be able to be included within a window.
On the other hand, when the chosen window size is too big, two
different turnings can be included in the same window if the num-
ber of walking steps between two corners is less than the window
size. As shown in Figs. 21 and 22, the accuracy of detecting turn-
ings becomes lower when the chosen window size is too small or
too big. Therefore, in our experiments we set the window size from
Fig. 22. The number of walking steps between two corners is smaller than the
window size.
the range defined below, in which D is the shortest distance
between two adjacent corridors.

2 < Window Size <
D

Avg Step Length

In addition, the threshold is obtained using the standard devia-
tion of the window during the period when the user is walking
straight.

In the shape filter, we set a line, every 10� from 0� to 180�, that
passes through the centroid of the graph, and use the crossing
points on the edges obtained in this way to determine if two
graphs have similar shapes. To understand the effects of the gaps
between two crossing lines (default 10�) on determining shape
similarity, we vary this gap from 0� to 70�. Generally, the system
will have less computational overhead when the gap is larger.
However, a larger gap also suggests that poorer results will be
obtained, since fewer crossing points will be generated for the
comparison of shape similarity. As shown in Fig. 23, we start get-
ting inaccurate results when the gap is larger than 15�.

Finally, to test the performance of our localization system, we
choose a route which is about 40 m long and includes four corri-
dors and corners, as shown in Fig. 24. We deliberately created
some ‘fake turnings’ by having a walker walk straight down the
route but wander about at certain spots (we put markers on these
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spots before the experiment started), shown as the green dashed
circles in Fig. 24. The solid circles in Fig. 24 indicate when this
walker made a ‘real’ turn at the corner. We repeated this experi-
ment 10 times, and our results show that our location error is
about 0.48 m, and the standard deviation is about 0.43 m.
6. Discussion and conclusion

In this work, we assume that the floor plan is a scaled-down
version of the physical layout of the floor. In some cases, this
assumption might not be always true. Here we propose a bootstrap
phase based on the participatory sensing approach (Mohan et al.,
2008; Raghu, Nam, Hossein, Saurabh, & Tarek, 2010) to obtain
the scale information of the map. The idea is simple: in this boot-
strap phase the system first collects the users’ trajectories, and
then compares them with the link-model of the map to estimate
the relative distance of every corridor. Note that, while the first
few users may experience inferior location accuracy, a little more
data will bring the system to convergence. In addition, such a
bootstrap phase only needs to be performed once for each building.
Nevertheless, one limitation of this work is its reliance on a partic-
ipatory sensing system to collect enough scale information for the
map, and we are currently investigating how to overcome this.
Furthermore, in our map matching algorithm, we compare all pos-
sible (RT, RM) pairs to find the one which is ‘‘the most geometrically
similar’’. Two factors could contribute to the system’s computa-
tional overhead: the frequency of performing the map matching
process and the number of possible (RT, RM) pairs to be considered.
In our implementation, we only perform map matching when the
system detects the turning event (including ‘fake turnings’). In
other words, we only need to run the step estimation module when
the user walks on the same corridor if there no fake turning events
are detected. The number of possible (RT, RM) pairs depends on the
complexity of the floor map and the user’s movement patterns. The
number of possible RT after the last-visited corner is generally lim-
ited unless the walker wanders about frequently. However, the
number of possible RM could be significantly large depending on
the complexity of the map. For example, a map with a high node
degree distribution could potentially generate a larger number of
possible RM, and result in a higher computation overhead. We are
currently studying this issue by considering utilizing the user’s tra-
jectory history data to reduce the space of possible RM.

To conclude this paper, we’ve made the following contributions
in this work. First, unlike previous crowdsourcing-based methods
that required the drivers to manually report when they leave their
parking spots, we utilize the phone sensors to automatically infer
the parking space availability and notify the other drivers in
advance by tracking the trajectory of the driver. Second, we imple-
ment a waist-mounted PDR method on a smart-phone by using the
sensors in the phone to track the driver’s walking trajectory. Sec-
ond, we design a map matching algorithm to calibrate the direction
errors from the gyroscope using building floor plans, which are
readily available. Finally, our map matching algorithm implements
three filters, namely the shape filter, angle filter and edge filter, to
infer the user’s last-visited corner. Our results show that we can
achieve about 98% accuracy in estimating the user’s walking dis-
tance, while the overall location error is about 0.48 m in our exper-
iment. We found that it is important to have a mechanism such as
ZUPT to calibrate sensor drift error, as the accuracy drops from 98%
to 84% without ZUPT. Furthermore, we show that one might need
to consider corridor length in order to detect corners.

One limitation of this work is its reliance on a participatory
sensing system to collect enough scale information for the map,
and we are currently investigating how to overcome this. In
addition, we assume that the position of the phone is relatively
stable in relation to the leg movements and do not take into ac-
count of the possibility of running in this study. Finally, we do
not consider the multi-floor building scenario, since most of
smart-phones do not have a barometer to detect the change to a
different floor, and we leave this as a further direction for future
work.
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