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Abstract—Consider a centralized hierarchical cloud-based
multimedia system (CMS) consisting of a resource manager,
cluster heads, and server clusters, in which the resource manager
assigns clients’ requests for multimedia service tasks to server
clusters according to the task characteristics, and then each
cluster head distributes the assigned task to the servers within
its server cluster. For such a complicated CMS, however, it is a
research challenge to design an effective load balancing algorithm
that spreads the multimedia service task load on servers with the
minimal cost for transmitting multimedia data between server
clusters and clients, while the maximal load limit of each server
cluster is not violated. Unlike previous work, this paper takes
into account a more practical dynamic multiservice scenario
in which each server cluster only handles a specific type of
multimedia task, and each client requests a different type of
multimedia service at a different time. Such a scenario can be
modelled as an integer linear programming problem, which is
computationally intractable in general. As a consequence, this
paper further solves the problem by an efficient genetic algorithm
with an immigrant scheme, which has been shown to be suitable
for dynamic problems. Simulation results demonstrate that the
proposed genetic algorithm can efficiently cope with dynamic
multiservice load balancing in CMS.

Index Terms—Cloud computing, genetic algorithm, load
balancing, metaheuristic, multimedia system.

I. Introduction

W ITH ADVANCE of technology, cloud-based multime-
dia system (CMS) [1] emerges because of a huge

number of users’ demands for various multimedia computing
and storage services through the Internet at the same time
[2]–[4]. It generally incorporates infrastructure, platforms, and
software to support a huge number of clients simultaneously
to store and process their multimedia application data in a
distributed manner and meet different multimedia QoS re-
quirements through the Internet. Most multimedia applications
(e.g., aduio/video streaming services, etc.) require considerable
computation, and are often performed on mobile devices with
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constrained power so that the assistance of cloud computing is
strongly required. In general, cloud service providers offer the
utilities based on cloud facilities to clients so that clients do
not need to take much cost to request multimedia services
and process multimedia data as well as their computation
results. By doing so, multimedia applications are processed
on powerful cloud servers, and the clients only need to pay
for the utilized resources by the time.

This paper considers a centralized hierarchical CMS (as
shown in Fig. 1) composed of a resource manager and a
number of server clusters, each of which is coordinated by
a cluster head, and we assume the servers in different server
clusters to provide different services. Such a CMS is operated
as follows. Each time the CMS receives clients’ requests for
multimedia service tasks, the resource manager of the CMS
assigns those task requests to different server clusters accord-
ing to the characteristics of the requested tasks. Subsequently,
the cluster head of each server cluster distributes the assigned
task to some server within the server cluster. It is not hard to
observe that the load of each server cluster significantly affects
the performance of the whole CMS. In general, the resource
manager of the CMS is in pursuit of fairly distributing the task
load across server clusters, and hence, it is of importance and
interest to be able to cope with load balancing in the CMS.

Load balancing for wireless networks has been studied
extensively in the previous literature, e.g., multiple-factor load
balancing [5], load balancing with policy mechanism [6], load
balancing based on game theory [7], load balancing in WLANs
[8], multiservice load balancing [9] and soft load balancing
[10], and scheduling [11] in heterogeneous wireless networks,
among others. Some previous works have also existed on load
balancing for CMSs [3], [12]. Among them, the load balancing
problem for CMSs in [3] is concerned with spreading the
multimedia service task load on servers with the minimal cost
for transmitting multimedia data between server clusters and
clients, while the maximal load limit of each server cluster is
not violated. A simplified concern in their setting is to assume
that all the multimedia service tasks are of the same type.
In practice, however, the CMS offers services of generating,
editing, processing, and searching a variety of multimedia data,
e.g., hypertext, images, video, audio, graphics, and so on [1].
Different multimedia services have various requirements for
the functions provided by the CMS (storage, central processing
unit, and graphics processing unit clusters), e.g, the QoS
requirement of hypertext webpage services is looser than that
of video streaming services. In addition, the settings in the
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Fig. 1. Illustration of a centralized hierarchical cloud-based multimedia
system.

previous works [3], [12] did not consider that load balancing
should adapt to the time change.

To respond to the practical requirements mentioned above,
we assume that in the CMS, each server cluster can only
handle a specific type of multimedia service task, and each
client requests a different type of multimedia service at dif-
ferent time. At each specific time step, such a problem can
be modelled as an integer linear programming formulation,
which is computationally intractable in general [13]. Con-
ventionally, intractable problems are usually solved by meta-
heuristic approaches, e.g., simulated annealing [14], genetic
algorithm [15], particle swarm optimization [16], [17], etc.
In this paper, we propose a genetic algorithm (GA) for the
concerned dynamic load balancing problem for CMSs. GA has
already found applications in a variety of areas in computer
science and engineering, such as fast covariance matching
[18], aircraft ground service scheduling problem [19], optimal
electric network design [20], among others. In our setting of
GA, elite immigrants and random immigrants are added to new
population, because they are suitable for solving the problems
in dynamic environments [21]. The experimental results show
that to a certain extent, our approach is capable of dynamically
spreading the multimedia task load evenly.

Note that some previous works on other issues of cloud
computing or distributed computing have also existed, e.g.,
cost-optimal scheduling on clouds [22], load balancing for
distributed multi-agent computing [23], communication-aware
load balancing for parallel applications on clusters [24], among
others. Also note that GA has been applied to dynamic load
balancing in [25], but their GA was designed for distributed
systems, not specific to the CMS. In addition, they did not
have any multiservice concern.

II. Problem Description

Our load balancing problem for the CMS is based upon
[3], which, however, only considered that all the multimedia
service tasks are of the same type, and did not consider the
dynamic scenario where load balancing should adapt to the

time change. By extending their model with these concerns,
this section first gives the system overview of the CMS, and
then formulates our concerned problem.

A. System Overview

In general, CMSs can be divided into two categories: cen-
tralized and decentralized. This paper considers a centralized
CMS as illustrated in Fig. 1, which consists of a resource
manager and a number of server clusters each of which is
coordinated by a cluster head. Different from the decentralized
CMS, each time it receives clients’ requests for multimedia
service tasks, the resource manager of the centralized CMS
stores the global service task load information collected from
server clusters, and decides the amount of client’s requests
assigned to each server cluster so that the load of each server
cluster is distributed as balanced as possible in terms of the
cost of transmitting multimedia data between server clusters
and clients. The decision of assignment is based upon the
characteristics of different service requests and the information
collected from server clusters.

In comparison to a decentralized framework, the centralized
framework is scalable as fewer overheads are imposed on the
system, and hence, a lot of applications have existed [26].
However, the centralized framework has lower reliability since
the load balancing algorithms may be dysfunctional due to the
failure of the resource manager [25]. Although a decentralized
framework is suitable to smaller systems, it is still easier to
implement.

B. Problem Formulation

To formulate the CMS that can adapt to time dynamics, we
assume time to be divided into different time steps. At the tth
time step, the CMS can be modeled as a complete weighted
bipartite graph Gt = (U, V, E, φ, ψt, q, rt, wt) in which:

1) U is the set of vertices that represent the server clusters
of the CMS;

2) V is the set of vertices that represent clients;
3) E is the set of edges between U and V , in which each

edge eij ∈ E represents the link between server cluster
i ∈ U and client j ∈ V ;

4) φ : U → N is a function used to restrict that server
cluster i can only cope with multimedia tasks of type
φi;

5) ψt : V → N is a function used to represent that client
j requests the multimedia service of type ψt

j at the tth
time step;

6) q : U∪V → N is a function used to represent that server
cluster i can provide the multimedia service of QoS qi;

7) rt : U∪V → N is a function used to represent that client
j requests the multimedia service of QoS requirement
rt
j at the tth time step;

8) wt : E → R+ is the weight function associated with
edges, in which wt

ij denotes the wt value that represents
the cost for transmitting multimedia data between server
cluster i and client j at the tth time step, which is defined
as follows:

wt
ij =

{ ∞, if dt
ij → ∞ or φi �= ψj

dt
ijl

t
ij, otherwise

(1)
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where dt
ij is the network proximity between server

cluster i and client j; ltij is the traffic load of the link
between server cluster i and client j that is defined as
follows:

ltij =
∑
k∈Ki

ut
ikjCik (2)

where Ki is the set of servers in server cluster i; ut
ikj is

the server utilization ratio of server k in server cluster i

due to client j, and Cik is its capacity.

Note that the proximity dt
ij between server cluster i and

client j in (1) is required to be measured at every time step due
to dynamic change of network topology. This paper continues
applying the setting of [3] based upon the distributed binning
scheme in [27] to calculate the proximity dt

ij . Like other
previous works, we measure the proximity between the server
cluster and the client as a distance between them. Take an
example to explain how to calculate the proximity as follows.
Here, we say that a node may be a server cluster or a client.
First, we measure the distance of a node to a given set of
landmark nodes in the network by the network link latency.
Suppose that there are three landmarks in the network. The
latencies from the concerned node to the three landmarks are
45, 10, and 25, respectively. Nodes are ranked according to the
latency information: range 0 for latencies in [0, 15], range 1
for latencies in [15, 40], and range 2 for latencies higher than
40. Hence, the landmark order of the concerned node is 201.
By using the landmark order, all the nodes can be classified
into different bins, i.e., the nodes with the same landmark
order fall into the same bin. By doing so, we only calculate the
proximity between two nodes in the same bin, while the others
in different bins mean that they are too far to communicate
with each other, so their proximity is infinity.

With the above notations, the mathematical model of our
concerned problem at the tth time step can be stated as the
following integer linear programming formulation:

Minimize λ

∑
i∈U

∑
j∈V xt

ijw
t
ij∑

j∈V wmax

+(1 − λ)(1 −
∑

j∈V

∑
i∈U xt

ij

|V | ) (3)

subject to
∑
i∈U

xt
ij ≤ 1, ∀j ∈ V (4)

∑
j∈V

xt
ijl

t
ij ≤

∑
k∈Ki

Cik, ∀i ∈ U (5)

xt
ijφi = xt

ijψ
t
j, ∀i ∈ U, j ∈ V (6)

xt
ijqi ≥ xt

ijr
t
j, ∀i ∈ U, j ∈ V (7)

xt
ij ∈ {0, 1}, ∀i ∈ U, j ∈ V (8)

where xt
ij is an indicator variable defined as follows:

xt
ij =

⎧⎨
⎩

1, if client j is assigned to server cluster i

at the tth time step
0, otherwise.

(9)

In the above model, indicator variable xt
ij in (8) is used

to determine whether to assign the link eij between server
cluster i and client j in the complete bipartite graph U × V .

The objective (3) of the model is a weighted sum of two
terms: the first is to minimize the total weighted values of the
bipartite graph, i.e., to minimize the total cost of transmitting
multimedia data at the tth time step, while the second is to
maximize the number of link assignments. Note that we let
wmax be the maximal possible weight (less than infinity), and
hence, the denominators of the two terms of the objective are
used for normalizing them to the range [0, 1], and λ ∈ [0, 1]
is used to adjust the weights of the two terms so that the
objective value always falls into the range [0, 1]. Constraint (4)
guarantees that each client only allows at most one link to
be assigned. For each client j in V , the constraint enforces
that xt

ij of at most one server cluster i is 1. Constraint (5)
enforces that the utilized capacity of each server cluster cannot
exceed its capacity at the tth time step. Constraint (6) enforces
that the multimedia service type requested by each client j is
consistent with that provided by server cluster i. Constraint (7)
enforces that each client j requests the multimedia server of
the QoS no more than that offered by server cluster i.

As our model is rooted from the work in [3], the differences
of our model from theirs are explained as follows.

1) Different from the work in [3], we additionally consider
four functions φ, ψt , q and rt .

2) Regarding the link assignment to each client, the model
in [3] constrains each client to be assigned to exactly
one link, while ours allows each client to be assigned
to one or zero link in (4). That is, the previous model
guarantees to serve each client, but ours does not,
because our concerned problem is more complicated.

3) With the above constraint, our objective additionally
considers to maximize the number of link assignments,
i.e., the number of served clients (see the second term
in Objective (3)).

4) Our model additionally considers (6) and (7) for multiple
service types and QoS requirements, respectively.

5) The load balancing algorithm in [3] is not adaptive, but
ours is robust with time change, as the time change can
be seen via the superscript t in the model.

6) We allow mobility of clients, i.e., clients can change
their locations at different time steps. Note that the
problems that consider mobility of nodes have received
much attention recently, e.g., see the survey in [28].

As a result, our concerned problem can be stated as follows.
DYNAMIC MULTISERVICE LOAD BALANCING IN CMS (CMS-
DYNMLB): Given a CMS with m server clusters and
n clients, for t = 1, 2, · · · , the bipartite graph Gt =
(U, V, E, φ, ψt, q, rt, wt) underlies the CMS at the tth time step
(as described above) in which clients have mobility, while the
link between clients and server clusters need be assigned. The
objective of the problem is to assign multimedia service load
so that total cost of transmitting multimedia data is minimized
and the number of served clients is maximized.

Since the dynamic multiservice load balancing in cloud-
based multimedia system (CMS-dynMLB) problem at each
fixed time step can be modelled as an integer linear pro-
gramming problem as mentioned above, it is computationally
intractable in general [13], i.e., there does not exist any effi-
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Algorithm 1 Dynamic Load Balancing Algorithm

1: for t = 1, 2, · · · do
2: consider complete weighted bipartite graph Gt

3: remove the links in Gt violating (6) and (7)
4: calculate {ltij} and {wt

ij} by calling Algorithm 2
5: assign {xt

ij} by calling Algorithm 3
6: end for

cient deterministic polynomial time algorithm for the problem.
Hence, this paper proposes a genetic algorithm (GA) [15]
with immigrant scheme [21] for solving the problem. The
GA is a stochastic global search method that has proved to
be successful for many kinds of optimization problems. GA
is categorized as a global search heuristic. It works with a
population of candidate solutions and tries to optimize the
answer by using three basic principles, including selection,
crossover, and mutation. For more details on GA, readers are
referred to [15].

III. Our Genetic Algorithm With

Immigrant Scheme

This section first gives our proposed algorithm, and then
gives basic definitions and main components of the algorithm.

A. Our Algorithm

The basic idea of the GA is to imitate the evolutional
behavior of a population of chromosomes (each of which
represents a candidate solution) to find the solution close to the
global optimal solution by using three basic evolutional oper-
ations: selection, crossover, and mutation. The key principle
of the GA is that the fittest chromosomes can survive to the
next generation, and in general the fittest chromosome in the
final generation represents the final solution that has a good
performance. We first define how a chromosome represents a
candidate solution, and how the fitness of each chromosome
translates the objective value of the corresponding solution.
The initial step of the algorithm is to maintain a population
(generation) of chromosomes that are initialized randomly or
in some way. Next, a number of the chromosomes in the
population are selected as the parental pool, in which each
pair of chromosomes are crossovered to produce child chromo-
somes. Next, parts of the original chromosomes and the child
chromosomes constitute the next generation. After evolving
a maximal number of generations or achieving a convergent
condition, the solution represented by the chromosome with
the best fitness value in the last generation is outputted as the
final solution.

Based on the above idea for GA, our dynamic load bal-
ancing algorithm is given in Algorithm 1, which is explained
as follows. At each time step t, Algorithm 1 iterates on t

to reallocate the network load assignments so as to adapt to
the time change. First, Line 2 constructs a complete weighted
bipartite graph Gt , described in the previous section. Subse-
quently, we remove infeasible cases and then apply our GA
to finding a locally optimal load assignment solution. Note
that feasible solutions are restricted to (4), (5), (6), and (7). In

Algorithm 2 Calculate Weights

1: for each client j ∈ V do
2: measure the latency from client j to each landmark
3: compute the landmark order �j of client j

4: obtain the set of available server clusters Uj

5: for each i ∈ Uj do
6: measure the latency from server cluster i to each

landmark
7: compute the landmark order �i of server cluster i

8: if �i = �j then
9: measure the network proximity dt

ij between server
cluster i and client j

10: measure server utilization ratios ut
ikj for all k ∈ Ki

11: calculate ltij and wt
ij by Equations (2) and (1),

respectively
12: else
13: wt

ij = ltij = ∞
14: end if
15: end for
16: end for

Algorithm 1, Line 3 removes the links in Gt violating (6) and
(7), while the other two constraints will be considered in our
GA (Algorithm 3). Before using our GA to calculate solutions,
the information of {ltij} and {wt

ij} is required, so Line 4 of
Algorithm 1 calls Algorithm 2 to obtain those information.
After that, Line 5 of Algorithm 1 calls the algorithm detailed
in Algorithm 3 to compute our final load assignment solution
{xt

ij}.In what follows, we explain how Algorithm 2 computes {ltij}
and {wt

ij}. First, Line 1 considers each client j ∈ V to compute
its weight wt

ij with each server cluster i. Recall that we apply
the distributed binning scheme to calculating the proximity,
detailed in the previous section. Hence, Lines 2–3 calculate
the landmark order �j of client j, and then, for each available
server cluster i in the set Uj that includes the server clusters
connected to client j, Lines 6 and 7 calculate the landmark
distance �i of server cluster i. In Lines 8–14, if �j = �i (i.e.,
client j and server cluster i belong to the same landmark bin),
we actually measure the network proximity between them, and
then compute their ltij and wt

ij values; otherwise, we directly
let the ltij and wt

ij values be ∞.
With the values of {ltij} and {wt

ij} computed by Algorithm 2,
we are ready to apply the GA to computing the optimal load
assignment in Algorithm 3, which is explained as follows.
The GA runs differently based on two parameters: the input
bipartite graph Gt and the input time step t. Recall that Gt

may not be a complete graph any longer, because the links that
violate some problem constraints have been removed in Line 3
of Algorithm 1. Let η and τ denote the size of a population
and the number of generations, respectively. In Lines 1–5,
the initial population of η chromosomes is generated in two
cases. If t = 1 (i.e., this is the first time to run the GA), then
we randomly generate the initial population that satisfies the
remaining two constraints that we did not consider yet (i.e.,
(4) and (5)). Otherwise (i.e., t �= 1, which implies that there
existed the final population P t−1

τ of the (t − 1)th time step),
Line 4 uses P t−1

τ as the initial population at the tth time step.
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Algorithm 3 Genetic Algorithm (graph Gt , time step t)

1: if t = 1 then
2: generate and evaluate the initial population P t

0 of size
η in which each chromosome has to satisfy (4) and (5).

3: else
4: P t

0 ← P t−1
τ

5: end if
6: i ← 0
7: while i < τ or the convergent condition is not achieved

do
8: select the parental pool Qt

i from P t
i

9: reproduce a new population P t
i of size η by performing

crossover procedure on pairs of chromosomes in Qt
i

with probability pc

10: perform mutation procedure on chromosome in P t
i with

probability pm

11: repair each infeasible chromosome in P t
i

12: evaluate P t
i

13: if re > 0 then
14: a number of the best chromosome Et

i−1, called elite,
are selected from the previous generation Pt

i−1
15: generate and evaluate re · η elite immigrants
16: end if
17: if rr > 0 then
18: generate and evaluate rr · η random immigrants
19: end if
20: replace the worst chromosomes in P t

i with the above
elite and random immigrants

21: P t
i+1 ← P t

i

22: i ← i + 1
23: end while
24: output the best found chromosome as the solution at the

tth time step

Subsequently, the while loop in Lines 7–23 repeats at
most τ iterations, each of which produces a population P t

i+1
of chromosomes, i.e., the next population at the tth time
step. Line 8 selects a number of chromosomes from the
population P t

i as the parental pool Qt
i. Lines 9 and 10 perform

crossover and mutation operators to the population P t
i with

probabilities pc and pm, respectively. The selection, crossover,
and mutation are conventional evolutionary operators of the
GA. The details of selection, crossover, and mutation will be
explained in the following subsections. In addition, since our
concerned problem considers dynamic scenarios at different
time steps, we add elite immigrants and random immigrants
to adapt to dynamic changes, as the immigrants are used
to solve dynamic problems conventionally [21]. Lines 13–16
add elite immigrants for increasing efficiency of convergence,
while Lines 17–19 add random immigrants for increasing the
population diversity. Line 20 replaces the worst chromosomes
in P t

i with the elite and random immigrants. After finishing
the while loop, the best found chromosome is outputted as the
solution at the tth time step.

Note that a multimedia service task may not be able to be
finished within a single time step, i.e., it takes a number of time

steps to be finished. Hence, it is not necessary to maintain a
specific link for the same service for some time steps because
the network is packet-based. This flexibility is beneficial in the
sense that rearrangement of cluster service load might result
in achievement of smaller cost of transmitting data.

B. Basic Definitions of Our GA

To use GA to solve the CMS-dynMLB problem, we first
define the basic elements of GA (i.e., population, chromosome,
fitness function) for the problem as follows.

1) Population: One population represents one generation.
A population consists of a number of chromosomes, and
the number of chromosomes depends on the given initial
population size. In this paper, we use η to denote the number
of chromosomes.

2) Chromosome: A solution for the CMS-dynMLB prob-
lem consists of all the indicator variables {xt

ij|∀i ∈ U, j ∈ V }.
The solution is represented by a chromosome in GA. Recalling
that |U| = m and |V | = n, the solution for indicator variables
{xt

ij} is encoded as a sequence of decimal numbers of length n:
〈σ1, · · · , σj, · · · , σn〉 where σj ∈ {0, 1, 2, · · · , m} represents
the link assignment of client j with the following two cases.

1) If σj = 0, then each xt
ij = 0 for any i ∈ U, i.e., client j

is not linked at the tth time step.
2) Otherwise, σj = k �= 0, meaning that xt

kj = 1 and xt
ij = 0

for any i �= k, i.e., client j is linked to server cluster k

uniquely.

That is, all the xt
ij values for a fixed j can be determined

based on the value of σj . By doing so, it is guaranteed that∑
i∈U xt

ij ≤ 1, ∀j ∈ V in (4).
For making the represented solution to be feasible, we

require the chromosome to satisfy all the problem constraints.
Since the cases violating (6) and (7) have been removed in
Line 3 in Algorithm 1, the only remaining concern to guaran-
tee the solution feasibility of the chromosome is to satisfy (5).
Since computation of (5) requires the information of {ltij}, the
constraint is checked in Algorithm 3, after calling Algorithm 2
to calculate {ltij}. For those chromosomes violating (5), we
apply the repairing procedure to revising them to be feasible
in Line 11 of Algorithm 3. The repairing procedure will be
detailed in the next subsection.

3) Fitness Function: Fitness function is the measure for
determining which chromosomes are better or worse. This
function could control the trend of population development, so
it is an important part of GA. It should be noted that the fitness
value in our definition is abused to be defined as the penalty
for the bad quality of chromosome. That is, a larger fitness
value implies a worse chromosome. Hence, our GA aims to
find the chromosome with minimal fitness value. We let the
objective (3) of our concerned problem as our fitness func-
tion as follows: f (X(t)) = λ · ∑

i∈U

∑
j∈V xt

ijw
t
ij/

∑
j∈V wmax

+ (1 − λ) · (1 − ∑
j∈V

∑
i∈U xt

ij/|V |) where X(t) is the profile
of {xt

ij}.

C. Main Components of Our GA

The main components of our GA are introduced as follows.
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Algorithm 4 Initialize

1: for j = 1 to n do
2: arg(Uj) ← set of integers which store the indices of the

available cluster servers Uj that are linked with client
j in the reduced bipartite graph Gt (where the links
violating Constraints (6) and (7) have been removed in
Algorithm 1)

3: end for
4: for p = 1 to η do
5: construct the pth chromosome cp = 〈σ1, · · · , σj, · · · ,

σn〉, in which σj is a number chosen arbitrarily from
arg(Uj) for each j ∈ {1, · · · , n}

6: let o be the set of the positions of 0’s in cp that do not
violate our problem constraints

7: for i = 1 to m do
8: scan chromosome cp to compute the

∑
j∈U xt

ijl
t
ij value

for server cluster i

9: gi ← ∑
j∈U xt

ijl
t
ij − ∑

k∈Ki
Cik

10: let oi be the set of o associated with cluster server i

11: while gi > 0 do
12: find the index x such that σx = i in cp, lix > gi,

and the gap between lix and gi is the smallest
13: if there is a position oy in o that can accommodate

lix and satisfy all the problem constraints then
14: swap the values of oy and σx

15: remove oy in o

16: gi ← gi − lix
17: else
18: σx ← 0
19: end if
20: end while
21: end for
22: end for

1) Initialization: In Lines 1–5 of Algorithm 3, there are
two cases for producing the initial population at each time
step. If t �= 1, we just take the final population at the previous
time step as the initial population at the current time step (see
Lines 4 of Algorithm 3). For the other case (i.e., t = 1), we
randomly produce the initial population by using Algorithm 4,
which is explained as follows. Lines 1–3 find the set arg(Uj)
that collects the indices of the available server clusters for
each client j. Next, the set arg(Uj) is used to construct a
population of η chromosomes in Line 5, and then we repair
each chromosome to be feasible in Lines 6–21. The idea of
the repairing operation is that if (5) is violated, then we find
another available server cluster to serve the violated load;
otherwise, we drop the load.

2) Selection, Crossover: As for the selection operation,
it is common that the GA uses the roulette wheel selection.
Our GA continues using the roulette wheel selection. Two
chromosomes chosen randomly from the selected parental
pool are crossovered for generating two new child chromo-
somes that have to keep some characteristics of its parent
chromosomes. The information of chromosomes depends on
the fitness function structure. Here, we continue using the
conventional one-point crossover operation. Interested readers

can be referred to [15] for the details on roulette wheel
selection and one-point crossover.

3) Mutation: To prevent our GA from falling into a local
optimal solution, we need to change some genes on some
chromosomes. We assume that each chromosome has a given
probability pm to mutate. In the mutated chromosome, a
nonzero gene σx is chosen randomly, and then we randomly
find a zero gene σy that can accommodate σx and do not
violate any problem constraint. Then, we swap the values of
σx and σy. These modifications may not necessarily improve
the fitness values. However, the worse chromosomes will be
eliminated on the selection step. As long as mutation could
improve chromosomes, it is still a meaningful step.

4) Repair: After the above evolving operations, the mod-
ified chromosomes may become infeasible, and hence, we
need to repair them to be feasible. Since the truth of (4)
can always be guaranteed in our design of chromosomes,
and the infeasibility of (6) and (7) has been filtered in the
preprocessing stage of the GA, thus we only need to repair
those chromosomes that violate (5). The repairing operation is
referred to Lines 6–21 in Algorithm 4, which have been used
in initializing chromosomes.

5) Termination: If the difference of average fitness values
between successive generations in the latest ten generations
is not grater than 1% of the average of the average fitness
values of these ten generations, or the maximum generations
are achieved, then our GA stops. After termination, the best
chromosome from the latest population is chosen, and its cor-
responding load assignment is outputted as the final solution.

IV. Convergence Analysis of the Genetic

Algorithm With Immigrant Scheme

Although the GA with the immigrant scheme was proposed
in [21] for coping with dynamic problems, the convergence of
the algorithm was never analyzed. Hence, this section applies
the concept of Markov chains to the convergence analysis by
the analogy from [29] for analyzing convergence of the GA
with local search.

First, some notations and definitions for Markov chains are
given as follows. A stochastic process {X̂n, n = 0, 1, 2, ...} is
called a Markov chain if P{X̂n+1 = j|X̂n = i} = Pij for any
states i, j and n > 0, in which X̂t = k means the process to
be in state k at time step t; Pij is a probability depending on
only states i and j, not on time step n. Markov chain {X̂n} is
called homogeneous if P{X̂m+n = j|X̂m = i} = P

(n)
ij , which is

the n-step transition probability from state i to state j in {X̂n},
i.e., it is not dependent on the former m time steps. If P

(n)
ij > 0

and P
(n)
ji > 0, the two states i and j are said to be accessible

to each other, and are in the same class. If there is only one
class, the Markov chain is said to be irreducible. Let pi denote
the probability that the process starts in state i and will ever
re-enter state i. If pi = 1, state i is said to be recurrent. If
state i is recurrent and the expected time starting state i until
the process returns to state i is finite, then state i is said to be
positive recurrent. If P

(n)
ii = 0 whenever n is not divisible by

d (in which d is the largest integer with this property), state
i is said to have period d. A state with period 1 is said to be
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aperiodic. A state is called ergodic if it is positive recurrent
and aperiodic. There are two lemmas in [30] as follows.

Lemma 1 All recurrent states in a finite-state Markov chain
are positive recurrent.

Lemma 2 For an irreducible ergodic Markov chain,
limn→∞ P

(n)
ij exists and is independent of i. Furthermore, if let

πj = limn→∞ P
(n)
ij , j ≥ 0, then πj is the unique nonnegative

solution of πj =
∑∞

i=0 πiPij, j ≥ 0, subject to
∑∞

j=0 πj = 1.

In order to analyze our GA, we continue using the following
hypotheses given in [29]: 1) the number of local optimal so-
lutions is finite, and 2) each solution can be mapped to a local
optimal point by local search. Let HL be the domain space
of our concerned problem, which is expressed as follows:
HL = G(x#

1) ∪ G(x#
2) ∪ · · · ∪ G(x#

L) where all the local optimal
points in HL are denoted by x#

1, x
#
2, · · · , x#

L, L ≥ 3 (without
loss of generality), and one of them is the global optimal point;
G(x#

i ) ⊂ HL denotes the set that for each xi ∈ G(x#
i ) we can

use local search to find the x#
i that started from xi. Although

our GA does not apply local search, the above hypotheses are
still suitable for proving correctness of our theorem.

In what follows, we start to discuss the convergence of our
GA. Recall that η denotes the number of chromosomes. Let−→
X (t) = {X1(t), X2(t), · · · , Xη(t)} be the population of the
tth generation of our algorithm. Hence, the state space of
the population sequence {X(t)} produced by our algorithm is
denoted by H

η
L = G(x#

1)∪G(x#
2)∪· · ·∪G(x#

η) where η ≤ L (with
loss of generality). Let B∗ be the set of the optimal solutions
and f ∗ be the optimal fitness value. We say that {X(t)} almost
surely converges to B∗ as follows.

Definition 1: The population sequence {X(t)} is said to
almost surely converge to B∗ if the probability P{−→X (t) ⊆ B∗}
satisfies P{limt→∞[−→X (t) ⊆ B∗]} = 1.

Our GA can be regarded as a composite mapping from
population X(t) to X(t + 1): T = Ir ◦ Ie ◦ R ◦ S in which
S : H

η
L → H

η
L × H

η
L is the mapping for selecting two parents;

R : H
η
L × H

η
L → HL is the mapping for performing crossover

and mutation operators; Ie : HL → HL is the mapping for
replacing worst chromosomes by elite immigrants, while Ir :
HL → HL is the mapping for replacing worst chromosomes
by random immigrants.

Our GA can be analyzed by Markov chains as follows.

1) Initialize −→
X (0) randomly.

2) Using roulette wheel selection to select η pairs of parents
from −→

X (t) at the tth time step with the following
probability distribution:

P{S(−→X (t)) = (Y (k)
1 , Y

(k)
2 )}

=

{
f (Y (k)#

1 )f (Y (k)#
2 )

(
∑η

i=1 f (X#
i (t)))2 , if Y

(k)
1 , Y

(k)
2 ∈ −→

X (t)

0, otherwise

for k = 1, 2, ..., η. Note that (Y (k)
1 , Y

(k)
2 ) are the kth pair

of parents selected by roulette wheel, so the probability
is composed of two nonzero ratios of Y

(k)
1 and Y

(k)
2 over−→

X (t). Hence, the probability is positive.
3) After crossover and mutation, the population reconcile

the following probability distribution:

P{R(Y (k)
1 , Y

(k)
2 ) = Z(k)}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α, if Z(k) ∈ G(Y (k)#
1 )

β, if Z(k) ∈ G(Y (k)#
2 )

1 − α − β, if Z(k)

∈ HL \ G(Y (k)#
1 ) ∪ G(Y (k)#

2 )
0, otherwise

for k = 1, 2, ..., η, in which α, β, 1 − α − β > 0 by the
Lebesque measure theory and L ≥ 3 in [29].

4) The sequence {Z(k)} is reordered such that f (Z(1)) ≤
f (Z(2)) ≤ ... ≤ f (Z(η)). Recall that smaller fitness f is
better in our setting. After adding elite immigrants, the
population reconcile the following distribution:

P{Ie(Z) = W (k)}

=

⎧⎨
⎩

γ1, if W (k) ∈ {Z(1), ..., Z(reη)}
γ2, if W (k) ∈ {Z(reη+1), ..., Z(η−reη−1)}
0, otherwise

for k = 1, 2, ..., η.
5) The sequence {W (k)} are reordered such that f (W (1)) ≤

f (W (2)) ≤ ... ≤ f (W (η)). After adding random immi-
grants, the population reconcile the following probability
distribution:

P{Ir(W
(k)) = Xk(t + 1)}

=

⎧⎨
⎩

δ, if Xk(t + 1) ∈ G(W (k)#)
1 − δ, if Xk(t + 1) ∈ HL \ G(W (k)#)

0, otherwise

for k = 1, 2, ..., η.

It is worthy mentioning the difference between our analysis
and that in [29] as follows. On the Markov chain, in addition to
mappings S and R proposed originally in [29], we additionally
consider mappings Ie and Ir, which are designed for immigrant
scheme. The correctness of the following lemma can be shown
by a similar proof with in [29].

Lemma 3 The population sequence {−→X (t)} generated by
our GA is a finite, homogeneous, irreducible, and aperiodic
Markov chain if all the nonzero probabilities in 1)–5) are
positive and all independent of t.

As a result, we can show the following theorem.

Theorem 1 Let f (x) be a real continuous function and HL be
an l-dimensional box constraint. By using the roulette wheel
selection, crossover, mutation, elite immigrants, and random
immigrants in our GA, then the {−→X ∗(t)} with an elitist strategy
almost surely converges to the set of the optimal solution set
B∗.

Proof. (Sketch) by Lemmas 1–3 and the analogy with [29], it
suffices to show that the nonzero probabilities 4) and 5) are
positive and all independent of t.

For similarity, we assume that f (x) ≥ 0 for all HL

(otherwise, a sufficiently large constant can be added to f (x))
and S = [0, 1]l. Hence, it is obvious that the Lebesque measure
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Fig. 2. Static scenarios under different (a) numbers of server clusters, (b) λ values, (c) η values, (d) Pc values, (e) Pm values, (f) combinations of Pc and
Pm values, (g) re values, (h) rr values, and (i) combinations of re and rr .

m(HL) = 1 and
∑L

i=1 m(G(X#
i )) = 1. For the process of 4), the

variable γ1 and γ2 are represented as follows:

γ1 = 2/η

γ2 = 1/η.

The above equations hold because elite (better) chromosomes
in the η chromosomes are duplicated after elite immigrants join
the population, while the other chromosomes are unchanged.
In the process of 5), the probability of Xk(t + 1) belongs to
G(W (k)#) or HL \ G(W (k)#) depends on the Lebesque measure
of m(G(W (k)#)). So, we can know

δ = m(G(W (k)#))

and 1 − δ > 0, and that it, the nonzero probabilities in 4) and
5) are positive and all independent of t, as required. �

V. Implementation and Experimental Results

This section first explains how the data used in experiments
were generated and the experimental environment, and then
gives the experimental results of a variety of cases.

A. Data and Simulation Environment

We consider an instance with 20 server clusters (m = 20)
and 100 clients (n = 100). The weight of each link is bounded
in the range [0, 5] in general. That is, the normalizing factor
of the first term in Objective (3) is 5 · 100 = 500, while that
of the second term is 100. If the link is infeasible, its weight
is set 1000, which is viewed as infinity in our experiments.

In our experiments, unless otherwise described in the rest
of this paper, our GA algorithm applies the parameter settings
in Table I, in which there are 200 generations at most; there
are 50 chromosomes in a generation; the time period between
two time steps is the time taken by 20 generations of the main
loop of the GA algorithm. That is, clients move at each time
step, and their corresponding criteria are measured at every 20
generations. In addition, after a lot of tests, λ = 0.7 is chosen.

Our simulation was tested on an Intel Core i7-3770 CPU at
3.40 GHz with 16-GB memory. The average running time for
determining a placement of an instance (i.e., 20 generations)
is about 0.0005 s. This implies that our GA has the ability to
efficiently cope with the CMS-dynMLB problem.
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Fig. 3. Dynamic scenarios under different m values. (a) 20. (b) 50. (c) 100.

TABLE I

Parameters Used in Simulation.

Parameter Value
Number of server clusters (m) 20

Number of clients (n) 100
Maximal weight (maxi∈U {wt

ij}) 5
Weight of first objective (λ) 0.1

Maximal number of generations (τ) 200
Number of generations between two time steps 20

Number of chromosomes (η) 50
Size of parental pool (|Qt

i|) 50
Crossover rate (pc) 0.5
Mutation rate (pm) 0.02

Rate of elite immigrants (re) 0.2
Rate of random immigrants (rr) 0.2

B. Experimental Results

To the best of our understanding, there were no previous
works that studied our concerned problem. As a result, we
conduct a comprehensive experimental analysis on adjustment
of parameters. First, in order to observe the convergence of the
best cost values in our GA method, we plot the best cost values
versus the number of generations of our GA under a variety
of parameters in Fig. 2, from which each plot is convergent
to a fixed value, which implies that our GA has the ability to
make the solutions convergent.

Fig. 2(a) gives plots for different numbers of server clusters
(m), in which it is reasonable that more server clusters
(resources) converge faster. In order to make the problem
instance not easy to be solved, we choose m = 20, by which the
solution converges at about sixth generation. Similarly, from
Fig. 2(b) and (c), the cases of λ = 1 and η = 50 have nontrivial
plots, and hence we apply the settings. As for crossover and
mutation rates, we choose pc = 0.5 and pm = 0.02, because
those settings have the best performance from Fig. 2(d)–(f). As
for the immigrant scheme, we choose re = 0.2 and rr = 0.2, in
which re = 0.2 is due to its better performance from Fig. 2(g).
Although rr = 0.2 has worse performance in Fig. 2(h) and (i),
its performance in dynamic scenarios is better.

In order to demonstrate the ability of our approach to adapt
the time changes (where we suppose that the topology graph
changes in each 20 generations), we run 200 generations of our
GA on the test instance in a dynamic scenario, and its plots
of best cost values versus the iteration number under three

different m values are given in Fig. 3. The dynamic scenario
assumes that all of the clients change their locations in each 20
generations in Fig. 3, from which we observe that every time
when clients change their location in each 20 generations, the
cost value goes to a large value, and later converges by our
GA approach. In addition, we also observe that from (a) to
(c) more clients provide more resources so that the plots turn
out to be a plat region more quickly.

VI. Conclusion

A genetic algorithm approach for optimizing the CMS-
dynMLB was proposed and implemented. The main difference
in our model from previous models is that we considered a
practical multiservice dynamic scenario in which at different
time steps, clients can change their locations, and each server
cluster only handled a specific type of multimedia task so
that two performance objectives were optimized at the same
time. The main features of this paper included not only the
proposal of a mathematical formulation of the CMS-dynMLB
problem but also a theoretical analysis for the algorithm
convergence. A detailed simulation was also conducted to
show the performance of our GA approach.
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