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Simultaneous Tensor Decomposition
and Completion Using Factor Priors
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Abstract—The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is
a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with
incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the
number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while
completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries
and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor
decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as
the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor
objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method
leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to
empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data.
The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms
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state-of-the-art methods on multilinear model analysis and visual data completion tasks.

Index Terms—Tensor completion, Tucker decomposition, factor priors, multilinear model analysis

1 INTRODUCTION

HE increasing popularity of low-rank matrix approxima-

tion in recent years demonstrates the method’s sig-
nificance as a theoretic foundation for real-world problems,
such as inpainting [1], [2], denoising [3], image batch
alignment [4], key-point/saliency detection [5], [6], affinity/
subspace learning [7], [8], and moving object analysis [9],
[10], [11]. To infer a problem’s statistics from limited
information (e.g., noisy or incomplete data), the above
methods estimate missing or noise-free values via matrix
factorization or matrix completion. Matrix factorization
techniques (e.g., singular value decomposition (SVD) [12]
and nonnegative matrix factorization (NMF) [13]), under a
fixed-rank representation, use a reconstruction step to
maintain the principal variation and suppress the additive
noise. In contrast, matrix completion techniques [14], [15],
[16] exploit nuclear norm (or matrix trace norm) minimiza-
tion to recover incomplete data effectively. It has been
shown that the nuclear norm yields the tightest convex
envelope of a matrix rank [17]. The major difference
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between the two techniques is the way they make decisions
about the matrix rank. Completion-based methods auto-
mate the rank estimation step, while factorization-based
methods assume a given rank, but tend to over/under-
estimate the truth. A number of studies posit that matrix
factorization techniques are superior for data analysis [18]
and statistical modeling [19] because the factorized matrix
structure is a natural fit for the problems.

As a tensor is a high-order extension of a matrix, low-
rank tensor approximation has also generated increased
interest in factorization techniques [20], [21], [22] and
completion techniques [23], [24], [25], [26], [27], [28]. Like
matrix approximation, low-rank tensor approximation can
be solved by both techniques, but a tensor’s rank is not
usually as well defined as a matrix’s rank. Theoretically, a
tensor’s rank is the minimum number of components r
required for rank-1 decomposition (also known as canonical
polyadic (CP) decomposition). However, as it is difficult to
estimate the minimum r in practice, the mode-k rank
(r1,...,7x) estimated by Tucker decomposition [28] could
be considered instead. Despite the difficulty in defining a
tensor’s rank, a great deal of research effort has been
devoted to understanding low-rank tensor approximation
because a tensor object generally exhibits the structure of
real-world data.

In this paper, we focus on tensor completion, which is
related to the missing data problem in many real-world
applications. When only a fraction of the entries in a tensor
can be observed, we try to approximate the unknown or
missing entries and thereby improve the performance of the
underlying applications. Two tensor factorization methods
were recently proposed in [21], [22] to estimate the model
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Fig. 1. Two sample images “Facade” and “Baboon”: (a) the original
images, (b) the first 20 singular values, and (c) the completed results
reported by [27] (the missing data rate = 90 percent).

factors in cases of incomplete data. Based on the CP model,
the authors of [21] formulated the reconstruction of given
entries as a weighted least-squares problem. Meanwhile, in
[22], the authors proposed an expectation-maximization
(EM)-like algorithm that uses high-order SVD [29] to
characterize the multilinear subspaces as components of
the Tucker model. Both methods were applied to real-world
data analysis, for example, electroencephalogram (EEG),
computer network traffic, and face image data, and they
successfully approximated the model factors in terms of the
factor matching score or classification rate. Even so, accurate
estimates of missing entries are not guaranteed. Because the
methods need to predefine the tensor rank, their models
tend to overfit the given entries when only sparse observa-
tions are available. In contrast, completion-based methods
do not make any assumption about the model and rely
solely on rank minimization. Liu et al. [23] defined a tensor
trace norm as the convex relaxation of a tensor’s rank. They
cast tensor completion as a convex optimization problem
and reported a series of impressive results on visual data.
Their success has motivated a number of methods based on
the tensor trace norm [24], [25], [26]. In a subsequent work,
Liu et al. [27] proposed two state-of-the-art algorithms to
improve the performance of their approach. To sum up,
completion-based methods, which benefit from the regular-
ization of the tensor trace norm, facilitate reliable estimation
of low-rank tensor objects. However, there is no theoretical
guarantee that the tensor trace norm is the tightest convex
envelope of a tensor rank. In addition, the above methods,
which exploit the SVD shrinkage strategy (see Section 2.2),
only work well if the tensor object is exactly low-rank. The
example in Fig. 1 illustrates this point. The singular values
in Fig. 1b show that both images are well represented by
ranks lower than 20; however, the completion method [27]
yields a poorer visual result on the Baboon image compared
to the result of the Facade image. It seems that the tensor
trace norm can characterize low-rank tensor objects, but it
fails on general tensor objects. Therefore, further research is
needed to solve general cases where the tensors do not have
an explicit structure.

A number of works (e.g., [30], [31]) have raised similar
concerns about probabilistic matrix factorization. Side
information in different applications has been considered

as a latent variable in the Gaussian process [30] or as an
adaptive prior for model parameters [31]. Furthermore, the
regularized matrix factorization approach [18] incorporates
a graph Laplacian regularizer to capture the relations
between the data in a matrix’s rows or columns. Motivated
by [18], Narita et al. [32] proposed using the data relation-
ship in CP and Tucker models for tensor factorization. They
introduced two regularization terms to explore such
auxiliary information and improved the estimates signifi-
cantly. The approaches in [18] and [32] are based on
factorization techniques, which make an assumption about
a given rank. However, the assumption is impractical and it
raises another challenge, namely, how to determine the
unknown tensor’s rank.

The above discussion shows that the main limitation of
existing methods is that their models are either overstrict
or oversimplified. To overcome this limitation, we intro-
duce a novel concept: complete the missing entries and
simultaneously capture the underlying model structure. Note
that our objective is fundamentally different from that of
factorization-based methods, which focus on the under-
lying factor estimates and then exploit the model factors to
predict missing entries. By contrast, to achieve the best
recovery rate, we argue that, to obtain an accurate estimate,
the missing data and latent factors should be considered
simultaneously. To deal with a tensor object that has
incomplete entries, we propose a method called simulta-
neous tensor decomposition and completion (STDC).
Instead of using predefined ranks, we formulate STDC as
a constrained optimization problem that exploits rank
minimization techniques and decomposition with the
Tucker model. As the model structure is implicitly
included in the Tucker model, we use the factor priors
presented in our previous work [33] to characterize the
underlying joint-manifold drawn from the model factors.
Because the factor priors in real-world tensor objects are
usually known, our method successfully incorporates this
auxiliary information to link the factorization schemes and
completion schemes. We discuss this aspect further in
Section 3.1. Our experiment results demonstrate that STDC
achieves significant improvements in tensor completion
and outperforms existing works in a variety of tensor-
based applications. Readers can find all the results and
source codes in the supplementary material, which can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2013.164, and
also on our project website."

The remainder of this paper is organized as follows: In
Section 2, we discuss some well-established techniques that
form the basic components of our algorithm. In Section 3,
we describe the STDC method in detail and also consider
certain implementation issues and the method’s advantages
over existing works. Section 4 details the experiment results
obtained on synthetic data and real-world data. Section 5
contains some concluding remarks.

2 PRELIMINARIES
2.1 Notations and Tensor Basics

First, we define the notations used in the following sections.
Lower case letters (z,v,...) denote scalars, bold lowercase

1. http:/ /mp.cs.nthu.edu.tw/project_STDC.
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letters (x,y,...) denote vectors, bold uppercase letters
(X,Y,...) represent matrices, and calligraphic uppercase
letters (X, ),...) represent high-order tensors. An nth-order
tensor is represented by X € R/ /» and its elements
are denoted by X; ;, i € R (1 <i; <1I;). The Frobenius
norm of X is defined by || X3 = S > A

In tensor operations, the mode-k unfolding of a tensor X’ €
R ExxI g defined by a matrix X*®) € R/ Mvalv, where
the mode- folding is the process from X*) to X'. The operator
X, denotes the mode-k product, and the mode-k product of X
with a matrix Uis definedby Y = X x;, U, where U € R,
X e Rivedioxxh - and Y e RVl We can also
rewrite J) = X x;, U as Y® = UX® based on the mode-k
unfolding operation.

2.2 Low-Rank Matrix Approximation

The rank minimization problem has been widely studied
and its robustness against noisy and missing data has been
demonstrated. Given a corrupted matrix M, the goal of low-
rank matrix approximation is to solve

X = argmin rank(X) s.t. [|[X —M||h <e, (1)
or its Lagrangian version

1
X = argmin nrank(X) + 3 ||X — M|, (2)

where rank(X) denotes the rank of X. However, rank
minimization is generally NP-hard [34] because of its
nonconvexity; hence, the global optimum cannot be
guaranteed. According to Recht et al. [17], the nuclear
norm is the tightest convex envelope of a matrix rank. Thus,
we can represent the convex relaxation of (1) as follows:

N , 1
X = argmin 7||X]|, +§HX*MII§7 3)

where X, =", 0;(X) denotes the nuclear norm, which is
the sum of all the singular values, and o,(X) denotes the ith
largest singular value of X.

Although (3) is nondifferentiable, the optimum solution
X* is guaranteed if and only if the subdifferential at X*
contains 0. The closed-form solution of (3) has been proved
by Liu et al. [23]. Here, we only give their derived results.
Interested readers may refer to [23] for further details. Let
M = UXV" be the singular value decomposition of M.
SVD shrinkage is used to obtain the global optimum of (3)
in the following elegant closed form:

X =Ux, V', (4)

where X, denotes the diagonal matrix with all the singular
values of M that have been shrunk, i.e., max(o;(M) — 7,0).

2.3 Augmented Lagrange Multiplier (ALM) Method
The ALM method was introduced in the mid-1970s and was
well studied throughout the 1980s, to solve constrained
optimization problems [35]. Although second-order meth-
ods (e.g., the interior-point method) are usually more
precise, the ALM method has good scalability on large-
scale cases as well as the flexibility to deal with nonsmooth
functions [5], [6], [7], [8], [11], [19], [27], [47].

Here, we briefly explain how the ALM method solves
equality constrained optimization problems. Let f:IR" —
R and A : IR" — IR™. Our objective is to solve

% = argminf(x) s.t. h(x) =0, (5)

where x € IR", and 0 € IR™ contains all zero elements. The
ALM method relaxes the constrained problem into an
unconstrained problem by introducing an augmented
Lagrange function:

Lx, A1) = F(0) + (M h(x) +EIh)E. (6)

According to [35], we can find a global or local optimum of
the original problem by iterative optimization as follows:

Xt+] = argmin L(X7 At? lu’t)’ (7)
A= M 4 pfa(x), and (8)
ptt = ppt, ©)

where t is the iteration index and p is a penalty parameter
larger than one. Equations (7)-(9) are called exact ALM
(EALM). The superiority of the EALM’s convergence
property was proved in [35]. However, because the prima
variables x are usually optimized blockwise in f and h,
finding the global optimum in (7) is time-consuming and
difficult. To address this problem, the inexact ALM (IALM)
[36] only optimizes each prima variable once in (7). The
IALM’s convergence has been well studied in relation to
convex problems [37], but only a few works have
investigated its convergence in nonconvex problems [38],
[39]. Although the IALM lacks a theoretical guarantee,
recent works [4], [5], [6], [7], [8] have reported promising
results and suggest using the method because of its
efficiency. The results also indicate that the IALM would
be effective in real-world applications.

3 SIMULTANEOUS TENSOR DECOMPOSITION AND
COMPLETION

Tensor representation has been widely studied as a
structural foundation for visual data and the multilinear
model in CP and Tucker decomposition. Because the CP
model is a special case of the Tucker model with a
superdiagonal core tensor, we focus on the Tucker model
and the scenario where only a subset of entries Q2 can be
observed and the remaining {2 are missing. Given an nth-
order tensor X, € RV 2xxh e try to find a tensor X with
its components Z, Vi, ..., V,, so that X, and X have the same
observed entries:

X=2Zx, V] x, VIand Q(X) = Q(Xy), (10)

where Z is an nth-order tensor of the same size as X, and
each V; denotes an I; x I; matrix. According to the
definition of mode-k rank, if X is a low-rank tensor, then
the core tensor Z is of low-rank or Vy,...,V, are a set of
low-rank matrices. Such a low-rank property is usually
regarded as a global prior in tensor completion.

Note that (10) has infinite solutions if we do not include
any priors in the model components Z,Vy,...,V,. It has
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been shown that the trace norm is the tightest convex
envelope of the rank function for a matrix, but not for a
tensor; therefore, we impose the low-rank penalty on
Vi,...,V, instead of on Z. To further leverage the Tucker
decomposition and rank minimization process, we intro-
duce the concept of using factor priors as auxiliary
information for tensor analysis in Section 3.1. We formulate
the problem in Section 3.2 and then describe the proposed
algorithm for simultaneous tensor decomposition and
completion in Section 3.3.

3.1 Factor Priors for Tensor Analysis

In an nth-order tensor, each order represents one factor.
Although a tensor could be comprised of randomly
arranged elements, it is usually assumed that the within-
factor and joint-factor variations are known a priori and can
be regarded as auxiliary information. For example, a video
object is a third-order tensor with variations spanned by the
rows, columns, and time axis. Even when the value of an
element is unknown, we may reasonably infer that adjacent
rows/columns/frames are highly correlated. This is be-
cause the local similarity of visual data usually exists
in within-factor relations (e.g., between adjacent rows/
columns/frames) or joint-factor relations (e.g., between
spatially adjacent and temporally adjacent pixels). In the
modeling of social network [32] or facial images with pose,
illumination, and expression (PIE) variations [22], their
implicit semantics also reveal valuable information. In both
cases, we call the auxiliary information factor priors for
tensor analysis.

Because the factor priors encode the auxiliary relations,
the underlying within- or joint-factor changes should lie on
multiple low-dimensional submanifolds (corresponding to
the n factors) with restricted degrees of freedom. To
characterize the submanifolds, we use the multilinear graph
embedding (MGE) framework proposed in our previous
work [33]. Suppose the observed data are drawn from n
factors, and the kth factor changes are quantized into I,
variations for 1 < k < n. Let X+ denote the ith data
drawn from the n quantized factors iy,...,7, (1 <i; < Ij).
Under the MGE framework, we parameterize X (i) by

vi,..., v and a core tensor Z as
o T -
w0 = 2o v v (1)
1<i<Ipand1<k<n.
The low-dimensional representation of X (i) can be
written as vi-") = vl ® .- @ vi", where ® denotes the

Kronecker product. Therefore, MGE extends the graph
embedding framework [40] into the multilinear space:

= argmin tr(V1®--- @ V,)L(V; ® - -+ ® Vn)T)>
V= [V,}ﬂ,...,vif'] and 1 <k <n,
(12)
where Vi,...V, are the n unknown submanifolds, tr(X)
denotes the trace of X, and L € R In)x(hlz1n) jg the go-

called Laplacian matrix L = D — W. The (¢, j)th element of
W is w;j and D is a diagonal matrix whose (%, ¢)th element is
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equal to )  Wij- To solve (12) with the MGE framework, we
decompose the positive semidefinite matrix L into H'H
and then perform mode-(n + 1) folding on H to obtain H.
Finally, we apply the alternating minimizing scheme and
optimize one variable at a time by

\//'\k = argmin tr(VkH;CFHkVAT,), (13)

where H} denotes the mode-k unfolding of H x;
Vi X1 Vet Xgg1 Vipr - X, V. Readers may  refer
to [33] for the detailed derivation.

In (12), the most important step is determining the edge
weight w;;, which should preserve both within- and joint-
factor variations in the low-dimensional space. Next, we
discuss two examples, the CMU-PIE face database [41] and
the visual data used in Sections 4.2 and 4.3 to demonstrate
our multilinear graph design.

3.1.1 MGE for the CMU-PIE Face Database

We consider a subset of facial images in the CMU-PIE
database captured from different subjects under various
poses and illumination changes. Therefore, the images
should lie on three joint submanifolds. Because our goal is
to characterize variations across the three factors, in contrast
to [40], we use a factor-dependent strategy to define the
edge between the ith and the jth face images as follows:

(14)

W — 1, if i, € N(jk) or jk S N(ik),and i]; = j;;,
Y710, otherwise,

where N(-) is the neighborhood function (we use the 2-
nearest-neighbor function (2-NN) in experiments) asso-
ciated with the kth factor, k € {subject, pose, illumination},
and k denotes the complement set of k. The neighborhood
functions for pose and illumination are known a priori (e.g.,
given five poses {—90, —45, 0, 45, 90 degrees}, the two
neighbors of pose 0 degree are the poses +45 degrees). With
regard to the subject neighborhood, we simply measure the
average euclidean distance between two subject groups and
then determine if they are 2-NN.

3.1.2 MGE for Visual Data

When an image object is regarded as a second-order tensor,
the factor dependence can be measured in terms of the
numerical difference between factor changes. Therefore, the
joint-factor graph is defined as follows:

wi; = CXp(_|irow - jrowD Cxp(_|icolumn - jcolumn‘)- (15)

Equation (15) characterizes the pixelwise local similarity of
visual data as precise factor priors. However, this joint-
factor formulation would yield a very large Laplacian
matrix L € R ko) *(Govlowm) Tn - practice, we suggest
using a single-factor (or within-factor) graph built on a
smaller Laplacian matrix:

argmin Z [V — vl ||§wi]~ = argmin tr(V,L;V}), and
]
wij = exp(—|ix — jr|), k € {row, column},

(16)

where the size of L, is either I,y X Low OF Ieotumn X Leolumn-
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Note that (16) is a special case where MGE is used to
encode one submanifold. Because of the generality of MGE,
the factor priors can encode any subset of submanifolds
E C {V |1 <k <n}. Hence, we define the factor priors by

tr(V=LzV3), (17)

where V= denotes the Kronecker product of all elements in
E. In (17), the definition of L= only relies on priors about the
within- or joint-factor relations, even with unknown entries.
In tensor completion, we consider the proposed factor
priors as regularization terms that can be used to capture a
low-dimensional representation.

3.2 Maximum a Posteriori (MAP) Formulation

Based on the feasible set defined in (10), we use the
maximum a posteriori strategy to find X, Z, Vy,..., V,:

X, Z V... .V, = argmax p(Y, Z,Vy,...,V, | Xo)
= argmax p(Xy | X)p(X | Z,Vq,...
Xp(Z)p(V177Vn)

’ Vn)

(18)

Because we only consider nonnoisy observations and
assume that & follows Tucker decomposition, the two
likelihood terms p(X,|X) and p(X | Z,Vy,...,V,) are
always equal to one and can, therefore, be ignored. Note
that our MAP formulation can be easily extended to noisy
cases by including p(Xy | X) = exp(—||Q(X) — Q(Xo)|7).

To define the prior probability p(Z), we follow [31] and
assume that every element is drawn from a zero-mean
spherical Gaussian prior:

H . HGXP(*VZi ,,,,, i)
i1

in

= exp <—'yz e ZZZZ] ’’’’’ z‘,,) = Cxp(—'yHZH%).
i1

in

p(2)

(19)

The role of p(Z) here is to prevent overfitting of the
Tucker model instead of to capture the underlying low-
rank structure. This simple but useful prior also circum-
vents the complex low-rank approximation of high-order
tensor objects.

The modeling of Vi,...,V,, which characterizes the
implicit complexity of both low-rank and low-dimensional
manifolds in tensor objects, provides the foundation for our
method. With the low-rank matrix assumption and the
proposed factor priors in (17), we define the prior
probability p(Vy,...,V,) as

p(V1,..., Vi) = exp(=ptr(VLV")) [ [ exp(—al| V],
k=1

= exp (- (ﬁtr(VLVT) +> ozk||Vk||*))
k=1
andV=V;®---QV,.
(20)

To simplify the notations in our derivation, here we only
consider the factor priors defined by all submanifolds; i.e.,

E={Vy,...,V,}. The formulation could be modified by
including more factor priors.

By taking the negative log probability of (19) and (20)
under the feasible set defined in (10), we can convert our
MAP formulation into a constrained minimization problem
as follows:

n
X, ZVy,...,V, = argminZakHVkH*
k=1

+otr(Vi®-- @ V,)L(Vi®---@V,)")
+71 217
st. X =2Zx; V] - x, VI and Q(X) = Q(X)).
(21)

3.3 lterative Convex Optimization via IALM

To solve (21) with a large number of unknowns and
equality constraints, we use the ALM method to define the
augmented Lagrange function as follows:

L(X,Z,Vl,...,V",y,,u)

= | Vil + 8tr(Vi®-- @ V,)L(Vi®-- @ V,)")
k=1

+UZNF+ VX = Zx1 VI - x, V)
K 2
+5|yx7 Zx Viox, Vi[5
(22)

Because of the operations of the Kronecker product and the
mode-k product, (22) is a nonconvex function that contains
many local minimizers. However, if we optimize one
variable at a time with the others fixed, every subproblem
can be simplified to a convex optimization problem with a
global optimum. As noted in [19], at best we can find one
local minimizer. Given the IALM algorithm’s efficiency, we
use it to optimize the prima variables V,,...,V,, Z X as
described below.

3.3.1 Optimization of V,

By performing mode-k unfolding and substituting the result
derived in (13), we have the following sub-Lagrange
function with respect to Vy:

Lv, (Vi) = al[ Vi, + Btr (Vi HLHL V)
+{Y®, —vIz®Uy)
H k Try(k 2 (23)
X  viZo, )
and Upy=(Vi® - V1 @ Vi1 - @ V,).

If we disregard the constant terms and split the nondiffer-
ential terms, we obtain the subproblem:

\//'\k = argmin f;(Vy) + f5 (V;f)7
fl(Vk) = OlkHVkH* and
£3(V}) = tr (ﬁVngHkVE +Evizhuuiziy,

where

—VIZOU (X ® 4 Y<k>)T),
(24)
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Equation (24) is a typical nuclear norm minimization
problem, but there is no closed-form solution because
f5(V}) does not fit the least-squares form in (3). Some
algorithms (e.g., [14], [42]) try to resolve such problems in
the general form of a continuous function. In our case,
because f(V}) is quadratic, its function behavior can be
well approximated by a local linearization technique. We
use the technique proposed in [42] and obtain

V. ~ argmin £, (Vi) + £2 (V%) + (V£ (VE), Vi, = V1)
T
+511Ve - Vil

1 1 2
— argmin %[V, + 1 Hvk - (vg; Lo, (v',;,)) and
F
Vfy (V) = 268VIH{H, + pZ2M U0, Ul 20 V),
—zWu, (MX(k) + Y(k))T7
(25)

where V/ is the approximation from the previous iteration,
and 7 is the Lipschitz constant defined by

7 =01 (26HHy) + o1 (uz®UUTZ®).  (26)

Finally, we solve (25) by low-rank matrix approximation.

3.3.2 Optimization of Z

To minimize the sub-Lagrange function with respect to Z,
we have

N 1 2
Z = argminy|| 2| +§H (X+;y) —Zx, VI x, VI

F
(27)

If we vectorize X, ), Z as x,y,z, we obtain a typical least-
squares problem with ridge regression:

1
<x +—y> —VTz
1

Although (28) has the closed-form solution z = (uVV™ +
291) 'V (x + iy), this linear system could be very difficult
to solve when the size of V is extremely large. In this paper,
we use the conjugate gradient (CG) method to approximate
the global minimizer.

2

2 (28)

% = argmin~y||z||; + %’

and V=V;®---®V,,.

3.3.3 Optimization of X

By minimizing the sub-Lagrange function with respect to X,
we obtain

2
. (29)
F

X = argmin

Xf(levlT--«anzfly)
W

Then, with the second equality constraint in (10), we derive

Q(X) = QX)) and Q(X) :Q(z x1 V... x,VE f%y).

(30)

Algorithm 1 summarizes the steps of the simultaneous
tensor decomposition and completion method. Although our

formulation cannot guarantee the global minimizer, the
proposed factor priors and the components of the Tucker
model characterize the tensor structure and improve the
search space, thereby ensuring the best possible recovery rate.

Algorithm 1. Simultaneous Tensor Decomposition and
Completion.
Input: an incomplete tensor X, € R"*/2**!» 3 positive
semi-definite matrix L, and the parameters
A1y ey O,y By, e
1) Initialize Vy,...,V,, Z,X,Y by
V. identity matrix (1 < k <mn),
Z,X: Xy, and
Y: a tensor with all zero elements.
2) Lett=1and p! = p.
3) Do
Fork=1ton
Optimize V;, with other variables fixed, as per Sec. 3.3.1.
End
Optimize Z with other variables fixed, as per Sec. 3.3.2.
Optimize X with other variables fixed, as per Sec. 3.3.3.
Update Y by Y + p'(X — Z x; VI .- x, V).
Wt = ppt p e [1.1,1.2].
t=t+1.
While ¢ < 100 and [|X — (£ x; VI -+ x, V)| >
10416, 2
Output: the submanifolds Vy,...,V,, the core tensor Z,
and the complete tensor X'

3.4 Convergence of the STDC Algorithm

Algorithm 1 exploits two key techniques, IALM and
linearization, to solve (21). The convergence of IALM has
been proven for separable convex problems [37], convex
problems using linearization [42], and nonconvex problems
(e.g., low-rank matrix factorization [38], [39]). The most
similar work to our approach is [39], which combines
matrix factorization and rank minimization to reduce the
computational complexity. However, its elegant conver-
gence property may not hold when the linearization
technique is used. Since our model is much more
complicated than that in [39] (because of the high-order
tensor structure and factor priors), it is difficult to derive a
theoretical guarantee for Algorithm 1. Instead, we provide
empirical evidence to demonstrate the feasibility and
applicability of our method. To alleviate the model’s
sensitivity to the algorithm’s parameters, in Section 3.5.2,
we simplify the parameters a4, ..., ay, 5,7, 4 by exploring a
tradeoff between the different objectives. This strategy
yields the physical meaning of the parameters related to
the factor priors and the Tucker model. It also reduces the
number of parameters so that only two need to be
determined. In Section 4.1, we verify the convergence of
Algorithm 1 on synthetic data and demonstrate that it
converges within a wide range of parameter values.

3.5 Implementation Issues

3.5.1 Efficient Variants of STDC

In real-world applications, a tensor may be extremely large
such that construction of the Laplacian matrix in (12)

becomes infeasible. Although the factor priors are usually
well defined by a small subset =, our method is affected by
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the above limitation and an efficient solution is therefore
needed. Here, we propose a simple method based on
downsampling the submanifolds. Given the factor priors in
(21), we define the small-scale version of the Laplacian
matrix as follows:

tr((Vlsl ®--® VnSn)Ls(Vlsl X ® VnSn)T)v (31)

where S; € R*# is a bilinear downsampling matrix with
Ry < I; and Ly € R %> denotes the small-scale
Laplacian matrix. When []}_; R; < 5,000, the MGE method
can efficiently decomposes L,. However, this strategy only
works when the factor variation is also characterized in its
small-scale factor (e.g., the local similarity of an image is
also preserved in its low resolution). In addition, when we
optimize V}, the Hessian matrix SkHEHkSE is singular and
may lead to an ill-condition problem in fy(V},). Therefore,
we have to split (31) into n cases by maintaining the original
scale of V, as follows:

tr(P,LIPY) and P, = (V1S ® -+ ® V1851 @ Vy, )
Q@ Vii1Sk1 ® -+ - ® V,,.8,).

3.5.2 Parameter Settings

The drawback of the model in (21) is its sensitivity to the
parameters. To tune the parameters, we try to balance
different objectives in the augmented Lagrange function.
Recall that in Algorithm 1, Vy,...,V, are initialized as
identity matrices and Z is initialized as X,. In the first
iteration, we control the tradeoff in (22) in terms of x,w, 6 as
follows:

alz"':an:L (33)
xXOx®OT /9
gt X 2 (34)
o (HOHO)
= 71 d 35
n= 60‘1 (Xu)X(l)T) , an ( )
w
V=T (36)
817

Note that the values of «y,...,a, are usually application-
dependent and related to their dimensions Iy, ...,I,. For
example, in color images/videos, we usually want to
preserve all the chromatic information and thus set the
value of a that corresponds to the color factor as zero. Here,
to better explain the physical meaning of the other
parameters related to the factor priors and the Tucker model,
we simply set o = 1. If a low-rank penalty that has an equal
impact on different tensor orders is required, we suggest
using & = \/Inax/Ii (Imax is the maximum of I1,...,I,).
The parameter & in (34) controls the tradeoff between the
factor priors and the Tucker model in (26); that is, the
Lipschitz constant 7 in (26) would be multiples of
ual(X(DX(l)I). For the parameter 6, if we set a; = 1 as in
(33) and substitute (35) into 4 in (26), then 6 would directly
control the first threshold for SVD shrinkage (because <*
also indicates the first threshold). Recall that the initial V; is
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an identity matrix, i.e.,, 0;(Vi) =1. Therefore, to avoid
severe truncation, we set 6 =0.1 in all the experiments.
Finally, we substitute § in (35) into (36) so that the
parameter w controls the tradeoff between the Z-priors
and Tucker model.

Based on the above discussion, if we set kK = w =1, we
can balance the impacts of the factor priors, Z-priors, and
Tucker model. Equations (33)-(36) explain the properties of
k,w and also reduce the number of parameters. The strategy
is also independent of the actual range of X and L, so it is
applicable in real-world cases.

3.6 Advantages over Existing Work

Next, we consider the advantages of STDC over existing
tensor completion approaches. Instead of using a prede-
fined small size of Z like factorization schemes, we exploit
nuclear norm minimization to capture the low-rank
structure. The advantage is twofold. First, the exact rank
is usually over- or underestimated in real-world applica-
tions. Some works suggest that an overestimated rank can
help approximate missing entries effectively. However,
when the tensor’s rank is extremely low, the performance of
tensor completion may still deteriorate on general tensor
objects, especially those with a high missing data rate (as
shown by our results in Section 4.3). Second, as most
methods rely on (30) to update the missing entries, the low-
rank penalty determines how much information about the
current update is preserved in each iteration. Using (30),
factorization schemes always discard a fixed amount of
information, but STDC can capture the significant informa-
tion adaptively. Therefore, completion schemes generally
outperform factorization schemes in terms of the accurate
recovery of missing data. The completion scheme proposed in
[23] solves the tensor completion problem as follows:

n
X= argminz M), st X® =M,
k=1 (37)

and Q(X) = Q(X)).

Although the above completion scheme can approximate the
exact rank without any model assumption, the intrinsic
structure is only considered in the constraints X¥) = Mj,.
However, the constraints may not be satisfied and may be
oversimplified for factor estimates (as shown by our results
in Section 4.2).

Finally, we consider the difference between our factor
priors, which fully utilize the auxiliary information about a
tensor object, and a similar approach recently proposed in
[32]. To improve the factorization scheme, the authors also use
graph embedding [40] to define within-mode regularization

r tr(Vi(Dy — W) V}E) and cross-mode regularization
[T, tr(ViDyVE) =TT, tr(VEWV]). The two regulariza-
tion terms are constructed on single-factor Laplacian ma-
trices Ly = D, — Wy,(1 < k < n), whereas our factor priors
are derived from the joint-factor Laplacian matrix. Therefore,
our method theoretically outperforms [32] because it cap-
tures the underlying submanifolds simultaneously.

4 EXPERIMENT RESULTS

In this section, we compare the proposed STDC algorithm
with the following state-of-the-art methods: LRTC [23],
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TABLE 1
The Factor Priors of the STDC Variants
Discussed n Section 4.1

Factor priors
STDC-L1 Y3y tr(Ve LV, ")
| T
STDC-L2 | 3\ cam e (Ve @ Vi) L, (Y, ® Vi)
STDC-L3 tr((V; @ V, @ V)LV, ® V, ® V;)T)
STDC-Ls ¥3_, (P LEPT)

HaLRTC [27], M?SA [22], and M?SA-G [32]. LRTC was the
first work to define the tensor trace norm and it is
considered the baseline of completion-based methods.
HaLRTC is an extension of LRTC and its effectiveness over
existing works has been demonstrated. M2SA is an EM-like
algorithm that is the baseline of factorization-based meth-
ods, and M?SA-G extends M?SA by including auxiliary
graph regularization.

4.1 Validation of STDC on Synthetic Data

First, we validate STDC on a synthetic third-order tensor
X € R0 constructed by the Tucker model using a
low-rank core tensor Z € R'**®% and an underlying joint-
manifold. The entries of Z are randomly drawn from
uniform distribution. For the joint-manifold, we construct a
sixth-order weight tensor W € IR?0*14x10x20x14x10 and define
its elements by Wi, ik isjo iy, = € 1721 e7li=02l 4 eIhi=kel,
Then we unfold W into W € R®"*#% o obtain its
Laplacian matrix L. Using MGE [33], we obtain the low-
dimensional matrices V; € R"**? v, ¢ R®" v, ¢ R
and determine that X = Z x; V] x5 Vi x3 V3 accordingly.

Here, we compare HaLRTC with five variants of STDC:
STDC-Lx, STDC-L1, STDC-L2, STDC-L3, and STDC-Ls.
Only STDC-Lx does not use auxiliary information. The
factor priors of the other four variants are listed in Table 1.
L, and Ly, are constructed in a similar way to L by
considering second-order and fourth-order weight tensors,
respectively, and L* denotes the small-scale version of L,
whose downsampling rate is set at two (ie., 2Ry = Ij).
Next, we perform tensor completion under four missing
data rates (60, 70, 80, 90 percent), using w € [101,10'] for
STDC-Lx and w € [1073,107!], x € [10°,10?%] for the others.
The relative square error RSE = || X-X||./[|X ||y is used to
evaluate the performance. Because we cannot prove
theoretically that Algorithm 1 converges to a local optimum,
we investigate whether STDC can recover the ground truth
in a stable manner. If the RSE fluctuates severely with a
frequency of (RSE'-RSE'™' > 0.001)* larger than 0.3, we
consider it a case of nonconvergence and set the RSE = 1;
otherwise, we determine that the algorithm converges and
report the final RSE. All the experiments were repeated ten
times with randomly missing entries and the average
results are reported.

Fig. 2 shows the convergence rate and RSE with different
settings of w for STDC-Lx (no factor prior). Larger w settings

2. We find that when STDC imposes strong factor priors, it tends to
achieve the lowest RSE initially, and then gradually increases the RSE in a
very small range (usually less than 0.01) to converge to a local optimum.
Therefore, we only consider cases where the reversal of RSE is larger than
0.001 in consecutive iterations to avoid such miscalculations.

70% (STOC-L)
0% (STDC-Lx)
0% (STDC-Lx)
0% (HaLRTC)

4 08 06 04 D02 0 02 04 06 08 08
gy gfomega)

(a) (b)

Fig. 2. The performance of STDC-Lx: (a) the convergence rate, and
(b) the average RSE; the z-axis denotes log; (w).

10g,fomeqa)

generally avoid overfitting the Tucker model and yield
lower RSEs (see Fig. 2b), but if w is too large, the
nonconvergence of Algorithm 1 severely degrades the
performance (see Fig. 2a). However, by carefully tuning w,
STDC-Lx achieves a comparable performance to HaLRTC,
even though it is still very sensitive to the parameters. Next,
we consider the convergence rates of the other STDC
variants to verify the significance of the factor priors, which
leverage the Tucker decomposition and rank minimization
method. Fig. 3 shows the convergence rates of the other
STDC variants with respect to the parameters w and x. Our
algorithm achieves a higher convergence rate with smaller
(i.e., there is less overfitting of the factor priors), especially
when the missing data rate increases or the factor priors are
not very accurate. In the cases with the highest missing data
rate, i.e., 90 percent, STDC-L1 converges within a smaller
range of the parameters; however, in most cases, STDC-L2,
STDC-L3, and STDC-Ls still converge successfully. In other
words, if we can capture the joint-manifold, a high
convergence rate can be expected even with very sparse
observations. The corresponding RSEs are shown in Fig. 4.
The red rectangles indicate the parameter settings where
STDC outperforms HaLRTC. Generally, when we use more
accurate factor priors, we obtain a better performance with
smaller w and larger « settings. This is reasonable because
larger ~ settings impose strong factor priors, while smaller

Fig. 3. The convergence rates of STDC-L1, STDC-L2, STDC-L3, and
STDC-Ls (from left to right) under missing data rates of 60, 70, 80, and
90 percent (from top to bottom). The z-axis and y-axis denote log;,(w)
and log,,(k), respectively, and the changes in intensity from black to
white indicate the value range from 0 to 1.
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TABLE 3
The Average Number of Convergence Iterations/Runtimes
(in Seconds) on Synthetic Data

IR i (AR (P

Fig. 4. The average RSEs of STDC-L1, STDC-L2, STDC-L3, and STDC-
Ls (from left to right) under different missing rates 60, 70, 80, and
90 percent (from top to bottom). The z-axis and y-axis denote log;,(w)
and log,,(k), respectively, and the changes in intensity from black to
white indicate the value range from 0 to 1. The red rectangles indicate
that STDC outperforms HaLRTC on those parameter settings.

w settings simultaneously alleviate the underfitting pro-
blem. Hence, we can easily tune the two parameters to
ensure that STDC achieves a good performance.

Table 2 shows the best parameter settings of every STDC-
variant for different missing data rates and compares their
average RSEs with those of HaLRTC. Overall, STDC
outperforms HaLRTC by a significant margin. For example,
under the 60 percent missing data rate, the average RSE of
HaLRTC is slightly less than 0.46; by contrast, all the STDC
variants that use factor priors achieve average RSEs of
less than 0.1. The improvement is maintained as the
missing data rate increases. Note that all the joint-manifold
methods achieve a similar performance, but they have
different convergence ranges (STDC-L3 ~ STDC-Ls >
STDC-L2), as shown in Fig. 3. These results also demon-
strate the advantage of using accurate factor priors and the
downsampling techniques. However, there is a tradeoff
between the performance and the complexity of our
method. Table 3 shows the average number of iterations
and the runtimes of STDC and HaLRTC under different
missing data rates. Our method is much more time-
consuming due to the additional matrix folding/unfolding
operations and the mode-k product operations. In the
experiments, we found that the optimization of Z is
the most time-consuming step because we use the conjugate

TABLE 2
The Average RSEs on Synthetic Data

\"‘% 60% 70% 80% 90%
HaLRTC 04591 05889 07922 09304
STDC-Lx 04377 05936 07844  0.9260
STDC-L1 00938 02881 06197  0.8224
STDC-L2 0.0504 02355 05135  0.7733
STDC-L3 0.0597 02432 04914  0.7513
STDC-Ls 0.0587 02405 05268  0.7821

70%
27.50/0.05
48.33/0.73

100/1.86
98.67/2.02
100/89.62
100/16.76

80%
27.33/0.05
57.17/0.94
52.83/0.96
94.00/1.90
96.50/86.23
89.00/14.98

90%
30.83/0.06
38.00/0.49
44.00/0.84
55.33/1.13

84.50/75.67
58.17/9.80

\% 60%

HaLRTC 26.67/0.05
STDC-Lx 65.83/1.04
STDC-L1 100/1.79
STDC-L2 100/1.78
STDC-L3 100/89.68
STDC-Ls 100/16.58

gradient method. It is well known that CG converges slowly
when the number of unknowns (the elements of Z) is very
large. To improve the efficiency, we will apply more
advanced numerical methods in our future work.

4.2 Performance Evaluation on Multilinear Model
Analysis
We use the CMU-PIE face database [41] for multilinear
model analysis. All the facial images are first aligned by
their eye positions and then cropped to size 32 x 32. Next,
we use a subset selected from the first 30 subjects with 11
poses and 21 illumination changes to construct a fourth-
order tensor X' € IR**!*21*1024 Usually, a complete train-
ing set is not available in real applications, as noted in [22].
To handle the missing data problem in face recognition,
we assume the observed tensor X, is an incomplete
training set in which
% (p _ { 40, 50, 60, 70, 80, })
90,92, 94, 96, 98

of the facial images are missing. We use the missing images
as a test set for evaluation. Each experiment was performed
ten times and the average classification rate was recorded.

We compare STDC with M2SA, LRTC, and HaLRTC, as
well as with classic methods, including unsupervised
methods (PCA [43] and LPP [44]) and supervised methods
(LDA [45] and MFA [40]). All of these methods use the
nearest neighbor classifier. Note that the classic methods
only use incomplete data sets and are not affected by the
missing data problem. For the multilinear-based methods,
we first complete the tensors to enlarge our data set and
then use unsupervised LPP to reduce the dimensionality of
features. In addition, as the CMU-PIE database provides the
environmental 3D coordinates, we can approximate the
relation of two poses or the illumination based on the angle
between two camera views. Using the graph construction
introduced in Section 3.1.1, we obtain a three-factor
Laplacian matrix L € IR®3"93% o define our factor priors.

Figs. 5, 6, and 7 show the qualitative and quantitative
evaluation results. As shown in Fig. 5, the completion-based
methods (LRTC and HaLRTC) and STDC outperform the
factorization-based method (M2SA) in terms of visual
quality. This is because M?SA is designed to estimate the
underlying factors instead of the exact values. Although
LRTC and HaLRTC can capture the facial structure, they
fail to interpret illumination changes. By contrast, STDC
successfully characterizes the facial appearance under
different poses and lighting variations. In Fig. 6, only
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Fig. 5. An example from the CMU-PIE face database (the missing rate = 80 percent): (a) some of the ground truth facial images; (b) the incomplete
data in (a), where the missing images are replaced by the mean face of the given images; (c), (d), (e), and (f) show the tensor completion results

obtained by M?SA, LRTC, HaLRTC and STDC, respectively.

,(a)
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Fig. 6. An example from the CMU-PIE face database (the missing data
rate = 80 percent). The submanifolds are obtained by HOSVD with
respect to the subject (first column), pose (second column), and
illumination (third column): (a) the ground truth; (b)-(e) show the results
obtained by M>SA, LRTC, HaLRTC, and STDC, respectively.

M?SA and STDC accurately recover the first two principal
dimensions of all the submanifolds (especially for poses)
because they consider the intrinsic tensor structure. These
results demonstrate the superiority of STDC in terms of
tensor recovery and factor estimates. Figs. 7a and 7b show
the average RSEs and classification rates, respectively.
Among the classic methods, only MFA is comparable to
the multilinear-based methods, but it is still inferior to them
when the missing data rate is extremely high or extremely
low. It is noteworthy that HaLRTC always outperforms
LRTC in terms of the RSE, but its classification rate
decreases as the missing data rate increases; that is, in the
missing data problem, good reconstruction results do not
always imply good factor estimates for classification. In
contrast, because STDC combines the completion and
factorization schemes simultaneously, the corresponding
RSEs and classification rates are significantly better than
those of the compared methods.

4.3 Performance Evaluation on Visual Data

We use the eight images in Fig. 8 as our benchmark data set
for image completion. As most works focus on structural
images (e.g., Fig. 8a), there is a dearth of research on natural
images (e.g., Figs. 8b, 8c, 8d, 8e, 8f, 8g, 8h). Hence, we
examine the feasibility of using related techniques for
general visual data. In our experiments, we randomly select
p% pixels (p = {60,70,80,90,95}) as missing entries and
set their values at zero. Then, we apply HaLRTC, M?SA,
M?SA-G, and STDC to recover the missing entries. For
factorization-based methods, we try every possible rank to
determine the best one. Because of the enormous number of
image pixels, we use single-factor priors, also called within-
mode regularization terms in [32], as the auxiliary informa-
tion for M?SA-G and STDC (see the graph construction in
Section 3.1.2). To find the best performance of M*SA-G, we
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Fig. 7. (a) The average RSE and (b) the average classification rate for images in the CMU-PIE face database.

test the regularization parameters in the range 1-16. Finally,
we use two well-known criteria, the PSNR and SSIM [46], to
evaluate the performance.

Figs. 9 and 10 show the qualitative and quantitative
results. As shown in Fig. 9, the visual quality derived by
M2SA is poor, even though the ranks are fine-tuned.
HaLRTC only recovers missing data accurately when the
rate is less than 70 percent; otherwise, its performance is
worse than that of M2SA-G. Because of the advantages of
graph regularization, M?SA-G improves the performance of
M?SA significantly if the best parameters are chosen.
Meanwhile, STDC always achieves the best recovery in
terms of visual quality, especially in cases with a high
missing data rate. In addition, because the proposed factor
priors can be regarded as regularization terms for the local
similarity, we also compare STDC with the total variation
(TV) technique, which is widely used in image processing.
To ensure a fair comparison, we combine the fast TV
method [47] (also solved by ALM) with HaLRTC. As shown
in Fig. 9, our results are highly comparable to those of
HaLRTC+TV. In fact, at high missing data rates, the images
recovered by STDC are less blurry and contain more details.
The accuracy is due to the precise factor estimates, which,
instead of only using neighboring similarity on missing
entries, closely relate to the global latent structure of the
Tucker model. In Fig. 10, the average PSNR and SSIM
results demonstrate the superiority of STDC over existing

Fig. 8. Eight benchmark images. (a) Facade, (b) airplane, (c) baboon,
(d) barbara, (e) house, (f) lena, (g) peppers, and (h) sailboat.

approaches. To sum up, STDC simultaneously characterizes
1) the factor relation defined in factor priors, 2) the under-
lying structure of the factorization scheme, and 3) the low-
rank property in the completion scheme. Hence, we reduce
the performance gap significantly in tensor completion
under existing algorithms.

To further investigate the parameters’ sensitivity on real-
world data, we evaluated their performance under different
settings of w, as shown in Fig. 11. From Figs. 3 and 4, it is
clear that smaller « values yield strong convergence rates
and good RSEs when we only use single-factor priors.
Therefore, we fix x = 10°? and examine w in the range of
[107,10']. As shown in Fig. 11, our algorithm is insensitive
to w when the missing data rate is less than 90 percent. If the
observations are too sparse, larger w can prevent overfitting
of the Tucker model and yield good PSNR/SSIM results.
However, the parameter-setting problem is not a critical
concern in tensor completion. As the missing data rate is
usually given, we can easily fine-tune our parameters to
maximize the advantages of STDC.

Finally we use video inpainting to demonstrate the
potential of STDC. Although the low-rank property can
characterize random missing entries, the structured missing
entry problem severely degrades the performance of tensor
completion [21], [32]. In our experiments, we use a dynamic
wave sequence as a fourth-order tensor and compare
HaLRTC with two variants of STDC. STDC-1 considers
three single-factor priors in the X (row), Y (column), and
T (time) domains; while STDC-2 considers two joint-factor
priors in the X-T and Y-T domains. Fig. 12 shows the results
of dynamic background inpainting. All the methods have
similar RSEs and converge at around 0.1. However, STDC
yields better visual results, while HaLRTC produces
obvious artifacts. In addition, because STDC-2 considers
the joint-factor changes, it outperforms STDC-1 in terms of
visually consistent textures. Fig. 13 shows another example
of repairing an old film.

5 CONCLUDING REMARKS

In this paper, we incorporate factor priors into a novel
tensor completion method called simultaneous tensor
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Fig. 9. The tensor completion results for the Lena image obtained by M?SA, M>SA-G, HaLRTC, HaLRTC+TV, and STDC (from top to bottom) under

missing data rates of 60, 70, 80, 90, and 95 percent (from left to right).

decomposition and completion, which completes missing
data entries while exploiting the factorization structure. The
contribution of this work is twofold. First, STDC is the first
approach that bridges the gap between factorization
schemes and completion schemes and, thereby, simulta-
neously guarantees accurate estimates of missing data and
latent factors. Second, the proposed factor priors, which
benefit from the generality of MGE, unify and characterize
the underlying joint-manifold in a tensor object, even
without knowing the exact entries. Because of these
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Fig. 10. (a) The average PSNRs and (b) the average SSIMs of the eight
benchmark images.

characteristics, STDC does not suffer from the limitations
of existing tensor completion algorithms, e.g., the fixed-rank
assumption and an oversimplified model.

The results of experiments on synthetic and real-world
data show that the proposed method outperforms state-of-
the-art methods. The low RSEs in general cases verify
the superiority of STDC over existing approaches, while the
high recognition rate demonstrates the precision of the
factor estimates.
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Fig. 11. (a) The average PSNRs and (b) the average SSIMs versus
log,,(w) under different missing rates.
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Fig. 12. The 1st, 9th, 17th, and 25th frames (from left to right) in the “Wave” sequence, and the tensor completion results obtained by HaLRTC,
STDC-1, and STDC-2 (from top to bottom).

Fig. 13. The 7th, 25th, 31st, and 33rd frames (from left to right) in an old film, and the tensor completion results derived by HaLRTC and STDC (from
top to bottom).
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