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GaN-Based Light-Emitting-Diode
With a p-InGaN Layer
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Abstract—GaN-based LEDs with a p-InGaN layer was proposed
and fabricated. By inserting the 50-nm-thick p-In; o; Gap.goN
layer, it was found that we could reduce the 20 mA forward voltage
from 3.34 to 2.99 V. It was found the inserted p-InGaN layer could
also reduce the efficiency droop from 36.7% to 23.8%.

Index Terms—Efficiency droop, light emitting diode (LED),
p-InGaN.

I. INTRODUCTION

VER the past few decades, tremendous progress has been

achieved in GaN-based blue, green and ultraviolet light
emitting diodes (LEDs) [1], [2]. These LEDs have already been
used extensively in traffic-light lamps and full-color displays.
Nitride-based LEDs are also potentially useful for solid-state
lighting and backlight of liquid-crystal display panels. For
solid-state lighting, however, one needs to further improve both
the internal quantum efficiency and (IQE) and light extraction
efficiency (LEE) of the LEDs. It has been shown that techniques
such as textured surfaces [3], highly transparent p-contact layer
[4] and proper substrate design [5] can be used to enhance
LEE of GaN-based LEDs. On the other hand, IQE is related to
crystal quality [6], piezoelectric effect [7]-[12], localized state
of InGaN layer [13], hole concentration in p-GaN layer [14]
and electron overflow [15]-[17].

To reduce electron overflow, it is normally necessary to insert
an electron blocking layer (EBL) on top of the mutiquantum
well (MQW) active region. However, this EBL also results in
a lower hole injection efficiency [15]. Very recently, Kuo et
al. proposed to use an Mg-doped p-GaN layer to replace the
undoped GaN last barrier layer used in conventional LEDs
[19]. They found the p-GaN last barrier could simultaneously
enhance the effective barrier height at barrier/EBL interface
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Fig. 1. Schematic diagram of the LED proposed in this study.

and hole injection efficiency. For practical devices, however,
Mg-doped in the last barrier layer could diffuse easily into
the well layers during the growth. By inserting a 25-nm-thick
p-GaN layer between the undoped GaN last barrier and the
AlGaN EBL, Chen et al. have achieved larger LED output
power experimentally. Using APSYS simulation software,
they concluded that the inserted p-GaN layer could push away
the band bending of EBL [20]. In this letter, we report the
fabrication of GaN-based LEDs with a p-InGaN layer inserted
between the undoped GaN last barrier and the AlGaN EBL.
The inserted p-InGaN layer will be prvided the the smaller
bandgap energy and larger hole concentration of p-InGaN
[21] which could further push away the band bending of EBL
and thus enhance hole injection, as compared to conventional
inserted p-GaN layer. Detailed fabrication process and the
electro-optical properties of the fabricated LEDs will also be
discussed.

II. EXPERIMENT

The InGaN/GaN MQW LEDs used in this study were all
grown on c-face 2-inch sapphire substrate by metalorganic
chemical vapor deposition. Details of the growth procedures
can be found elsewhere [3], [4], [6]. As shown in Fig. 1, the
LED structure consists a 30-nm-thick GaN nucleation layer, a
4-pm-thick Si-doped n-GaN layer, an InGaN/GaN MQW ac-
tive region, a 5-nm-thick p-In,, ;; Gag 99N layer, a 50-nm-thick
Mg-doped p-Al ;5Gap g5 N p-cladding layer, a 0.25-pm-thick
Mg-doped p-GaN layer and a Si-doped nT-InGaN/GaN
(5 A/5 A) short period superlattice (SPS) tunnel contact struc-
ture. The MQW active region consists 10 periods of 3-nm-thick
Ing.23Gag 77N well layers and 15-nm-thick GaN barrier layers.
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Fig. 2. DCXRD spectra of the bulk p-In; ,, Gay.gs N layers.

For comparison, LEDs with a 50-nm-thick p-GaN layer and
conventional LEDs without any insertion layer were also
prepared. In the following, we call the conventional LEDs,
LEDs with the p-GaN layer and LEDs with the p-In;, ;; Gag.ogN
layer as LEDI, LEDII and LEDIII, respectively. For the de-
termine the In composition of p-InGaN, we first deposited a
30-nm-thick low temperature GaN nucleation layer at 560°C
and a 2-pm-thick unintentionally doped GaN buffer layer at
1050°C. Bulk p-InGaN layer was then deposited on top of the
GaN buffer at 890°C with a reactor pressure of 200 Torr. In
composition of p-InGaN layer was then evaluated by double
crystal X-ray diffraction (DCXRD). Fig. 2 shows DCXRD
spectra of the bulk p-InGaN layers. From the peak positions, it
was found that In composition in the bulk p-InGaN layer was
around 1%.

For the fabrication of LEDs, we used an inductively coupled
plasma (ICP) etcher to partially etch the sample surface until the
n-GaN layer was exposed. We then deposited a 250-nm-thick
indium-tin-oxide (ITO) film onto the un-etched sample surface
by e-beam evaporation to serve as the p-contacts. We subse-
quently deposited Cr/Au onto the exposed n-GaN layer to serve
as the n-type contact. The epitaxial wafers were then lapped
down to about 90 ;#m. We then used scribe and break to com-
plete the fabrication of 575 pm x 250 pm blue InGaN/GaN
LED chips. Current-voltage (I-V) characteristics of the fabri-
cated devices were then measured at room temperature by an
HP4156 semiconductor parameter analyzer. These chips were
subsequently packaged into lamps. Intensity-current (L-I) char-
acteristics of the packaged lamps were subsequently measured
using the molded LEDs with an integrated sphere detector.

III. RESULTS AND DISCUSSION

Fig. 3 shows I-V characteristics of the three fabricated LEDs.
By inserting the p-GaN layer, it was found that we could reduce
the 20 mA forward voltage from 3.34 V (i.e., LEDI) to 3.18 V
(i.e., LEDII). This should be attributed the fact the band bending
of EBL could be pushed away by the inserted p-GaN layer [20].
It was also found that 20 mA forward voltage could be fur-
ther reduced to 2.99 V (i.e., LEDIII) when p-InGaN layer was
inserted. This should be attributed to the smaller bandgap en-
ergy and larger hole concentration of p-InGaN [21]-[23] which
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Fig. 3. L-I-V characteristics of the three fabricated LEDs.
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Fig. 4. EQE of the three fabricated LEDs.

could further push away the band bending of EBL and thus en-
hance hole injection. Similar to the charge asymmetry resonant
tunnel (CART) structure [24], the inserted p-InGaN layer should
also serve as a current spreading layer for holes. As a result, we
achieved the smallest forward voltage from LEDIII. A detailed
APSYS simulation results of the three fabricated LEDs is un-
derway and the results will be reported separately.

L-I characteristics of these three LEDs were also plotted in
Fig. 3. Under 20 mA current injection, it was found that output
powers were 7.4, 9.1 and 9.4 mW for LEDI, LEDII and LEDIII,
respectively. In other words, we can enhance the output power
by 23.0% and 27.0% by inserting the p-GaN and p-InGaN bar-
rier layer, respectively. Recently, Kuo et al. have shown the
APSYS simulation result of LED with inserting the p-GaN and
p-In, »; GaN barrier layer, respectively. It has also been shown
that effective barrier height at barrier/EBL interface of LED
with p-In,, ,; GaN barrier layer layer is higher than the other two
LEDs [25]. As mentioned above, the enhance of output power
should be attributed to the increased effective barrier height at
barrier/EBL interface for enhancing the electron carrier confine-
ment in the MQW region and hole injection efficiency by the
inserted p-GaN. These values also indicate that output power
enhancement was more significant when p-InGaN layer was in-
serted, as compared to p-GaN layer.
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Knowing the L-I characteristics, we could thus determine the
external quantum efficiencies (EQEs) of these three LEDs, as
shown in Fig. 4. With 50 mA current injection, it can be seen
that the EQEs for LEDI, LEDII and LEDIII dropped by 36.7%,
24.7% and 23.8%, respectively, when compared to their respec-
tive maximum EQEs. It should be noted that growth and pro-
cessing parameters of these LEDs were all identical, except the
inserted p-(In)GaN layer, Thus, LEE of these LEDs should be
the same. Thus, the EQE decay observed in Fig. 4 should orig-
inate from the decay in IQE. This also suggests that we could
reduce the efficiency droop from 36.7% to 23.8% by inserting a
5-nm-thick p-In, ; Gag 99N layer in between the undoped GaN
last barrier and the AlGaN EBL.

IV. CONCLUSION

In summary, GaN-based LEDs with a p-InGaN layer
was proposed and fabricated. By inserting the 5-nm-thick
p-Ing 4, Gag 9gN layer, it was found that we could reduce the
20 mA forward voltage from 3.34 V to 2.99 V. It was found the
inserted p-InGaN layer could also reduce the efficiency droop
from 36.7% to 23.8%.
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