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Numerous process capability indices have been proposed in the manufacturing
industry to provide unitless measures on process performance, which are effective
tools for quality improvement and assurance. Most existing methods for capability
testing are based on the distribution frequency approaches. Recently, Bayesian
approaches have been proposed for testing capability indices Cp and Cpm but
restricted to cases with one single sample. In this paper, we consider estimating and
testing capability index Cpm based on multiple samples. We propose accordingly a
Bayesian procedure for testing Cpm. Based on the Bayesian procedure, we develop a
simple but practical procedure for practitioners to use in determining whether their
manufacturing processes are capable of reproducing products satisfying the preset
capability requirement. A process is capable if all the points in the credible interval
are greater than the pre-specified capability level. To make the proposed Bayesian
approach practical for in-plant applications, we tabulate the minimum values of
C∗(p) for which the posterior probability p reaches various desirable confidence
levels. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Process capability indices, which establish the relationships between the actual process performance
and the manufacturing specifications, have been the focus of recent research in quality assurance and
capability analysis literature. Those capability indices, quantifying process precision, process accuracy,

and process performance, are important for any production improvement activities and quality program
implementation. The first process capability index appearing in the literature is the precision index Cp, which is
defined by Kane1 as

Cp = USL − LSL

6σ

where USL is the upper specification limit, LSL is the lower specification limit, and σ is the process
standard deviation. The numerator of Cp gives the range over which the process measurements are predefined.
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The denominator gives the range over which the process is actually varying. The index Cp was designed to
measure the magnitude of the overall process variation relative to the manufacturing tolerance, and is used
for processes that are normally distributed, and are in statistical control. Clearly, the index only measures the
precision of a process (product quality consistency), and does not take into account whether the process is
centered.

In order to reflect the impact of the deviation of the process mean µ from the center point M of the
specification limits on the process capability, several indices have been proposed, including

CPU = USL − µ

3σ
, CPL = µ − LSL

3σ

Cpk = min

{
USL − µ

3σ
,

µ − LSL

3σ

}

However, both Cp and Cpk are independent of the target value T . Neither Cp nor Cpk takes the closeness of
the process output to the target value T (on-target issues) into consideration. Taking the targeting as well as the
process spread into consideration, a modification of Cp incorporating the Taguchi loss function, which has been
referred to as Cpm, is introduced independently by Hsiang and Taguchi2 and Chan et al.3. The process capability
index Cpm is defined as

Cpm = USL − LSL

6τ
= d

3
√

σ 2 + (µ − T )2

where USL − LSL is the allowable tolerance range of the process, d is the half-interval length, and τ is
the measure of the average product deviation from the target value T . The term τ 2 = σ 2 + (µ − T )2 =
E[(X − T )2] incorporates two variation components: (1) variation to the process mean and (2) deviation of
the process mean from the target. The process capability index Cpm, sometimes called the Taguchi index,
emphasizes the ability of clustering around the target, which therefore reflects the degrees of process targeting.
The capability index Cpm is not primarily designed to provide an exact measure of the number of conforming
items, i.e. the process yield. However, we note that E[(X − T )2] is the expected loss, where the process loss
of a characteristic X missing the target is often assumed to be well approximated by the symmetric squared
error loss function, loss (X) = (X − T )2. Hence, the capability index Cpm may be termed as a loss-based index.
The indices Cp and Cpk have been referred to as the first-generation process capability indices, and the index
Cpm is often called the second-generation process capability indices.

Pearn et al.4 proposed the process capability index Cpmk, which combines the merits of the three earlier
indices Cp, Cpk and Cpm. The index Cpmk alerts the user if the process variance increases and/or the process
mean deviates from its target value. The index Cpmk, referred to as the third-generation process capability index,
has been defined as follows:

Cpmk = min

{
USL − µ

3
√

σ 2 + (µ − T )2
,

µ − LSL

3
√

σ 2 + (µ − T )2

}

Note that the indices presented above are designed to monitor the performance for only normal and near-
normal processes with symmetric tolerances. These indices have been shown to be inappropriate for cases
with asymmetric tolerances. In practice, the process mean µ and the process variance σ 2 are unknown.
In order to calculate the index value, sample data must be collected and a great degree of uncertainty may
be introduced into the capability assessments due to sampling error. The approach of simply looking at the
calculated values of the estimated indices and then making a decision on whether the given process is capable
is highly unreliable, since this ignores the sampling error. As the use of the capability indices grows more
widespread, users are becoming educated and sensitive to the impact of the estimators and their sampling
distributions, learning that capability measures must be reported in confidence intervals or via capability
testing. Statistical properties of the estimators of those indices under various process conditions have been
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investigated extensively, see Chan et al.3, Pearn et al.4, Bordignon and Scagliarini5, Borges and Ho6, Chang
et al.7, Hoffman8, Nahar et al.9, Noorossana10, Pearn et al.11, Pearn and Lin12, and Zimmer et al.13. Kotz
and Johnson14 presented a thorough review for the development of process capability indices in the past
10 years.

Existing research for capability testing has focused on the traditional frequency approaches. However, the
sampling distributions are usually so complicated that this makes establishing the exact confidence interval
very difficult. An alternative is to consider the Bayesian approach where we can specify a prior distribution
for the parameter of interest, obtain the posterior distribution for the parameter, and then make inferences
about the parameter using its posterior distribution given the observations. It is not difficult to obtain the
posterior distribution when a prior distribution is given, even when the form of the posterior distribution is
complicated, as one could always use numerical methods or Monte Carlo methods (Kalos and Whitlock15) to
obtain an approximate point estimate or interval estimate. This is the advantage of the Bayesian approach over
the traditional distribution frequency approach.

2. ESTIMATION OF Cpm

The process mean µ and the process variance σ 2 must be estimated form the sample. Thus, the estimated index
Ĉpm is obtained by replacing µ and σ 2 by their estimators. Chan et al.3 and Boyles16 proposed two different
estimators of Cpm respectively defined as follows:

Ĉpm(CCS) = d

3
√

s2 + (x̄ − T )2
and Ĉpm(B) = d

3
√

s2
n + (n/(n − 1))(x̄ − T )2

where

x̄ =
n∑

i=1

xi/n, s2 =
n∑

i=1

(xi − x̄)2/(n − 1) and s2
n =

n∑
i=1

(xi − x̄)2/n

In fact, the two estimators, Ĉpm(CCS) and Ĉpm(B), are asymptotically equivalent. Note that x̄ and s2
n are the

maximum likelihood estimators (MLEs) of µ and σ 2, respectively. Hence, the estimated Ĉpm(B) is the MLE of
Cpm. Further, the term s2

n + (x̄ − T )2 in the denominator of Ĉpm(B) is the uniformly minimum variance unbiased
estimator (UMVUE) of the term σ 2 + (µ − T )2 in the denominator of Cpm, where

s2
n + (x̄ − T )2 =

n∑
i=1

(xi − T )2/n and τ 2 = σ 2 + (µ − T )2 = E[(x − T )2]

Therefore, for reliability purposes, it is reasonable to use Ĉpm(B).
Under the assumption of normality, Kotz and Johnson17 obtained the rth moment, and calculated the first

two moments, the mean, and the variance of Ĉpm. Zimmer and Hubele18 provided tables of exact percentiles
for the sampling distribution of the estimator Ĉpm. Zimmer et al.19 proposed a graphical procedure to obtain
exact confidence intervals for Cpm, where the parameter ξ = (µ − T )/σ is assumed to be a known constant.
Using a method similar to that presented in Vännman20, Lin and Pearn21 obtained an exact form of the
cumulative distribution function of Ĉpm. Under the assumption of normality, the cumulative distribution
function of Ĉpm can be expressed in terms of a mixture of the chi-square distribution and the normal
distribution, for x > 0, where b = d/σ , ξ = (µ − T )/σ , G(·) is the cumulative distribution function of the
chi-square distribution χ2

n−1, and φ(·) is the probability density function of the standard normal distribution
N(0, 1).

F
Ĉpm

(x) = 1 −
∫ b

√
n/(3x)

0
G

(
b2n

9x2 − t2

)
[φ(t + ξ

√
n) + φ(t − ξ

√
n)] dt
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2.1. Estimation of Cpm for multiple samples

For a single sample, Boyles16 showed that τ̂ 2 = s2
n + (x̄ − T )2 is the unbiased estimator of σ 2 + (µ − T )2.

Therefore, for cases where the data are collected as multiple samples, we consider m samples each of size ni

and suggest the following estimator of Cpm, where x̄i is the ith sample mean, and si is the ith sample standard
deviation:

Ĉ∗
pm = d

3τ̂ ′2 , τ̂ ′2 =
∑m

i=1
∑ni

j=1 (xij − T )2∑m
i=1 ni

(1)

First, by taking the expectation of the numerator of τ̂ ′2, we obtain

E

( m∑
i=1

ni∑
j=1

(xij − T )2
)

= E

( m∑
i=1

ni∑
j=1

x2
ij

)
− 2T × E

( m∑
i=1

ni∑
j=1

xij

)
+ E

( m∑
i=1

ni∑
j=1

T 2
)

=
m∑

i=1

ni∑
j=1

E(x2
ij ) − 2T ×

m∑
i=1

ni∑
j=1

E(xij ) +
m∑

i=1

niT
2

=
m∑

i=1

ni(µ
2 + σ 2) − 2T ×

m∑
i=1

niµ +
m∑

i=1

niT
2

=
m∑

i=1

ni [σ 2 + (µ − T )2]

Thus, the estimator τ̂ ′2, such that E(τ̂ ′2) = σ 2 + (µ − T )2, is the unbiased estimator of σ 2 + (µ − T )2.
However, for multiple control samples, we need to consider the variation between and within multiple samples.
Thus, we define the ratio of total within sample variation (SSW) and total sum of square variation (SST) as

γ = SSW

SST
=
∑m

i=1
∑ni

j=1 (xij − x̄i)
2∑m

i=1
∑ni

j=1 (xij − ¯̄x)2
=

∑m
i=1 (ni − 1)s2

p∑m
i=1 (ni − 1)s2

p +∑m
i=1 ni(x̄i − ¯̄x)2

(2)

where

s2
p =

m∑
i=1

(ni − 1)s2
i

/ m∑
i=1

(ni − 1)

is the pooled variance of these samples. The total sample variation about target value T can be decomposed as

m∑
i=1

ni∑
j=1

(xij − T )2 =
m∑

i=1

ni∑
j=1

(xij − x̄i)
2 +

m∑
i=1

ni∑
j=1

(x̄i − ¯̄x)2 +
m∑

i=1

ni∑
j=1

( ¯̄x − T )2

=
m∑

i=1

(ni − 1)s2
p + 1 − γ

γ

m∑
i=1

(ni − 1)s2
p +

m∑
i=1

niδ
2s2

p

=
(

1

γ

m∑
i=1

(ni − 1) +
m∑

i=1

niδ
2

)
s2

p

Thus, the generation of the estimator of Cpm for multiple samples defined in (1) can be rewritten as

Ĉ∗
pm = d

3sp

√∑m
i=1 (ni − 1)/(γ

∑m
i=1 ni) + δ2

, δ = | ¯̄x − T |
sp

(3)
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For the single sample, that is, m = 1, γ = 1, and sp = s, the estimator of Cpm, Ĉ∗
pm = d/(3s

√
(n − 1)/n + δ2),

which can be reduced to the estimator Ĉpm defined in Boyles16.

3. BAYESIAN APPROACH FOR TESTING Cpm

A Bayesian procedure for assessing process capability was proposed in Cheng and Spiring22 for the index Cp
under the assumption that the process mean µ is equal to the target value T . However, the restriction of µ = T is
not a practical assumption for many industrial applications. Shiau et al.23 proposed a Bayesian procedure for the
general situation without the restriction on the process mean. However, the research work focused on cases with
one single sample. A common practice of process capability estimation in the manufacturing industry is to first
implement a daily-based or weekly-based sample data collection plan for monitoring/controlling the process
stability, then to analyze the past ‘in control’ data. Therefore, it is practical to develop a procedure for assessing
process capability for cases with multiple samples. In addition, for practitioners’ convenience, we provide a
simple but practical procedure for computing the posterior probability.

A 100p% credible interval is the Bayesian analogue of the classical 100p% confidence interval, where p

is the confidence level for the interval. The credible interval covers 100p% of the posterior distribution of
the parameter24. Assuming that the m samples are random samples taken from an independent and identically
distributed (i.i.d.) normal distribution with mean µ and variance σ 2 (N(µ, σ 2)). The measures of the ith sample
xi = {xi1, xi2, . . . , xini } with sample size ni . Then, the likelihood function for µ and σ is

L(µ, σ |x) = (2πσ 2)−
∑m

i=1 ni/2 exp

{
−
∑m

i=1
∑ni

j=1 (xij − µ)2

2σ 2

}

The first step for the Bayesian approach is to find an appropriate prior. Usually, when there is little or no prior
information, or there is only one parameter, one of the most widely used non-informative priors is the so-called
reference prior, which is a non-informative prior that maximizes the difference between information (entropy)
on the parameter provided by the prior and by the posterior. In other words, the reference prior allows the prior
to provide as little information as possible about the parameter (see Bernardo and Smith25 for more details).
Therefore, in this paper we adopt the following non-informative reference prior:

π(µ, σ) = 1/σ, 0 < σ < ∞

3.1. Posterior probability

The posterior probability density function (PDF) of (µ, σ ), f (µ, σ |x), may be expressed as follows:

f (µ, σ |x) ∝ L(µ, σ |x) × π(µ, σ) ∝ σ−(
∑m

i=1 ni+1) exp

{
−
∑m

i=1
∑ni

j=1 (xij − µ)2

2σ 2

}

since

∫ ∞

0

∫ ∞

−∞
σ−(

∑m
i=1 ni+1) exp

{
−
∑m

i=1
∑ni

j=1 (xij − µ)2

2σ 2

}
dµ dσ

=
∫ ∞

0
σ−(

∑m
i=1 ni+1) exp

(
− 1

βσ 2

)

×
[∫ ∞

−∞
exp

(
−
∑m

i=1 ni(µ − ¯̄x)2

2σ 2

)
dµ

]
dσ =

√
π

2
∑m

i=1 ni


(α)βα
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In order to satisfy the integration property, the probability over PDF is 1, so that

f (µ, σ |x) =
2
√∑m

i=1 ni√
2π
(α)βα

σ−(
∑m

i=1 ni+1) exp

(
−
∑m

i=1
∑ni

j=1(xij − µ)2

2σ 2

)

α =
( m∑

i=1

ni − 1

)
/2, β =

[ m∑
i=1

ni∑
j=1

(xij − ¯̄x)2
/

2

]−1

¯̄x =
m∑

i=1

ni∑
j=1

xij

/ m∑
i=1

ni =
m∑

i=1

ni x̄i

/ m∑
i=1

ni for −∞ < µ < ∞, 0 < σ < ∞

(4)

As we mentioned earlier, it is natural to consider the quantity p = Pr {process is capable|x} in the Bayesian
approach. Since the index Cpm is the focus in this paper, we are interested in finding the posterior probability
p = Pr{Cpm > ω|x} for some fixed positive number ω. Therefore, given a pre-specified precision level ω > 0;
the posterior probability based on index Cpm that a process is capable, is given as the following, where 
(·) is
the cumulative distribution of the standard normal distribution, and γ and δ are defined as in (2) and (3):

p = Pr{Cpm > ω|x} =
∫ t

0

1


(α)yα+1
exp

(
− 1

y

)
[
(b1(y) + b2(y)) − 
(b1(y) − b2(y))] dy

t = 2∑m
i=1(ni − 1)

(
Ĉ∗

pm

ω

)2 (∑m
i=1 (ni − 1)∑m

i=1 ni

+ γ δ2
)

b1(y) =
√

2γ
∑m

i=1 ni∑m
i=1 (ni − 1)y

δ

b2(y) =
√√√√ m∑

i=1

ni

(
t

y
− 1

)1/2

(5)

The derivations of (5) are given in Appendix A. Note that the posterior probability p depends on m, ni, γ, ω

and Ĉ∗
pm only through m, ni , γ , δ and Ĉ∗

pm/ω. C∗ is denoted by C∗ = Ĉ∗
pm/ω. From expression (5) we can

see that it is rather complicated to compute p without advanced computer programming skills. However, by
noticing that there is a one-to-one correspondence between p and C∗ when m and ni are given, and the fact
that γ , δ and Ĉ∗

pm can be calculated from the process data, we find that the minimum value of C∗ required to
ensure the posterior probability p reaching a certain desirable level can be useful in assessing process capability.
This minimum value is denoted by C∗(p). Thus, the value C∗(p) satisfies

p = Pr{Cpm > ω|x} = Pr

{
Cpm >

Ĉ∗
pm

C∗(p)

∣∣∣∣x
}

4. THE TEST PROCEDURE

A 100p% credible interval for Cpm is [Ĉ∗
pm/C∗(p), ∞), where p is a number between 0 and 1, say 0.95, for a

95% confidence interval. This means that the posterior probability that the credible interval contains Cpm is p.
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In our Bayesian approach we say that the process is capable in a Bayesian sense if all the points in this
credible interval are greater than a pre-specified value of ω, say 1.00 or 1.33. When this happens, we have
p = Pr{Cpm > ω|x}. In other words, to see if a process is capable (with capability level ω and confidence
level p), we only need to check if Ĉ∗

pm > C∗(p) × ω.
Therefore, for users’ convenience in applying our Bayesian procedure, we tabulate the minimum values of

C∗(p) for various values of γ = 0.7(0.1)1.0 and δ = 0(0.5)2.0 with n = 5(5)20, m = 2(2)10 in Table I(a)–(d)
and Table II(a)–(d) for p = 0.95, 0.99, respectively. For example, if ω = 1.33 is the minimum capability
requirement, then for p = 0.95, with m = 10 of each sample size ni = n = 15 and γ = 0.9, δ = 0.5 we can
find C∗(p) = 1.1082 from Table I(c). Thus, the minimum value Ĉ∗

pm required for the process to be capable is
C∗(p) × ω = 1.1082 × 1.33 = 1.4739. That is, if Ĉ∗

pm is greater than 1.4739, we say that the process is capable
in a Bayesian sense. The computer program for computing the required minimum values of C∗(p) is available
from the authors.

From these tables we observe that for each fixed p, m, n and γ the value of C∗(p) decreases as δ

increases. This phenomenon can be explained by the relationship of Ĉ∗
pm in (3). For a fixed Ĉ∗

pm, sp becomes
smaller when δ becomes larger, and a smaller sp means that it is plausible that the underlying process
is tighter (i.e. with smaller σ ). Since the estimation is usually more accurate with the data drawn from
a tighter process, it is then plausible that the estimate Ĉ∗

pm is more accurate with a smaller sp and the
required minimum value C∗(p) is smaller, since we need only a smaller C∗(p) to account for the smaller
uncertainty in the estimation. Intuitively, if the estimation error in our estimate is potentially large, then it
is reasonable that we need a large Ĉ∗

pm to be able to claim that the process is capable, and this means that
the corresponding minimum value C∗(p) should be large as well. Thus, the value of C∗(p) decreases as
δ increases, and this pattern is consistent with Shiau et al.23. Alternatively, according to the definition of
γ , as (2) becomes larger, the variation between these multiple samples will become smaller when the other
conditions are fixed. And the smaller the variation is between these multiple samples, the more stable the
process. Thus, we only need a smaller C∗(p) to assess the process capability. Another observation from the
tables is that the value of C∗(p) decreases as n and/or m increases for fixed δ, γ and p. This can also be
explained by the same reasoning as above, since the estimation will be more accurate with a larger sample
size.

As a result, to judge if a given process meets the capability requirement, we first determine the pre-specified
value ω, the capability requirement, and the α-risk or the confidence level p for the interval. Checking the
appropriate table (or run the program), we may obtain the critical value C∗(p) based on given values of p, m

sub-samples of size ni and γ calculated from samples. If the estimated value Ĉ∗
pm is greater than the critical value

C∗(p) × ω, then we may conclude that the process meets the capability requirement (Cpm > ω). Otherwise,
we do not have sufficient information to conclude that the process meets the present capability requirement.
In this case, we would believe that Cpm ≤ ω. In the following, we present a simple step-by-step procedure for
testing the process precision. The practitioners can use the procedure on their in-plant applications to obtain
reliable decisions.

Step 1. Decide the definition of ‘capable’ (ω, normally set to 1.00 or 1.33), and the confidence level p for the
interval (normally set to 0.99, 0.975 or 0.95). The chance of true Cpm lying in this interval is p.

Step 2. Calculate the value of the estimator Ĉ∗
pm, γ and δ based on m multiple control samples of each sample

size ni .

Step 3. Check the table and find the critical value C∗(p) based on given values of p, m subgroups of each
sample size ni , and γ which is calculated in Step 2.

Step 4. Conclude that the process is capable (Cpm > ω) if the Ĉ∗
pm value is greater than the critical value

C∗(p) × ω. Otherwise, we do not have enough information to conclude that the process is capable.
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Table III. Some recommended minimum capability requirements for special processes

Process type Capability requirement NCs (ppm)

Existing processes 1.33 66.07
New processes 1.50 6.80
Existing processes with safety, strength, or critical parameters 1.50 6.80
New processes with safety, strength, or critical parameters 1.67 0.54

5. APPLICATION EXAMPLE

Peripheral devices such as drivers, printers, and CD-ROMs are connected to the host through a special
bus called SCSI (Small Computer System Interface). The fast edge rated signals that are transmitted
through the SCSI cable generate ringing on the bus. This will slow down communication between
host and peripherals. The SCSI standard recommends proper resistor (Thevenin) termination at host and
peripheral locations to eliminate transmission line effects. Dual Thevenin Termination Networks offer
high integration and performance in a miniature QSOP or SOIC package, which saves spacious board
space, provides manufacturing cost reduction and reliability efficiencies. A terminating resistor is used
to reduce or eliminate unwanted reflections on a transmission line. It can perform this function only
when its resistance value matches the characteristic impedance of the transmission line. The resistors
used for terminating the transmission lines should be noiseless, stable and functional at high frequencies.
Unlike thin film-based resistor networks, conventional thick film resistors used for terminating transmission
lines are not stable over temperature and time and impose system performance limitations at very high
frequencies.

5.1. Capability requirement

In the industry, some minimum capability requirements for special types of processes have been recommended.
In particular, it is recommended that there be a minimum process capability of 1.33 for existing processes, and
1.50 for new processes; 1.50 also for existing processes on safety, strength, or critical parameters; and 1.67 for
new processes on safety, strength, or critical parameters. The recommended guidelines for minimum quality
requirements and the corresponding parts per million (ppm) of non-conformities (NCs) for those processes are
summarized in Table III.

The integrated passive networks are manufactured using advanced thin film technologies including ultra-
stable and self-passivating tantalum nitride resistors, gold interconnect metallization and reliable MNOS
capacitors to achieve excellent uniformity, performance and reliability. Thin film resistor technology
is the preferred solution for all applications that require low noise, long-term stability and excellent
performance at very high frequencies. To illustrate the application of assessing process capability for
multiple control samples, we consider a real example taken from an electronic component manufacturer,
located on the Science-Based Industrial Park in Taiwan, developing passive and active components for the
personal computers, telecommunications, industrial controls, automotive parts, and avionics. The factory
manufactures various types of resistors. For a particular model of the resistors investigated, the target
value is set to T = 10.0 mil, and the tolerance of thickness is 2.0 mil, that is, the lower and upper
specification limit are set to LSL = 8.0 mil and USL = 12.0 mil. If the characteristic data do not
fall within the tolerance (LSL, USL), the lifetime or reliability of the resistors will be discounted.
The collected sample data (10 samples each of size 15), which are under statistical control, are displayed in
Table IV.

We now apply the Bayesian procedure in the following. A 100p% credible interval means the posterior
probability that the true PCI lying in this interval is p. Let p be a high probability, say, 0.95. Suppose for
this particular process under consideration to be capable, the process index must reach at least a certain
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Table IV. The 10 samples each of 15 observations

Samples

1 2 3 4 5 6 7 8 9 10

10.21 9.66 9.80 9.48 10.74 10.71 10.00 10.09 10.58 10.23
10.19 10.36 9.96 9.91 9.72 10.36 10.12 10.12 10.42 10.44

9.88 10.55 10.04 9.94 10.34 10.17 10.29 9.99 9.58 9.86
10.73 10.31 9.99 9.93 10.88 10.53 9.62 10.57 10.44 10.16
10.59 9.72 10.35 10.08 10.48 10.15 9.98 10.50 10.39 10.14
10.21 10.00 9.94 9.59 10.01 10.09 10.00 9.43 10.87 9.99
10.61 10.34 10.96 10.01 10.71 10.14 10.12 10.60 9.56 11.12
10.68 9.77 10.33 9.85 10.15 9.76 9.97 9.86 10.26 10.10

9.86 10.12 10.39 10.50 10.46 10.15 10.56 9.90 10.16 10.00
10.69 10.40 10.63 9.77 10.38 10.36 10.60 9.84 10.46 9.97
10.12 11.11 9.13 9.97 10.39 10.28 9.76 10.31 9.83 10.50
10.62 10.25 10.57 10.03 10.33 10.05 9.78 10.03 10.09 10.47

9.73 11.03 10.24 10.02 10.33 9.50 9.74 9.53 10.43 10.30
10.35 10.23 10.65 10.37 10.15 10.29 10.48 9.72 10.38 10.17
10.51 9.98 10.70 9.81 10.26 10.29 9.79 10.56 10.27 10.04

Table V. The calculated sample mean and the sample variance for the 10 samples

Sample i 1 2 3 4 5 6 7 8 9 10

x̄i 10.332 10.255 10.245 9.951 10.354 10.188 10.053 10.070 10.247 10.233
s2
i 0.110 0.178 0.207 0.066 0.085 0.083 0.096 0.141 0.129 0.097

level ω, say, 1.33. That is, the requirement for the process yield is no more than 2700 ppm. From the
process data, we compute the lower bound of the credible interval for the index. The Bayesian testing
procedure is simple. That is, if Ĉ∗

pm > C∗(p) × ω, then we say that the process is capable in a Bayesian
sense.

The calculated sample mean x̄i and the sample variance s2
i for the ten sub-samples of size 15 are tabulated in

Table V. Thus,

¯̄x = 10.1929

s2
p =

m∑
i=1

s2
i

/
m = 0.1192

γ = m(n − 1)s2
p

m(n − 1)s2
p + n

∑m
i=1 (x̄i − ¯̄x)2

= 0.8816

δ = | ¯̄x − T |
sp

= 0.5587

Ĉ∗
pm = d

3sp
√

(n − 1)/(γ n) + δ2
= 1.6489

Next, we check the tables or run the computer software to obtain the critical value Ĉ∗(p) × ω = 1.1069 ×
1.33 = 1.4722 based on p = 0.95, m = 10, n = 15. Since the sample estimator Ĉ∗

pm from the samples, 1.6489,
is greater than the critical value C∗ = Ĉ∗(p) × ω = 1.4722, we may conclude, with 95% confidence level, that
the process meets the capability requirement ‘Cpm > 1.33’ in this case.
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6. CONCLUSIONS

Using process capability indices to quantify manufacturing process precision and performance is an essential
part of implementing a quality improvement program. Most existing tests of the capability indices are obtained
from the distributional frequency approaches. Statistical properties of the estimated Cpm based on one single
sample have been investigated extensively. But, the properties of the estimated Cpm based on multiple
samples have been comparatively neglected. In this paper, we have considered the problem of estimating
and testing process capability based on multiple samples. We accordingly proposed a Bayesian procedure for
capability testing. Based on these multiple control samples, we also developed a simple step-by-step procedure.
The practitioners can use the proposed procedure to determine whether their manufacturing processes are
capable of reproducing products satisfying the preset precision requirements. A process is capable if all the
points in the credible interval are greater than the pre-specified capability level ω. To make this Bayesian
procedure practical for in-plant applications, we tabulated the minimum values of C∗(p) for which the posterior
probability p reaches various desirable confidence levels.
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APPENDIX A. DERIVATION OF EXPRESSION (5)

For the multiple control samples, given a pre-specified capability level ω > 0, the posterior probability based on
index Cpm that a process is capable is given as

p = Pr{Cpm > ω|x} = Pr

{
USL − LSL

6τ
> ω

∣∣∣∣ x
}

= Pr

{
τ <

USL − LSL

6ω

∣∣∣∣ x
}

= Pr

{
σ 2 + (µ − T )2 <

(
USL − LSL

6ω

)2
∣∣∣∣∣ x

}
=
∫ ((USL−LSL)/6ω)

0

∫ T +
√

a2−σ 2

T −
√

a2−σ 2
f (µ, σ |x) dµ dσ

Denote a = (USL − LSL)/6ω and g(σ) = √
a2 − σ 2. Then

p =
∫ a

0

∫ T +g(σ )

T −g(σ )

f (µ, σ |x) dµ dσ

=
∫ a

0

∫ T +g(σ )

T −g(σ )

2
√∑m

i=1 ni√
2π
(α)βα

σ−(
∑m

i=1 ni+1) exp

(
−
∑m

i=1
∑ni

j=1 (xij − µ)2

2σ 2

)
dµ dσ

=
∫ a

0

2
√∑m

i=1 ni√
2π
(α)βα

σ−(
∑m

i=1 ni+1) exp

(
− 1

βσ 2

) ∫ T +g(σ )

T −g(σ )

exp

(
−
∑m

i=1 ni(µ − ¯̄x)2

2σ 2

)
dµ dσ

=
∫ a

0

2σ−∑m
i=1 ni


(α)βα
exp

(
− 1

βσ 2

) 



 T − ¯̄x + g(σ)

σ

/√∑m
i=1 ni


− 



 T − ¯̄x − g(σ)

σ

/√∑m
i=1 ni




 dσ (A1)

where

α =
( m∑

i=1

ni − 1

)/
2, β =

[ m∑
i=1

ni∑
j=1

(xij − ¯̄x)2
/

2

]−1

, ¯̄x =
[ m∑

i=1

ni∑
j=1

xij

/ m∑
i=1

ni

]

for −∞ < µ < ∞, 0 < σ < ∞, and 
(·) is the cumulative distribution of the standard normal distribution.
By changing the variables, we let y = βσ 2. Then, dy = 2βσ dσ , and

sp/σ =
√√√√2γ

/[ m∑
i=1

(ni − 1)y

]
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Thus, the posterior probabilityp for multiple control samples, which are given in (A1), can be simplified to

p = Pr{Cpm > ω|x}
=
∫ t

0

1


(α)yα+1
exp

(
− 1

y

)
× [
 (b1(y) + b2(y)) − 
 (b1(y) − b2(y))] dy

where

b1(y) = T − ¯̄x
σ

/√∑m
i=1 ni

=
√√√√ m∑

i=1

ni

(
T − ¯̄x

sp

) ( sp

σ

)
=
√

2γ
∑m

i=1 ni∑m
i=1 (ni − 1)y

δ

b2(y) = g(σ)

σ

/√∑m
i=1 ni

=
√√√√ m∑

i=1

ni

(
g(σ)

σ

)
=
√√√√ m∑

i=1

ni

(
a2 − σ 2

σ 2

)1/2

=
√√√√ m∑

i=1

ni

(
a2

σ 2 − 1

)1/2

=
√√√√ m∑

i=1

ni

(
βa2

y
− 1

)1/2

=
√√√√ m∑

i=1

ni

(
t

y
− 1

)1/2

and

t = βa2 = 2γ a2∑m
i=1(ni − 1)s2

p
= 2γ∑m

i=1(ni − 1)s2
p

(
USL − LSL

6ω

)2

= 2γ∑m
i=1(ni − 1)ω2

(
USL − LSL

6sp

)2

= 2γ∑m
i=1(ni − 1)ω2

(
USL − LSL

6σ̂ ′

)2 (
τ̂ ′

sp

)2

= 2γ∑m
i=1(ni − 1)

(
Ĉ∗

pm

ω

)2 (
τ̂ ′

sp

)2

= 2∑m
i=1(ni − 1)

(
Ĉ∗

pm

ω

)2 (∑m
i=1 (ni − 1)∑m

i=1 ni

+ γ δ2
)

Therefore, the posterior probabilityp for multiple control samples, which is given in (5), can be derived.
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