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We use higher dimensional B-splines as basis functions to find the approximations for the Dirichlet problem
of the Poisson equation in dimension two and three. We utilize the boundary data to remove unnecessary
bases. Our method is applicable to more general linear partial differential equations. We provide new basis
functions which do not require as many B-splines. The number of new bases coincides with that of the nec-
essary knots. The reducing process uses the boundary conditions to redefine a basis without extra artificial
assumptions on knots which are outside the domain. Therefore, more accuracy would be expected from
our method. The approximation solutions satisfy the Poisson equation at each mesh point and are solved
explicitly using tensor product of matrices. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential
Eq 30: 393–405, 2014

Keywords: B-spline; divided difference; approximation; numerical experiment

I. INTRODUCTION

In this article, we provide a new computing method for higher dimensional Poisson equations
by using reduced B-splines as basis functions. In Viswanadham [1], they employed a collection
method for the fifth-order boundary value problem of one dimensional (1D) differential equation.
Koch–Schmidt [2] gave a precise definition of the n-dimensional B-splines. In Sections I and II,
we adopt their n-dimensional B-splines and use the collection method as in Viswanadham [1] to
reduce the involved bases by boundary data one-by-one and solve the Poisson equations in R

2

and R
3. Here, we emphasize that the reducing process is applicable to any order linear partial

differential equation.
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First, we summarize the B-splines of four different expressions [3–5]. With the help of those
B-splines, we are able to reduce the numbers of basis functions of B-splines by given boundary
conditions. The reducing process is similar to that of [1] if we are solving the k-th-order differ-
ential equations or partial differential equations. This method provides better error estimates, in
particular, when the given data of Neumann values or higher order differentials on boundary are
involved.

In Section III, we continue to consider 3D B-spline functions, based on Koch–Schmidt [2].
Then, we apply 3D B-splines as a basis to a Poisson equation in a cubic domain. Some numerical
experiments are given in last section of this article. We start from 1D B-splines. Let �x be the
mesh length and xi = a + i�x, i ∈ I . Define the j-th B-spline of degree k − 1 recursively by

B1
j (x) :=

⎧⎪⎨
⎪⎩

1, if x ∈ [xj , xj+1

)
,

0, otherwise ,

(1.1)

and

Bk
j (x) := x − xj

xj+k−1 − xj

Bk−1
j (x) + xj+k − x

xj+k − xj+1
Bk−1

j+1 (x) . (1.2)

The above is usually referred to as the Cox-de Boor recursion formula [5].
Each Bk

j (x) is a polynomial and has compact support on
[
xj , xj+k

]
. Moreover, Bk

j (x) has first
derivative for k ≥ 3 and second derivative for k ≥ 4 and so on. Bk

j (x) can be expressed by divided
difference as follows. Define the divided difference recursively by[

xj

]
f = f

(
xj

)
, j ∈ I , (1.3)

[
xj , . . . , xj+k

]
f =

[
xj+1, . . . , xj+k

]
f − [xj , . . . , xj+k−1

]
f

xj+k − xj

, for j , k ∈ I . (1.4)

Therefore by induction, we have

Bk
j (x) = (xj+k − xj

) [
xj , . . . , xj+k

]
(· − x)k−1

+ , ∀x ∈ R,

= k�x

j+k∑
�=j

(x� − x)k−1
+

g′
j ,k (x�)

,

= 1

(k − 1)!
k∑

�=0

(−1)k−�

(
k

�

) (
x�+j − x

)k−1

+ , if �x = 1, (1.5)

where

y+ =

⎧⎪⎨
⎪⎩

y, if y ≥ 0,

0, if y < 0,

and

gj ,k (x) = (x − xj

) (
x − xj+1

) · · · (x − xj+k

)
, ∀j , k,

g′
j ,k (x�) = �xk(−1)k+j−� (k + j − �)! (� − j)!, � ≥ j .
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The functions generated by higher dimensional B-splines are defined by

u
(
x1, x2, . . . , xn

) =
∑
j1

∑
j2

· · ·
∑
jn

αj1j2···jnB
k1
j1

(
x1
)
B

k2
j2

(
x2
) · · · Bkn

jn
(xn) , (1.6)

whereB
k1
j1

(
x1
)

, Bk2
j2

(
x2
)

, . . . , Bkn
jn

(xn) are the 1D B-splines with (k1 − 1) , (k2 − 1) , . . . , (kn − 1)

degrees, respectively. Without loss of generality, let � be a n-dimensional cube, (a, b)n. Let
h = b−a

N
be the mesh length and xk

j = a + jh for each k = 1, . . . , n. A mesh in � is

�d :=
{(

x1
i1

, x2
i2

, . . . , xn
in

)
|i1, i2, . . . , in = 0, . . . , N

}
.

�o
d :=

{(
x1

i1
, x2

i2
, . . . , xn

in

)
|i1, i2, . . . , in = 1, . . . , N − 1

}
,

∂�d := �d − �o
d , (1.7)

In this article, we adopt the B-splines of fourth degree for a second-order differential equation.
Hence, for simplicity, we redenote the third degree B-spline functions by

Bj+2 (x) := B4
j (x) , for j = −3, . . . , N − 1. (1.8)

Assume the space of B-spline functions generated by
{
Bj1

(
x1
)
Bj2

(
x2
) · · · Bjn (xn) | j1,

j2, . . . , jn = −1, · · · N + 1} to be

M
n (�d) =

⎧⎨
⎩
∑

j

∑
j2

· · ·
∑
jn

αj1j2···jnBj1

(
x1
)
Bj2

(
x2
) · · · Bjn

(xn) , αj1···jn ∈ R

⎫⎬
⎭ . (1.9)

II. 2D B-SPLINES FOR THE POISSON EQUATIONS

In this section, we consider n = 2. To reduce some generators of B-splines, redefine a new basis

B̃j (x) :=

⎧⎪⎨
⎪⎩

Bj (x) − B−1(x)

B−1(a)
Bj (a) , if j = −1, 0, 1,

Bj (x) , if j = 2, . . . , N − 2,

Bj (x) − BN+1(x)

BN+1(b)
Bj (b) , if j = N − 1, N , N + 1,

(2.1)

where B̃−1 (x) ≡ 0 and B̃N+1 (x) ≡ 0. Hence, the number of B-splines required for a basis is

reduced from N + 3 to be N + 1. We call
{
B̃j

}
to be the basis of the reduced B-splines. This implies

that if uh ∈ M2 (�d) and
(
x1, x2

) ∈ �o
d ,

uh

(
x1, x2

) =
N∑

j1=0

N∑
j2=0

αj1j2 B̃j1

(
x1
)
B̃j2

(
x2
)+ H

(
x1, x2

)
, (2.2)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where

H
(
x1, x2

) =
{

g
(
x1, x2

)
, if

(
x1, x2

) ∈ ∂�d

0, if
(
x1, x2

) ∈ �o
d .

(2.3)

Rearrange the knots to be zi =
(
x1

i1
, x2

i2

)
and define new basis functions

B̃j (zi ) = B̃j1

(
x1

i1

)
B̃j2

(
x2

i2

)
+ χ(

x1
j1

,x2
j2

) (x1
i1

, x2
i2

)
, (2.4)

where j , j1, j2,
(
1 ≤ j ≤ (N + 1)2, 0 ≤ j1, j2 ≤ N

)
, satisfy j = j1 + 1 + j2 (N + 1),

{
j1 = j − 1 − � j−1

N+1	 (N + 1) ,

j2 = � j−1
N+1	 (N + 1) ,

and �x	 is the greatest integer which is smaller than or equal to x,

χ(
x1
j1

,x2
j2

) (x1
i1

, x2
i2

)
=
{

1, if
(
x1

i1
, x2

i2

)
=
(
x1

j1
, x2

j2

)
∈ ∂�d ,

0, otherwise .

Then, uh

(
zj

)
:= uh

(
x1

j1
, x2

j2

)
is expressed as

uh

(
x1

i1
, x2

i2

)
=

N∑
j1=0

N∑
j2=0

αj1j2

(
B̃j1

(
x1

i1

)
B̃j2

(
x2

i2

)
+ χ(

x1
j1

,x2
j2

) (x1
i1

, x2
i2

))
(2.5)

or

uh

(
zj

) =
(N+1)2∑

k=1

α̃kB̃ k

(
zj

)
(2.6)

Assume uh satisfies the Poisson equation �uh = f at each mesh point zj ∈ �o
d , then the

coefficients α̃k of (2.6) satisfy a matrix form

⎡
⎢⎢⎢⎢⎢⎣

R P R

R P

. . .
. . .

. . .
P R

R P R

⎤
⎥⎥⎥⎥⎥⎦

(N−1)2×(N+1)2

· X = 3h2f , (2.7)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where R and P are (N − 1) × (N + 1) rectangular matrices given by

R =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1
1 1

. . .
. . .

. . .
1 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎦

(N−1)×(N+1)

P =

⎡
⎢⎢⎢⎢⎢⎣

1 −8 1
1 −8

. . .
. . .

. . .
−8 1
1 −8 1

⎤
⎥⎥⎥⎥⎥⎦

(N−1)×(N+1)

,

and X = [(X1)
t , (X2)

t , . . . , (XN+1)
t
]t

, Xj = [α̃(j−1)(N+1)+1, . . . , α̃(j−1)(N+1)+N+1

]
.

Using the given boundary values, it is sufficient to consider interior mesh points in �o
d . Hence,

removing the first and last elements of Xj , we get

Yj := [α̃j(N+1)+2, α̃j(N+1)+3, . . . , α̃j(N+1)+N

]t
, j = 1, 2, . . . , N − 1. (2.8)

That is

Xj+1 = [α̃j(N+1)+1, Yj , α̃(j+1)(N+1)

]
.

Let F1 := [F 1
1 , F1,2, . . . , F N−1

1

]t
be a (N − 1) × 1 matrix where

F 1
1 = f (a + h, a + h) − 1

3h2

(
2∑

�=0

g (a + �h, a) + g (a + h, a) + g (a + 2h, a)

)
,

F k
1 = f (a + kh, a + h) − 1

3h2

2∑
�=0

g (a + (k − 1 + �) h, a) , k = 2, . . . , N − 2,

F N−1
1 = f (b − h, a + h) − 1

3h2

(
2∑

�=0

g (b − �h, a) + g (b, a + h) + g (b, a + 2h)

)
.

To reduce the number of basis functions in (2.6), we start from

(T Y1 + SY2) = 3h2F1, (2.9)

where T and S are (N − 1) × (N − 1) tridiagonal matrices,

T :=

⎡
⎢⎢⎢⎢⎢⎣

−8 1 0 · · ·
1 −8 1 0

. . .
. . .

. . .
. . .

1 −8 1
1 −8

⎤
⎥⎥⎥⎥⎥⎦

(N−1)×(N−1)

and S :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 1
. . .

. . .
. . .

. . .
. . . 1 1

1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(N−1)×(N−1)

.

(2.10)
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On the other side of the boundary, it satisfies

(SYN−2 + T YN−1) = 3h2FN−1,

where FN−1 := [F 1
N−1, FN−1,2, . . . , F N−1

N−1

]t
and

F 1
N−1 = f (a + h, b − h) − 1

3h2
·
(

g (a + h, b) + g (a + 2h, b) +
2∑

�=0

g (a, b − �h)

)
,

F k
N−1 = f (a + kh, b − h) − 1

3h2

2∑
�=0

g (a + (k − 1 + �) h, b) , k = 2, . . . , N − 2,

F N−1
N−1 = f (b − h, b − h) − 1

3h2
·
(

g (b, b − h) + g (b, b − 2h) +
2∑

�=0

g (b − �h, b)

)
.

For j = 2, . . . , N − 2, it is(
SYj−1 + T Yj + SYj+1

) = 3h2Fj (2.11)

where Fj := [F 1
j , F 2

j , . . . , F N−1
j

]t
and

F 1
j = f

(
a + h, yj

)− 1

3h2
·

1∑
�=−1

g
(
a, yj+�

)
,

F �
j = f

(
a + �h, yj

)
, � = 2, . . . , N − 2,

F N−1
j = f

(
b − h, yj

)− 1

3h2

1∑
�=−1

g
(
b, yj+�

)
.

Thus, we rewrite the system (2.7) as

A · Y = 3h2F , (2.12)

where

A := S ⊗ S − 9I ⊗ I ,

Y := [Y t
1 , Y t

2 , . . . , Y t
N−1

]t
,

F :=
[
(F1)

t , (F2)
t , . . . ,

(
F(N−1)

)t]t
,

Fj := (F 1
j , F 2

j , . . . , F N−1
j

)
. (2.13)

If we set F̃
(
x1

i , x2
j

) = F i
j , i, j = 1, 2, . . . , (N − 1) and F̃ = f on ∂�d , then for

(
x1

i , x2
j

) ∈ �d ,

F̃
(
x1

i , x2
j

) = f
(
x1

i , x2
j

)−
∑

(j1,j2)∈�

αj1j2

(
B̃j1,x1x1

(
x1

i1

)
B̃j2

(
x2

i2

)
+ B̃j1

(
x1

i1

)
B̃j2,x2x2

(
x2

i2

))
.

(2.14)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where � = {(0, j2) , (j1, 0) , (N , j2) , (j1, N) |j1, j2 = 0, 1, . . . , N}. The matrix S is decomposed
by

S = QDQt , (2.15)

where Qt is the transpose matrix of Q and

D = diag

(
1 + 2cos

π

N
, 1 + 2cos

2π

N
, . . . , 1 + 2cos

(N − 1) π

N

)
,

Vk = 1√
N

2

[
sin

kπ

N
, sin

2kπ

N
, . . . , sin

(N − 1) kπ

N

]t

, k = 1, . . . , N − 1,

Q = [V1|V2| . . . |VN−1] . (2.16)

and Q′s column vectors are Vj , j = 1, . . . , N − 1 satisfying Q = Qt = Q−1.
To solve (2.12), we use the fact that for any n × n matrices A, B, C, and D,

(A ⊗ B) (C ⊗ D) = (AB) ⊗ (CD) . (2.17)

where A ⊗ B = [aijB
]
n2×n2 . Let I be the (N − 1) × (N − 1) identity matrix. Hence, the matrix

A of (2.13) is expressed as, [13],

A = (QDQt
)⊗ (QDQt

)− 9
(
QIQt

)⊗ (QIQt
)

,

= (Q ⊗ Q) (J )
(
Qt ⊗ Qt

)
. (2.18)

where J := (D ⊗ D − 9I ⊗ I ). It shows that A is invertible by −11 < J < −6. Conclusively,
we obtain the following theorem.

Theorem 2.1. If the function uh defined in (2.5) or (2.6) in �d ⊂ R
2 satisfies{

�uh = f , in �o
d ,

uh = g, on ∂�d ,
(2.19)

then the coefficients α̃k , k �= j (N + 1) , j (N + 1) + 1, j = 1, . . . , N + 1 satisfy (2.12) and
(2.13). From (2.12), they are determined by the matrix equation

Y = 3h2 (Q ⊗ Q) (D ⊗ D − 9I ⊗ I )−1
(
Qt ⊗ Qt

)
F (2.20)

where (D ⊗ D − 9I ⊗ I )−1 is diagonal and

((
Qt ⊗ Qt

)
F
)
i
=

N−1∑
j=1

QijQF t
j

The above Theorem 2.1 gives us a new solver and the solution uh of (2.5) is solved by (2.20).
The approximation uh satisfies �uh = 0 at every mesh point in �o

d and uh = g on ∂�d . For
each mesh length h > 0, let uh and v satisfy �uh = f in �o

d with uh = g on ∂�d and �v = f

in �o with v = g on ∂�, respectively. An immediate application of Theorem 2.1 is thoroughly

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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explained in Froese–Oberman, [6], to the Monge–Ampére equation as follows. Let λ1 (u) and
λ2 (u) be the eigenvalues of D2u where u satisfies det D2u = f (u) in � and u = g on ∂�. Then,
u satisfies

�u =
√

λ2
1 (u) + λ2

2 (u) + 2f (u). (2.21)

Then, one can carry out the following iterations:

1. Choose the first guess u0.

2. �u1 =
√

2f
(
u0
)
.

3. �un+1 = √2f (un) + λ2
1 (un) + λ2

2 (un).

In next section, we consider the 3D Poisson equation and in Section IV, we provide some 3D
numerical experiments which seem to indicate that uh converges to v in L∞-norm as h → 0.

III. 3D B-SPLINES FOR THE POISSON EQUATIONS

In this section, we consider the Dirichlet problem

{
�u = f , in �,

u = g, on ∂�,
(3.1)

in a 3D cube,� = (a, b)3. LetM3 (�d)be the space generated by
{
Bi

(
x1
)
Bj

(
x2
)
Bk

(
x3
) |i, j , k =

−1, . . . , N + 1}. For uh ∈ M3 (�d) and
(
x1, x2, x3

) ∈ �o
d , uh has the form

uh

(
x1, x2, x3

) =
N+1∑

j1=−1

N+1∑
j2=−1

N+1∑
j1=−1

αj1j2j3Bj1

(
x1
)
Bj2

(
x2
)
Bj3

(
x3
)

, αj1j2j3 ∈ R. (3.2)

Using the similar process in Section II with the boundary values to remove some basis functions,
u becomes

uh

(
x1, x2, x3

) =
N∑

j1=0

N∑
j2=0

N∑
j3=0

αj1j2j3B̃j1

(
x1
)
B̃j2

(
x2
)
B̃j3

(
x3
)+ H

(
x1, x2, x3

)
, (3.3)

where B̃j ’s are defined in (2.1) and

H
(
x1, x2, x3

) =
{

g
(
x1, x2, x3

)
, on ∂�d ,

0, in �o.

Hence, the number of the new basis functions is (N + 1)3 which is the same as that of the
knots. As in Section 2, define

B(j1,j2,j3)

(
x1

i1
, x2

i2
, x3

i3

)
= B̃j1

(
x1

i1

)
B̃j2

(
x2

i2

)
B̃j3

(
x3

i3

)
+ χ(

x1
j1

,x2
j2

,x3
j3

) (x1
i1

, x2
i2

, x3
i3

)
(3.4)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where

χ(
x1
j1

,x2
j2

,x3
j3

) (x1
i1

, x2
i2

, x3
i3

)
=
{

1, if
(
x1

i1
, x2

i2
, x3

i3

)
=
(
x1

j1
, x2

j2
, x3

j3

)
∈ ∂�d

0, others,

and rewrite (3.3) to be

uh

(
x1, x2, x3

) =
N∑

j1=0

N∑
j2=0

N∑
j3=0

αj1j2j3B(j1,j2,j3)

(
x1, x2, x3

)
. (3.5)

Since w
(
x1, x2, x3

) = uh

(
x1, x2, x3

)
on ∂�d , we have

αj1j2j3 = w
(
x1

j1
, x2

j2
, x3

j3

)
, for those (j1, j2, j3) such that

(
x1

j1
, x2

j2
, x3

j3

)
∈ ∂�d . (3.6)

Assume the function uh of (3.5) satisfies �uh = f at each mesh point in �o
d . Thus,

N∑
j1=0

N∑
j2=0

N∑
j3=0

αj1j2j3 �B(j1,j2,j3)

(
x1

i1
, x2

i2
, x3

i3

)
= f

(
x1

i1
, x2

i2
, x3

i3

)
.

By (2.1) and (3.6), one may remove the B-splines at boundary points so that

N−1∑
j1=1

N−1∑
j2=1

N−1∑
j3=1

αj1j2j3 �B(j1,j2,j3)

(
x1

i1
, x2

i2
, x3

i3

)
= S

(
x1

i1
, x2

i2
, x3

i3

)
, (3.7)

where

S

(
x1

i1
, x2

i2
, x3

i3

)
= f

(
x1

i1
, x2

i2
, x3

i3

)
−

∑
(
x1
j1

,x2
j2

,x3
j3

)
∈∂�d

αj1j2j3 �B(j1,j2,j3)

(
x1

i1
, x2

i2
, x3

i3

)
,

for
(
x1

i1
, x2

i2
, x3

i3

)
∈ �o

d .

The indices j and (j1, j2, j3) have the following relation

j3 =
⌈

j − 1

(N − 1)2

⌉
+ 1,

j2 =
⌈

j − 1 − (j3 − 1) (N − 1)2

(N − 1)

⌉
+ 1,

j1 = j − 1 − (j3 − 1) (N − 1)2 − (j2 − 1) (N − 1)

or j = 1 + j1 + (j2 − 1) (N − 1) + (j3 − 1) (N − 1)2. Thus, rearrange the indices of the knots
and the basis functions to be

ξi :=
(
x1

i1
, x2

i2
, x3

i3

)
,

B̃j (ξi) := B(j1,j2,j3)

(
x1

i1
, x2

i2
, x3

i3

)
,

α̃j := αj1j2j3 , (3.8)
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Write (3.7) in a matrix form

A · Y = 12h2 F , (3.9)

where

A := [�B j (ξi)
]
(N−1)3×(N−1)3 , �B j (ξi) = B̃j ,xx (ξi) + B̃j ,yy (ξi) + B̃j ,zz (ξi) ,

Y := [α1, α2, . . . , α(N−1)3

]t
,

F := [S 1, S 2, . . . , S (N−1)3

]t
,

S j := S

(
x1

j1
, x2

j2
, x3

j3

)
, given in (3.7) .

More precisely, by (2.15), A is

A = S ⊗ (S ⊗ S + S ⊗ I + I ⊗ S − 3I ⊗ I )

+ I ⊗ (S ⊗ S − 3S ⊗ I − 3I ⊗ S − 27I ⊗ I )

= S ⊗ S ⊗ S + S ⊗ S ⊗ I + S ⊗ I ⊗ S + I ⊗ S ⊗ S

− 3S ⊗ I ⊗ I − 3I ⊗ S ⊗ I − 3I ⊗ I ⊗ S − 27I ⊗ I ⊗ I

= (Q ⊗ Q ⊗ Q) · J · (Qt ⊗ Qt ⊗ Qt
)

, (3.10)

where J is

J = D ⊗ D ⊗ D + D ⊗ D ⊗ I + D ⊗ I ⊗ D + I ⊗ D ⊗ D

− 3D ⊗ I ⊗ I − 3I ⊗ D ⊗ I − 3I ⊗ I ⊗ D − 27I ⊗ I ⊗ I

= 1

3
(D + 3I ) ⊗ (D ⊗ D − 9I ⊗ I ) + 1

3
(D ⊗ D − 9I ⊗ I ) ⊗ (D + 3I )

+ 1

3
(D ⊗ (D + 3I ) ⊗ D − 3I ⊗ (D + 3I ) ⊗ 3I )

< 0

and diagonal so that A is invertible. We then have the following theorem.

Theorem 3.1. If the function uh defined in (3.3) or (3.5) in �d ⊂ R
3 satisfies{

�uh = f , in �o
d ,

uh = g, on ∂�d ,
(3.11)

then the coefficients α̃k of (3.5) ,
(
f or those k, ξk ∈ �0

d

)
, are solved. We obtain Y of (3.9) to

be

Y = 12h2 (Q ⊗ Q ⊗ Q) J
−1
(
Qt ⊗ Qt ⊗ Qt

)
F . (3.12)

Therefore, the coefficients αj1j2j3 in (3.5) are obtained and so is uh .

Figure 1 and Figure 2 are the applications of Theorem 3.1.
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FIG. 1. �u = −√
xyz2, in �d and u = 0, on ∂�d . [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

In general, if the Dirichlet problem is considered in R
n, then uh is expressed as

uh

(
x1, x2, . . . , xn

) =
N∑

j1=0

N∑
j2=0

· · ·
N∑

jn=0

αj1j2...jn B̃j1

(
x1
)
B̃j2

(
x2
)
. . . B̃jn (xn)

+ H
(
x1, x2, . . . , xn

)
, (3.13)

FIG. 2. �u = 10000|x − 1
2 |(y − 1

2

)2(
z − 1

2

)4
, in �d and u = 0, on ∂�d . [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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TABLE I. E (hn) ≈ Ch
p
n , p ≈

�og

(
E(hn)

E(hn+10)

)
(�og hn−�og hn+10)

.

nn u = sin
(
x2 + y2 + z2

)
u = exp

(
x2 + y2 + z2

)
u = �og (1 + x) + y2 + z2

E (hn) p E (hn) p E (hn) P

21 0.0045000 2.00000000 0.10734043 1.73413895 0.00140000 1.90991457
31 0.0020000 2.07811698 0.05313695 1.80659547 0.00064537 1.93634167
41 0.0011000 1.87439991 0.03159969 1.84763056 0.00036973 1.95078806
51 0.0007240 1.99318316 0.02092324 1.87416638 0.00023924 1.95983435
61 0.0005034 1.99513004 0.01486723 1.89277279 0.00016736 1.96571129
71 0.0003701 1.99605764 0.01110491 1.90655710 0.00012361 1.97085003
81 0.0002835 1.99673012 0.00860894 1.91718560 9.5000E-05 1.97403236
91 0.0002241 1.99733907 0.00686880 1.92563411 7.5300E-05 1.97690051
101 0.0001815 1.99763120 0.00560749 1.93251278 6.1100E-05 1.97903341
111 0.0001501 1.99778545 0.00466420 1.93822300 5.0600E-05 1.98090702
121 0.0001261 1.99869334 0.00394034 1.94303982 4.2600E-05 1.98217388
131 0.0001075 1.99800958 0.00337279 1.94715811 3.6400E-05 1.98363335
141 0.0000927 1.99862803 0.00291958 1.95071981 3.1400E-05 1.98519207
151 0.0000807 1.99846868 0.00255194 1.95383078 2.7400E-05 1.98538757

The above table shows that the convergence rate of our solver in L∞-norm is about h1.95 at least. The values p’s seem to
close to 2 when the mesh length h tends to 0. Note that the method we provided in this article is working for any linear
partial differential equation with high accuracy. One may refer to [8] in which perturbation problems of some differential
equations were approximated by the reduced B-splines with very good accuracy of convergence.

where B̃jk
are defined in (2.1) and

H
(
x1, x2, . . . , xn

) =
{

g
(
x1, x2, . . . , xn

)
, if

(
x1, x2, . . . , xn

) ∈ ∂�d ,

0, if
(
x1, x2, . . . , xn

) ∈ �o
d .

Following the similar process in this section, one is able to obtain the approximation uh for
the solutions of Poisson equation in R

n.

IV. NUMERICAL EXPERIMENT

In this section, we provide some numerical experiments and use the results to make a prediction
of the convergent rate of our solver. Note that in general, we cannot expect a solution to be smooth
everywhere on the boundary because our boundary is not smooth. Let h > 0 be the mesh length
and �d the mesh domain in �, where � = ∏n

i=1 (ai , bi). Let uh and v satisfy �uh = f on
�o

d = � ∩ �d with uh = f on ∂�d and �v = f . in �o with v = f on ∂�, respectively. We
extend the mesh function uh to be a piecewise linear function on �. The following numerical
computations seem to indicate that uh → v, as h → 0 uniformly on �. In what follows, let
hn = 1/ (n − 1) be the mesh length and E (h) = ||v − uh||∞,�d

. The following is a heuristic way
to find the error for numerical simulation. Let E (h) ≈ C · hp where C depends on given data
only. Then,

p ≈
�og

[
E(h)

E
(

h
2

)
]

�og 2
(4.1)
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We conclude that if p turns out to be a mess, one could stipulate that E (h) = C · hp|�og h|
instead, where C depends on given data only. Employing our solver for three functions, the
numerical results are obtained as shown in Table I.

Remark. Note that the solutions in these examples will be smooth (see Chapter 4 of [7])
away from the corners but not necessarily smooth at the corners. In Example 1, the solution will
be Lipschitz continuous (see Chapter 4 of [7]) but not continuously differentiable at all corners.
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