
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2014; 7:626–640

Published online 21 March 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.764
RESEARCH ARTICLE

Secure and transparent network traffic replay, redirect,
and relay in a dynamic malware analysis environment
Ying-Dar Lin1, Tzung-Bi Shih1, Yu-Sung Wu1* and Yuan-Cheng Lai2

1 Department of Computer Science, National Chiao Tung University, Hsin Chu 300, Taiwan
2 Yuan-Cheng Lai is with the Department of Information Management, National Taiwan University of Science and Technology, Taipei
106, Taiwan
ABSTRACT

Dynamic analysis is typically performed in a closed network environment to prevent the malware under analysis from
attacking machines on the Internet. However, many of today’s malwares require Internet connectivity to operate and to
be thoroughly analyzed in a closed network environment. We propose a secure and transparent network environment
that allows the malware in a dynamic analysis environment to have seemingly unrestricted Internet access in a secure
manner. Our environment transparently dispatches malicious network traffic to compatible decoys while allowing
harmless control traffic to have Internet access. We use 12 real-world malware samples, which involve Internet
connections, to evaluate the effectiveness of the proposed environment. The evaluation shows that the proposed
environment can allow malware to exhibit more network activities than a closed network environment and can even
outperform the baseline open network environment in some cases. In the meantime, Internet security is maintained
by the dispatching of attack and propagation traffic to decoys inside the analysis environment. Copyright © 2013 John
Wiley & Sons, Ltd.

KEYWORDS

malware; dynamic analysis; transparent network; botnet

*Correspondence

Yu-Sung Wu, Department of Computer Science, National Chiao Tung University, Hsin Chu 300, Taiwan.
E-mail: ysw@cs.nctu.edu.tw
1. INTRODUCTION

Malware has been a major threat to computer security
for years [2,3]. The defense against malware typically
follows a three-step process: analysis of unknown malware,
signature development, and deployment of anti-virus
scanners for known malware [4]. The analysis of unknown
malware is the important first step in the process of malware
defense, as the other two steps would not be possible without
a proper understanding of the malware first.

Malware analysis comes in two manners: static analysis
and dynamic analysis [5]. Static analysis looks for patterns
characterizing malicious behaviors in a malware’s binary.
The main strength of static analysis is that it runs very fast.
Efficient algorithms for disassembly and pattern matching
are readily available. Static analysis is also very secure
because the malware never gets executed during the analysis
process. However, the major drawback with static analysis
lies in its inability to deal with binary obfuscation [6].
With binary obfuscation, the original malware code may
get encrypted, shuffled, or even transformed into opaque
626
instructions to be executed on a virtual machine. As a
result, static analysis may have to involve more advanced
analysis techniques such as code emulation to deal with
obfuscated binary. Even so, the overall result is still far
from perfect. This is largely because there are always
some new ways to obfuscate a binary, and it would be very
difficult to design a static analysis algorithm to encompass
all possibilities beforehand.

Complementary to static analysis, dynamic analysis
[5,7,8] actually puts a malware into execution in a closed
environment and observes the malware’s runtime behavior.
Binary obfuscation is generally not an issue for dynamic
analysis, as the malware should reveal itself automatically
during the execution. However, there are still a few other
issues with dynamic analysis. First, malware may detect
the presence of analysis environment and refrain from
showing its true behaviors [9,10]. As an example, malware
may check if hardware debug registers have been set,
which is a sign of it being debugged (analyzed). Second,
malware may be programmed to act only at a specific time
or date (i.e., a logic bomb) [4]. Unless the dynamic
Copyright © 2013 John Wiley & Sons, Ltd.

Secure and transparent network for dynamic malware analysisY.-D. Lin et al.
analysis is carried out at the right time, it will not be able to
capture the full behavior of the malware. Third, malware
can be remotely triggered or depend on services on the
Internet for its operation (i.e., bots [11,12]). In this case,
if the analysis environment does not have network connec-
tivity with the outside world, the dynamic analysis will
also fail to capture the full behavior of the malware.

Fortunately, not all the aforementioned issues are difficult
to resolve. For instance, for malware that can detect the
presence of analysis environment, there is always some
way to alter the environment settings to remove the
specific signatures the malware is looking for [13]. For
logic bombs, one can tweak the machine clock to the dates
and times likely to be of interest to the malware [14]. The
trickiest issue is with those malware that require Internet
connectivity. This kind of malware either depends on
network communication with a controller or network
services on the Internet to operate or is designed to carry
out attacks against targets on the Internet. As a result, if
dynamic analysis of the malware is carried out in a closed
network environment, it is very likely that most of the
malware’s behavior will not be observed. On the other
hand, if dynamic analysis is carried in an open network
environment with unrestricted access to the Internet, then
there is the concern about the potential damage the
malware can cause to vulnerable machines on the Internet.

To address the dilemma between open and closed
network environments for dynamic malware analysis, we
propose an alternative environment that can transparently
and securely dispatch the network traffic of a malware
under analysis. The environment leverages a network
intrusion detection system (IDS) to help distinguish attack
traffic from benign traffic in addition to the use of port-
based attack traffic redirection mechanism. Through a
three-phase dispatching process that involves traffic replay,
redirect, and relay, the environment allows the malware to
communicate freely with its controller or services on the
Internet, and at the same time, it can transparently divert at-
tack traffic to decoys within the analysis environment. We
Bot #3

Bot Controller

C&C Communication P

Bot #2

Bot #1

Figure 1. Botnet

Security Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
manage to achieve a good balance between the open net-
work environment and the closed network environment:
The malware will not quit prematurely because of network
inaccessibility, and the security of the Internet is ensured.
An open-source implementation of the proposed environ-
ment is available for download at [1].
2. BACKGROUND

The work is motivated by the abundance of malware that
depends on the Internet for operations (e.g., propagation
and attack). One notable class of malware that involves
heavy Internet usage is bot, a type of malware that takes
commands from a controller on the Internet to achieve
specific attack goals [11]. In what follows, we shall first
give a brief overview of the network activities involved
in a bot’s operation. We shall also mention how existing
dynamic analysis environments handle the network activities
of malware and their shortcomings.

2.1. Network traffic of botnet

Bots are a type of malware designed to function in a collective
manner as shown in Figure 1. A controller commands a herd
of bots that can be used to carry out attacks on target victims.
The whole system is often referred to as a “botnet” [11,12],
meaning a network of bots. As shown in Figure 1, a botnet
involves many network activities. The network activities
of a botnet can be roughly put into three categories: propaga-
tion, command and control (C&C) communication, and
attack [15]. Propagation corresponds to the traffic generated
by a bot for infecting other machines to expand the size of
a botnet. C&C communication refers to the network traffic
between a controller and a bot, which may include
commands sent by the controller or sensitive information
pilfered from victims (e.g., credit card numbers). Finally,
a botnet can be used to launch network attacks such as dis-
tributed denial of service or email spamming, which
ropagation Attack

Victim #2 is the attack target

Victim #1 becomes a bot

Victim #1

Victim #2

operations.

627

Secure and transparent network for dynamic malware analysis Y.-D. Lin et al.
correspond to the attack traffic of a botnet. If a bot is put
into a closed network environment for dynamic analysis,
most of these network activities will not be properly
exercised and observed.

2.2. Related work

There are two mainstream approaches for setting up a
network environment for dynamic analysis. The first is to
grant the malware full Internet access (i.e., open network
environment). The malware should exhibit as much of its
behavior in the analysis environment as if it were in the
wild. An obvious issue with the open network approach
is that the malware can freely attack machines on the
Internet and cause damage. In contrast, the more widely
embraced approach is to block all Internet access
(i.e., a closed network environment) [8,16,17]. This
approach is very secure and works well for analyzing
malware that does not require network connectivity to
the Internet. For malware that depends a lot on Internet
connectivity, the closed network environment is very
likely to miss most of the malware’s runtime behavior.

There have been some works on the redirection of
inbound attack traffic to honeypots for attack trace
collection [18–22]. Their purpose is fundamentally different
from ours, which is instead to provide a transparent and
secure network environment to facilitate dynamic
malware analysis.

Dynamic malware analysis and honeypot systems have
relied on blacklists/whitelists of port numbers [21,23–25]
to filter or redirect traffic that is potentially malicious.
The GQ honeyfarm [25] employs port-based redirection,
and some systems, such as the virtual honeyfarm [26],
can also redirect traffic based on flow history and protocol
types. However, it is very difficult to foresee the ports or
the protocols used by a malware [27,28]. The flow history
mechanism employed in [26] only allows outbound traffic
related to previous connections (i.e., if a remote host had
made a connection to the honeyfarm environment, outbound
traffic to the host can be allowed). As a result, if a malware’s
command and control communication is initiated by the
malware (an outbound traffic without any related connection
flows), the communication traffic will be filtered, and the
malware may not exhibit its full behavior. Instead of using
redirection, the work [29] by G. Berger-Sabbatel drops all
the packets that match the predefined classes of known
attacks. This may disrupt a malware’s execution and
prevent its complete behavior from being observed during
dynamic analysis.

Our environment can be seen as an extension to existing
redirection systems in that our redirection mechanism
leverages an IDS to automatically determine the portion
of a malware’s network traffic that should be redirected.
This greatly eases the use of traffic redirection in dynamic
malware behavior analysis. Our environment also provides
the protocol synchronization mechanism to allow the
transparent redirection of ongoing network connections.
This allows the observation of malware’s network behavior
628 Sec
in a single round of experiment. In contrast, existing redirec-
tion systems require multiple rounds of trials and errors for
setting up the redirection rules (e.g., first, redirect all traffic
to the decoys regardless of whether the redirection would
work, and then, manually allow certain traffic).

Dynamic malware analysis systems such as Berkeley’s
BitBlaze [30], GFI’s Sandbox [31], and iSecLab’s
Anubis [32] are typically deployed in a closed network
environment in favor of absolute network security over
observability of malware’s network behavior. Our
environment is complementary to these systems, as our
environment, by itself, does not provide dynamic
malware analysis capability, and, on the other hand, our
environment can help these systems be more effective
on the analysis of malware whose operations require
Internet access.
3. NETWORK TRAFFIC REPLAY,
REDIRECT, ANDRELAY INDYNAMIC
MALWARE ANALYSIS
ENVIRONMENT

Many modern malware rely on the Internet to operate. They
may use the Internet for propagation. Some of them can
deliver attacks over the Internet. Some of them also leverage
on the Internet for coordinating attacks (i.e., bots). For the
dynamic analysis of modern malware to be effective, it is
important for the analysis environment to meet two
properties: “network transparency” and “network security.”
By network transparency, it means that a malware under
analysis will have a transparent view of the whole network,
notably the Internet. Otherwise, the malware may not exhibit
all its behavior such as attack and propagation. By network
security, it means that the analysis environment has to ensure
that running the malware shall present no threat to the
security of the Internet. In the following sections, we shall
present an environment that is designed to achieve both
network transparency and Internet security for dynamic
malware analysis.

3.1. Approach overview

As mentioned earlier, the network traffic of a malware
may consist of propagation, C&C communication, and
attack traffic. To capture the full behavior of a malware
during dynamic analysis, we would like the network traffic
to be unobstructed, at least from the malware’s perspective.
On the other hand, we also want to make sure that the
environment is secure so that the malware cannot cause
damage to machines on the Internet.

We propose the secure and transparent network
environment for dynamic malware analysis as shown in
Figure 2. On the left-hand side is the Internet. On the right-
hand side is the dynamic malware analysis environment,
where the malware is executed and monitored for its runtime
behavior such as network connections and system calls.
The malware may attack machines (would-be victims)
urity Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

DispatcherGateway

Decoy(s)

Change paths of attack

and propagation traffic

(replay, redirect, and relay)

Internet Traffic Dispatching Dynamic Malware
Analysis Environment

Block

would-be
victims

Malware
Controller

Malware

C&C communication

Figure 2. Secure and transparent network environment. C&C, command and control.

Secure and transparent network for dynamic malware analysisY.-D. Lin et al.
on the Internet. The malware may contact with a controller
on the Internet (e.g., the C&C server of a botnet). At the
core of the proposed environment is the traffic dispatching
shown in the middle of Figure 2, which intercepts and
reroutes the network traffic between the analysis environ-
ment and the Internet.

In the environment, propagation and attack traffic are
transparently dispatched to decoys inside our system. Neither
of the propagation nor the attack traffic ever reaches
the Internet. Traffic dispatching is a three-phase process,
which we shall explain in more details in Section 3.2.
One important aspect of the traffic dispatching is that it
needs be transparent to the malware. The malware should
be barely aware of the traffic dispatching for the capture of
the malware’s full runtime behavior. We noticed that the
propagation and attack traffic typically follow well-known
protocols. Besides, they often exploit known vulnerabil-
ities in widely deployed network services such as Network
Basic Input/Output System (NetBIOS) and Simple Mail
Transfer Protocol (SMTP). The strategy maximizes a
malware’s propagation and attack capability and is a very
logical design choice in building malware. As a result, one
can reasonably assume that both the propagation and
attack traffic can be identified and, with some extra work
(Section 3.2), be dispatched to the decoys. The decoys
are machines running popular network services with
Co
Pac

IDS

B

NIC #2NIC #1

Packet Filter

sniff

alert

Internet
Analysis

Environment

Aler

sessio

sessio

Packet FlowLegend:

Figure 3. An overview of the dispatcher. IDS, intrusio

Security Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
vulnerabilities that will be subject to attacks by the
malware during dynamic analysis.

Some malware (notably the bot) require C&C commu-
nication with a remote controller on the Internet to
operate. As C&C communication protocol can be highly
customized [23,33,34], it is generally impractical to
assume that one can always find the proper decoy to
emulate a controller or assume that C&C communication
can be identified in a timely and convenient manner.
Because of the aforementioned reasons, we made the
design choice not to restrict or dispatch the C&C traffic.
Although this might sound risky, our choice is actually
based on the fact that C&C communication, by definition,
does not carry attack effect in itself. Even if it does, the
attack effect is contained within the connection between
the malware and the C&C controller. At best, C&C
communication may be used for stealing confidential
or sensitive information from a victim machine running
the malware. However, this is not an issue in our case,
because the dynamic analysis environment would not
contain any real sensitive information for a malware to steal.

3.2. Design of dispatcher

Figure 3 shows the design of the dispatcher. The dispatcher
runs on a machine with three network interface cards
ordinator
ket Queue

Decoy
Communicator

Stateful Modules

lacklist

NIC #3

Decoys

t Receiver

Traffic
Dispatching

connections
n

connections
n

command

Alert or Command

n detection system; NIC, network interface card.

629

A
B
C
D
E

Start traffic dispatching

replayed connection
redirected connection
relayed connectionPackets are replayed

Packets are redirected

Figure 4. Three-phase traffic dispatching.

Secure and transparent network for dynamic malware analysis Y.-D. Lin et al.
(NICs): NIC #1 connects to the dynamic malware analysis
environment. NIC #2 connects to the Internet. NIC #3
connects to the decoys. When a packet from the analysis
environment reaches NIC #1, it is forwarded to the coordi-
nator through the packet filter. The coordinator is in charge
of the whole traffic dispatching process. It checks each
packet against the alert receiver and the blacklist to see if
traffic dispatching should be triggered for the corresponding
network traffic. The alert receiver receives alerts from an
IDS, which is set to inspect on the traffic from the analysis
environment. If the IDS signals an alert, we shall treat the
traffic as malicious, and the traffic will be dispatched to the
decoys. Malicious traffic confirmed by the IDS can never
reach the Internet. The blacklist consists of rules for traffic
dispatching based on IP addresses and port numbers. For
instance, we can blacklist the IP addresses and port numbers
of popular SMTP servers (e.g., a.mx.mail.yahoo.com) to
prevent the malware from actually sending spam mails
through these servers. All the other traffic from the analysis
environment will have Internet access via NIC #2.

Inbound traffic from the Internet will be forwarded to the
analysis environment (via NIC#1) and also be inspected by
the IDS. If malicious traffic is detected by the IDS, traffic
dispatching will also be triggered for the corresponding
session (details in the succeeding paragraphs). This is
especially useful for certain IDS rules that are designed to
match malicious patterns in the inbound traffic. For instance,
Snort [35] rule 2924 looks in the inbound Server Message
Block (SMB [36]) response messages to detect brute-force
SMB logon attacks.

A copy of the traffic from the analysis environment is
stored in the packet queue. The stored packets will later
be used in the traffic dispatching process. Packets in the
packet queue are grouped into sessions based on the source
and destination IP addresses, so all the packets in a session
will have the same source and destination IP addresses.
Within each session, the packets are sub-grouped into
connections by the source and destination port numbers,
so all the packets in a connection will have the same source
and destination port numbers plus the same source and
destination IP addresses. Packets in each connection are
sorted by their arrival times at the packet queue.

3.2.1. Traffic dispatching
During dynamic analysis, a malware may generate three

types of traffic: attack, propagation, and miscellaneous
such as C&C communication. For security purposes, we
cannot allow attack or propagation traffic to reach the
Internet. On the other hand, we also need to create an
illusion (for the malware) that none of the traffic is blocked
or filtered. This is achieved through the traffic dispatching
process, which transparently reroutes Internet-bound attack
and propagation traffic to the decoys. Traffic dispatching
can be initiated in two situations. The first situation is when
the IP address or port number of the first packet in a
session is matched in the blacklist. All the packets in the
session will be relayed to the decoy directly by changing
the Media Access Control (MAC) and IP addresses in the
630 Sec
packet headers. This is similar to the approach used in
[20,21]. The second situation for traffic dispatching is
when IDS, with some delay, signals an alert for an ongoing
connection. Unlike the first situation, traffic dispatching in
this case may occur at any time point in a session. Some
connections in the session may have been closed, whereas
some connections are still ongoing or about to be
established. Packets in these connections cannot be relayed
directly, as this would confuse the network protocol stacks.
For instance, Transmission Control Protocol (TCP) stack
will not accept packets in a partial connection without first
seeing the packets of the three-way handshake for
establishing that connection.

There is no guarantee that the IDS in the second situation
may always detect the attack and propagation traffic by
unknown malware. However, as unknown malware is likely
to employ well-established exploits, the IDS still offers a
layer of additional protection over existing port number-
based redirection systems [20,21]. If attack traffic cannot be
detected by IDS, manual inspection of the traffic by a human
expert will be required, although such manual inspection
may not be feasible in practice because of the high amount
of unknown malware.

3.2.2. Replay, redirect, and relay
In our system, we have to use a three-phase dispatching

process that involves traffic replay, redirect, and relay
(Figure 4) to properly handle connections at various stages
in a session.

First in the dispatching process is the traffic replay. When
the dispatching process begins, some of the malware’s
network connections may have been closed. Packets in the
closed connections may need to be replayed to the decoy,
so the decoy can synchronize its states with the running
malware. Note that we store all outgoing packets from the
analysis environment in the packet queue in Figure 3. When
the dispatching process begins, the coordinator will instruct
the decoy communicator to replay the packets belonging to
the closed connections from the packet queue to the decoy
through NIC #3. Corresponding to the example in Figure 4,
connections A and B will be replayed. During the replay,
the decoy may generate response packets such as TCP
ACK. All response packets from the decoy are filtered and
not forwarded to the malware, because from the malware’s
perspective, these connections have been closed.

The second phase is traffic redirect. The phase deals
with ongoing connections in a session when the
dispatching process begins (e.g., connection C in Figure 4).
Packets that have been sent and received (e.g., left portion
urity Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Secure and transparent network for dynamic malware analysisY.-D. Lin et al.
of connection C) are processed in the same way as in the
replay phase. The decoy communicator takes the packets
from the packet queue, adapts the packets for dispatching
with the stateful modules (Section 4), and sends the
packets to the decoy through NIC #3. During the replay
part of traffic redirect, the response packets (e.g., TCP
ACK) from the decoy are filtered. For subsequent packet
transmission in an ongoing connection (e.g., the right
portion of connection C), the decoy communicator will
use the stateful modules to adapt the packets (i.e., adjust
the sequence numbers) and then redirect the packets to
the decoy. The sequence numbers in the response packets
from the decoy will also be adjusted by the stateful
module. The response packets will then be forwarded to
the analysis environment through NIC #1. The adjustment
of sequence numbers is necessary because the connection
is still ongoing, and we need to ensure that the malware
is unaware of the change in the traffic path.

The third phase is traffic relay. The phase changes
the traffic paths for future connections in a session
(i.e., connections that occur after the start of the traffic
dispatching for the session). For instance, connections D and
E in Figure 4 will be relayed in the dispatching process. The
relay is carried out by modifying the MAC and IP addresses
in the packet headers on the fly so that a relayed connection
is effectively established between the malware and a decoy.
Even though from the perspective of the malware, the
connection is still with some victim machine on the Internet.

Through traffic dispatching, our environment transparently
replays, redirects, and relays all the connections in a session.
From the malware’s point of view, the connections are still
with some victim machines on the Internet. Although in
reality, the underlying traffic has been dispatched to decoys
in the secure environment. During the traffic dispatching,
there may be states in the upper layer protocols that require
additional processing. This is handled by the stateful
modules in our system, which will be described in Section 4.

As mentioned earlier, in addition to relying on IDS to
flag malicious sessions for traffic dispatching, we also
use a blacklist to match known malicious traffic based on
port numbers and IP addresses. For instance, an IDS may
not have the signature for detecting email spam traffic.
To prevent a malware from spamming the Internet, we
maintain a blacklist of the IP addresses of well-known
SMTP servers for dispatching spam mails from malware
to the decoys.

3.3. Maintaining protocol states

Traffic dispatchingworks extremelywell for stateless protocols,
where the dispatched traffic will be valid for a decoy as long
as the decoy has the corresponding services running on it.
For stateful protocols, additional processing is required to
ensure that the dispatched traffic is compatible with the
protocol states on both ends (the decoy and the malware).

In general, when dispatching a connection, the decoy
communicator has to ensure that each packet conforms to
the protocol states on both ends (the decoy and the running
Security Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
malware). This is taken care of by the stateful modules in
the decoy communicator. Each stateful module is designed
to maintain the states at each layer of protocols. For
instance, we have a MAC stateful module at layer 2 to
handle the rewriting of MAC addresses. We also have an
IP stateful module at layer 3 for substituting IP addresses
and recalculating IP checksums. At layer 4, we have a
TCP stateful module to replace TCP sequence numbers,
acknowledge numbers, and TCP checksums. For upper-
layer protocols, we have implemented the stateful modules
for those protocols relevant to the malware samples used in
our experiments. For instance, we have a stateful module
for the NetBIOS protocol (layer 5) and a stateful module
for SMB protocol (layer 7).

3.4. Example of traffic replay, redirect, and
relay

Figure 6 shows an example of the traffic dispatching of a
session in action. The session contains three connections
A, B, and C. For the precise description of the critical
time points in the traffic dispatching process, we further
split each connection into sub-connections. For example,
connection A is split into A1 representing the start of
connection A and A2 representing the end of connection
A. Connection B is split into four sub-connections B1,
B2, B3, and B4. Here, B2 corresponds to the sending of
packet M, and B3 corresponds to the receiving of packet
N’. We use the apostrophe mark to signify a dispatched
sub-connection. For instance, when connection A1 is
replayed by the dispatcher to the decoy, the corresponding
replayed connection is marked as A’1. Similarly, we have
the redirected connection B’1 that corresponds to the
connection B1 and the replayed connection C’1 for the
connection C1.

The session begins when the malware makes connection
A to the victim on the Internet. The dispatcher forwards the
packets of connection A in both directions and also keeps a
copy of the forwarded packets in the packet queue. Later,
the malware makes connection B (bearing the same source
and destination IP addresses as connection A) with the
would-be victim. The dispatcher again forwards and keeps
a copy of the packets in connection B. Now, assume that in
the middle of connection B, the malware transmits a packet
M containing some malicious payload that triggers an IDS
alert. At this time, the dispatcher will flag the session as
malicious and begin the traffic dispatching process for the
session. Packet M and all subsequent packets bound for the
Internet in the session will be dispatched to the decoy.

The first step in the traffic dispatching is to replay
packets in connection A, which was finished before the
start of the dispatching process. Connection A is replayed
to the decoy as connection A’. Subsequently, connection
B, which is still ongoing, has to be redirected. For those
packets in connection B transmitted before packet M, they
are essentially replayed as B’1 to the decoy. During the
replay of A’ and B’1, the decoy may generate corresponding
response packets such as TCP ACKs. We ignore these
631

NIC #2NIC #1

Netfilter
(iptables FORWARD chain)

Snort

Callback function
of libnetfilter_queue

Alert Receiver
alert

(UNIX domain socket)

Decoy
Communicator

NIC #3

libnetfilter_queue

kernel space
user space

Legend
packet flow

libnetfilter

Snort alert

analysis
environment

Internet decoy(s)

Figure 5. Implementation of dispatcher. NIC, network interface
card.

Secure and transparent network for dynamic malware analysis Y.-D. Lin et al.
response packets from the decoy, because from the
malware’s point of view, the response packets had been
received in connections A and B1. Subsequent transmissions
of packets in connection B (i.e., B3 and B4) are essentially
relayed between the decoy and the malware. Note that, for
this part of connection B, we need to relay the response
packet N due to the replayed packet M’ back to the malware
(i.e., B’3!B3), or the ongoing connection B can get broken
prematurely. Connection C is opened after the dispatching
process begins, so it will be simply relayed in each direction
by the dispatcher.

3.5. Network security and transparency

The network security guaranteed by the environment is that
the outbound network traffic that matches a blacklist rule or
triggers an IDS alert (Figure 3) will never reach the Internet.
In practice, the blacklist rules may have loopholes and IDS
may not detect unknown attack traffic, so the environment
does not provide absolute network security. Later in Section
6, we will discuss why the environment is still very useful
even with such a weakened network security guarantee.

The environment provides network transparency for
a malware under analysis in two aspects. First, the traffic
that does not match blacklist rules or trigger IDS alerts is
untouched. The traffic can reach the Internet freely, and
hence, from the perspective of the malware, the network
environment is transparent for the traffic. Second, the
traffic that matches a blacklist rule or triggers an IDS alert
will be dispatched to the decoys. If the network protocol
employed in the dispatched traffic has corresponding
stateful modules and decoys, then the malware will not
notice the dispatching of the traffic. That is, the malware
should continue its follow-up activities as if the traffic
had reached its designated targets on the Internet, so the
network is transparent to the malware. In practice, one
may only have the stateful modules and the decoys for a
limited number of network protocols as in the case of the
current prototype implementation (Section 4). Traffic
without matching stateful modules or decoys can still be
dispatched, but the dispatching will disrupt the traffic and
interrupt the malware’s operation.
4. IMPLEMENTATION

We set up a testbed environment as shown in Figure 2.
The malware in the environment has to go through the
dispatcher to reach the Internet. Through the dispatcher,
the attack and propagation traffic from the malware are
redirected to the decoys in the testbed environment. The
implementation details of the dispatcher and the decoy
are given in the following.

4.1.1. Dispatcher
The open-source implementation [1] of the dispatcher

runs on a Linux-based personal computer with three NICs
(NICs #1, #2, and #3) as shown in Figure 5. NIC #1 is
632 Sec
connected to the analysis environment, and NIC #2 is
connected to the Internet. NICs #1 and #2 are bridged
together, so traffic from the Internet can reach the malware
in the analysis environment directly when allowed by the
dispatcher. We use Netfilter [37] to filter the traffic at
NIC #1. Non-malicious traffic from the analysis environ-
ment is forwarded to NIC#2 through Netfilter. The
dispatcher also keeps an eye on the traffic at NIC #1
through the libnetfilter_queue interface. A copy of the
traffic at NIC #1 is stored in the packet queue (Figure 3)
in case the traffic needs to be replayed. At the same time,
the dispatcher relies on a blacklist and the IDS to detect if
the traffic is malicious. When malicious traffic is detected
at NIC #1, the decoy communicator will initiate the process
of traffic dispatching for the corresponding traffic session.

The decoy communicator maintains a pool of threads
for traffic dispatching (replay, redirect, and relay; see also
Figure 6). For traffic replay, which deals with closed network
connections, the decoy communicator just copies the
payloads of the saved packets from the packet queue and
uses standard socket to regenerate the packets for replay.
For traffic redirect and relay, we use raw socket and the
stateful modules to create the corresponding packets.

4.1.2. Stateful modules
Stateful modules are used to synchronize protocol states

during traffic dispatching. We have implemented the
stateful modules for MAC, TCP, SMB, and NT LAN
Manager Security Support Provider (NTLMSSP [38]).
The SMB stateful module rewrites the tree, process, user,
and multiplex id fields in an SMB packet (Figure 7 on
the fly during traffic redirect. The NTLMSSP stateful
module is used to fix the protocol states during an SMB
logon process.

As an example for showing the role of stateful modules in
traffic dispatching, let us consider that a malware is
attempting an SMB logon with a target victim machine
through brute-force password guessing as shown in
Figure 8. Assume that before the malware can successfully
guess the victim’s password, the IDS generates an alert
(due to the excessive number of failed SMB logon attempts)
urity Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Malware Victim

A1. connection A, start

A2. connection A, finish

B1. connection B, start

B2. connection B,
packet M(IDS alert)

B'1. redirected B', start

B'2. redirected B', packetM'

ongoing

malicious

connection is

immediately

cut from the

Internet
A'1. replayed A', start

A'2.r eplayed A', finish

B4. connection B, finish B'4.r edirected B', finish

C2. connection C, finish C’2. relayed C, finish

C1. connection C, start C’1. relayed C, start

B3. connection B,
response packet N'

B'3. response packetN

Dispatcher Decoy

Figure 6. An example of traffic replay, redirect, and relay of connections in a malicious session.

Command ReservedRCLS ERR
ERR ReservedREB/FLG

Reserved
Reserved
Reserved

Tree ID Process ID
User ID Multiplex ID

WCT VWV
BCC BUF

8 2416 32 bits

Figure 7. Server Message Block packet format.

malware would-be victim
(1) SMB_COM_NEGOTIATE Request

(2) SMB_COM_NEGOTIATE Response

(3) SMB_COM_SESSION_SETUP_ANDX Request 1
[NTLM NEGOTIATE_MESSAGE]

(4) SMB_COM_SESSION_SETUP_ANDX Response 1
[NTLM CHALLENGE_MESSAGE]

(5) SMB_COM_SESSION_SETUP_ANDX Request 2
[NTLM AUTHENTICATE_MESSAGE]

(6) SMB_COM_SESSION_SETUP_ANDX Response 2
Error: STATUS_LOGON_FAILURE

Figure 8. A Server Message Block (SMB) logon failure process.

Secure and transparent network for dynamic malware analysisY.-D. Lin et al.
and causes the dispatcher to initiate traffic dispatching for the
connections in the corresponding session. Through the traffic
dispatching, the ongoing SMB logon connection will be
redirected to the decoy. Assume that the connection has three
transmitted packets (1), (3), and (5), which are kept in the
packet queue. Now, the dispatcher will first replay packet
(1) SMB_COM_NEGOTIATE Request to the decoy.
Security Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Then, the dispatcher will replay packet (3) SMB_COM_
SESSION_SETUP_ANDX Request, for which the decoy
will reply with an NTLM_CHALLENGE_MESSAGE
(similar to packet (4) but with a different nonce value). If
the dispatcher continues to replay packet (5), the logon
process will fail, as the response in packet (5) is only good
for the original challenge nonce in packet (4). In this case,
the NTLMSSP stateful module is used to recalculate the
corresponding response value for the new challenge nonce,
so the redirected logon process may proceed correctly.

4.1.3. Decoy
The implementation of the decoy is a (virtual) machine

loaded with operating system and network services treated
as the targets for the dispatched attack and propagation
traffic. In our implementation, we have a decoy acting as
an SMTP server and decoys running vulnerable SMB
and NetBIOS services. Services on the decoy may
require extra settings to ensure the malware cannot cause
damage to the Internet via them. For instance, the SMTP
decoy is set to silently skip the delivery of outgoing emails
to the Internet.
5. EXPERIMENT STUDIES

For evaluation, we compared the proposed secure and
transparent network environment with both the closed
network environment and the open network environment
(Figure 9). The comparisons are based on dynamic analysis
results from running 12 real-world malware samples in
each of the network environments. The selection criteria
for malware samples and the setup of the experiment
environment are presented in Section 5.1. The comparison
633

Analysis
Environment

Internet

Figure 9. Open network.

Secure and transparent network for dynamic malware analysis Y.-D. Lin et al.
on network transparency with respect to each of the three
environments is given in Section 5.2. The comparison on
network security is given in Section 5.3. Two case studies
are provided in Section 5.4 and Section 5.5 to give more
details about the operation of the secure and transparent
network environment.
5.1. Sample selection and experiment
environment

We collected more than 2000 suspicious malware samples
from different sources including peer-to-peer file sharing,
email attachments, phishing websites, and Nepenthes
honeypots [39]. As the focus of this work is about achiev-
ing network security and network transparency in
dynamic malware analysis environment, we concentrated
only on those samples that do exhibit malicious network
behavior. Therefore, we scanned the samples with four
different anti-virus scanners and kept only those flagged
by all the scanners. This resulted in a total of 124 samples.
Next, we executed each of the remaining 124 malware
samples and waited for 2min to see if they exhibit any
network activities. We removed those samples that exhibit
no network activity at all. We also removed those
samples that could neither establish a successful TCP
connection nor receive any incoming packet transmission
from a remote server. In the end, we had a selection of
12 malware samples as shown in Table I. The 12
malwares were separated into two groups: malware
without C&C and malware with C&C. The discovery
time is based on [3].
Table I. Selecte

Type Malware Scan result

Malware
without C&C

m7.exe Email-Worm.Win32.NetSky.q 24
m10.exe Worm.Win32.Fujack.aa 02
m11.exe Worm.Win32.Fujack.aa 02
m12.exe Worm.Win32.Viking.n 03

Malware
with C&C

m1.exe Trojan.Win32.Scar.bqfv 25
m2.exe Packed.Win32.Black.d 06

Backdoor.Win32.Rbot.gen
m3.exe Trojan-PSW.Win32.Dybalom.bu 15
m4.exe P2P-Worm.Win32.Palevo.vyc 05
m5.exe Trojan-PSW.Win32.Dybalom.bu 15
m6.exe Trojan-PSW.Win32.Dybalom.bu 15
m8.exe Virus.Win32.Tenga.a 22
m9.exe Trojan-PSW.Win32.LdPinch.gqo 13

C&C, command and control; SMB, Server Message Block.

634 Sec
The first group, malware without C&C, consists of three
worms and one email spammer. The worms (m10.exe,
m11.exe, and m12.exe) propagate by brute-force attack
on weak SMB logon password. After a successful logon,
the worm binaries are copied to the target machine and
get executed. The email spammer (m7.exe) propagates by
sending spam emails with copies of its binary “Worm/
NetSky.P” in the attachment.

The second group corresponds to malware with C&C
communication. In this group, we have two spammers
(m8.exe and m9.exe) that communicate with C&C
servers for retrieving updated versions of spam mail
contents and recipient lists. We also have botnet agents
(m1.exe, m2.exe, m3.exe, m4.exe, m5.exe, and m6.
exe), which connect to C&C servers awaiting commands
for follow-up attack or propagation actions. We observed
that upon receiving commands from the C&C server,
these malwares would start scan machines randomly on
the network (both LAN and Wide Area Network
addresses) and attack machines running vulnerable
NetBIOS services.

The samples in Table I also confirmed our assumption
that the attack and propagation traffic employed by new
malware are not necessarily as new. For instance, the
malware m1.exe and m4.exe that were discovered in 2010
still relied on the same SMB password guessing attack as
had been employed by m2.exe in 2004. Although it is indeed
impossible to guarantee that an IDS can detect new types of
attack traffic, we believe that in practice, it still offers a stron-
ger protection over purely port number-based redirection
systems, which will not be able to distinguish attack traffic
that slips through a non-blacklisted port.

We set up an experiment environment according to the
architecture in Figure 3. The high-level network topology
of the secure and transparent network environment is shown
in Figure 10. We also set up a closed network environment
(Figure 11) and an open network environment (Figure 9)
for comparison. The decoys are machines loaded with
vulnerable network services.
d samples.

Discovered Activities

March 2004 09:02 GMT “Worm/NetSky.P” attachment
July 2007 14:18 GMT SMB password guessing
July 2007 14:18 GMT SMB password guessing
August 2006 22:09 GMT SMB password guessing
February 2010 16:09 GMT SMB password guessing
August 2004 12:02 GMT SMB password guessing

August 2009 09:06 GMT SMB password guessing
March 2010 12:11 GMT SMB password guessing
August 2009 09:06 GMT SMB password guessing
August 2009 09:06 GMT SMB password guessing
July 2005 17:11 GMT Get email content and

recipient lists from the C&CFeb 2009 15:42 GMT

urity Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Decoys

Dispatcher
Analysis

Environment
Internet

AB

C

Figure 10. Secure and transparent network (our environment).

Analysis
Environment

Internet

Vulnerable
SMB server

Figure 11. Closed network. SMB, Server Message Block.

Secure and transparent network for dynamic malware analysisY.-D. Lin et al.
5.2. Effectiveness of transparent network
environment

In this part of the experiment, we evaluate the network
transparency by studying the network traffic collected
from running malware in each of the three environments.
Each malware was executed in an analysis environment
for 10min. We use TCPDUMP [40] to record the network
traffic.

Table II summarizes the observed network activities
from running malware without C&C in the closed network
environment and in our secure and transparent network
environment. In the closed network environment, the
majority of the packets are TCP SYNs, as connections to
the outside world are blocked. On the other hand, we saw
many more network activities in our environment. For
instance, we observed that m7.exe attempted to initiate
SMTP connections for sending spam emails, and malware
m10.exe generated many more traffic on ports 139 and 445
(369199 packets) compared with the result from the closed
network environment (707 packets). We were also able to
observe the hypertext transfer protocol (HTTP) connections
made by m10.exe in our environment. In fact, the network
Table II. Network activities b

Malware Closed network

m7.exe No response for DNS MX record.
m10.exe 707 packets for TCP ports 139 and 445

(707 incomplete connections).
m11.exe 795 packets for TCP ports 139 and 445

(792 incomplete connections).
m12.exe Probe machines by ICMP echo request.

C&C, command and control; TCP, Transmission Control Protocol; HTTP, hypert

Security Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
traffic from m10.exe triggered the Snort alert “NetBIOS
SMB-DS repeated logon failure,” and it was the subsequent
traffic dispatching that allowed us to have a more thorough
view of the network behavior by m10.exe. The situations
with m11.exe and m12.exe are similar to m10.exe. The spam
mail content from m7.exe can be completely captured with
our environment if we provide a proper SMTP decoy (details
given in Sections 5.3 and 5.4).

Whereas none of the malware in Table II involved
C&C communication, we found that they still require
Internet connections. For instance, m7.exe requires Internet
connection for sending spam mails, and m10.exe, m11.exe,
and m12.exe all made HTTP connections to advertising sites
on the Internet. If we execute these malwares in the closed
network environment, none of these behaviors can be
observed. This shows the importance of network transparency
in dynamic malware analysis.

The results for malware with C&C are shown in
Table III. Most of the network traffic in the closed network
environment corresponds to unsuccessful connection
attempts (i.e., TCP SYNs). On the other hand, many more
network activities were observed in the secure and transparent
network environment. We successfully observed that m4.exe
connected to an Internet Relay Chat server on port 47221 and
downloaded the malicious payload “TR/Kazy.15451.21” via
a separate HTTP connection. Soon after that, m4.exe began
to scan for vulnerable machines (on both LAN and WAN)
at port 445 for propagation. Malwares m8.exe and m9.exe
are two spammers that also involved C&C communication.
They connected to C&C servers on port 80 to download the
latest spam content and the recipient list. In the secure and
transparent network environment, we could observe the
complete process of C&C communication and capture the
spam emails sent by these two malwares.

5.2.1. Open network is not always more
transparent

We noticed that in some situations, the secure and
transparent network environment could actually show
more behaviors about a malware than the open network
environment. This happened when a malware depended
on some network service on the Internet that was no longer
functioning but could be simulated by a decoy. The secure
and transparent network environment could help dispatch
y malware without C&C.

Our environment

Nine spam email attempts.
369 199 packets for TCP ports 139 and 445 (102 connections).
HTTP traffic to advertising websites.
23 161 packets for TCP ports 139 and 445 (100 connections).
HTTP traffic to advertising websites.
Probe machines by ICMP echo request.
60 285 packets for TCP ports 139 and 445 (24 connections).
HTTP traffic to advertising websites.

ext transfer protocol; ICMP, Internet Control Message Protocol.

635

Table III. Network activities by malware with C&C.

Malware Closed network Our environment

m1.exe No response for DNS A query. TCP C&C connection (60.165.98.198:8680)
No response for TCP SYN.

m2.exe No response for DNS A query. TCP C&C connection (70.107.249.167:6668)
TCP SYN flooding at port 139 after receiving “xvvv asn1smbnt 100 0 0 -b -r -s”
command

m3.exe No response for DNS A query. TCP C&C connection (74.117.174.122:16667)
m5.exe TCP SYN at port 445 after receiving “.advscan asn445 100 5 0 -b -r -s” command
m6.exe FTP connection with non-standard port
m4.exe No response for DNS A query. TCP C&C connection (46.161.29.202:47221)

HTTP GET “TR/Kazy.15451.21” after receiving “.asc -S -s|.http http://black-cash.
com/rep.exe|.asc exp_all 10 0 0 -b -s|.asc exp_all 20 0 0 -b -r -e –s"”command
HTTP GET status report from other bots in the C&C channel
TCP SYN at port 445 after receiving command

m8.exe No response for DNS MX query. TCP C&C connection (208.77.45.146:80)
TCP SYN flooding at port 139. TCP SYN at port 139

34 spam emails
m9.exe No response for DNS MX query. TCP C&C connection (208.77.45.146:80)

179 spam emails

C&C, command and control; TCP, Transmission Control Protocol; HTTP, hypertext transfer protocol.

Secure and transparent network for dynamic malware analysis Y.-D. Lin et al.
traffic to the decoy and allowed the malware to continue its
execution. For example, we observed that the SMTP
servers used by m7.exe for sending email spams no longer
accepted SMTP connections from the malware anymore.
With the secure and transparent network environment, we
were able to set up relay rules so that SMTP connections
from the analysis environment were transparently
dispatched to an SMTP decoy. By doing so, we captured
14 spam emails sent by m7.exe during the experiment. In
contrast, zero spam emails were captured for m7.exe in
the open network environment as shown in Table IV.
Table IV. Number of spam emails sent.

Malware
Our

environment
Open

network
Improvement

rate (%)

m7.exe 14 0 N/A
m8.exe 117 68 72.06
m9.exe 118 70 68.57

N/A, not applicable.

Table V. Leaked attack or propagation traffic fro

Malware Leaked attack and propagat

m7.exe None. (SMTP server is no longer wo
m1.exe, m4.exe, m5.exe,
m6.exe, m11.exe, m12.exe

SMB password guessing

m2.exe, m3.exe SMB password guessing

m10.exe, SMB password guessing

m8.exe, m9.exe Several spam emails are delivered to

SMTP, Simple Mail Transfer Protocol; SMB, Server Message Block.

636 Sec
The other two spammer malwares m8.exe and m9.exe
both targeted Yahoo email accounts. Some of their SMTP
connections were blocked by the anti-spam mechanism of
Yahoo [41]. If we use the secure and transparent network
environment together with the SMTP decoy, all the spam
emails could be successfully delivered and captured.

5.3. Effectiveness of secure network
environment

We evaluate the security of our environment by scrutinizing
the Internet-bound traffic (traffic at point B in Figure 10) in
the experiments of Section 5.2. If the environment is secure,
the Internet-bound traffic should contain no attack or propa-
gation traffic that may damage machines on the Internet.

As shown in Table V, we observed that the only attack
or propagation traffic leaked to the Internet was part of the
SMB password guessing attack traffic (i.e., m10.exe, m11.
exe, and etc.) and email spamming traffic (i.e., m8.exe and
m9.exe). The reason why the SMB password guessing traf-
fic could reach the Internet is because the IDS rule (Snort
m the secure and transparent environment.

ion traffic Dispatched attack and propagation traffic

rking.) Spam emails with malware in the attachment
SMB password guessing
Transfer of malware binary via SMB
SMB password guessing
Shellcode injection
SMB password guessing
Transfer of malware binary via SMB
Shellcode injection

Yahoo mail server.Spam emails

urity Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://black-cash.com/rep.exe
http://black-cash.com/rep.exe

Secure and transparent network for dynamic malware analysisY.-D. Lin et al.
rule 2924) for detecting the attack has a threshold value.
The rule is triggered only when there are more than 10
failed SMB logon attempts in 60 s. For the email spam-
ming traffic, it was because Snort did not have a corre-
sponding rule for detecting it. In fact, the spam mails sent
by m8.exe and m9.exe are just plain text mails, which carry
no attachments. However, it is possible that the body text
of the mail could carry messages that may be used for so-
cial engineering or phishing attacks. In the future, we can
integrate a spam mail filter into the IDS infrastructure to
further enhance the security of our environment for this
particular type of traffic.

From Table V, we can see that the secure and transpar-
ent network environment was able to dispatch the SMB
password guessing traffic early on (after about 10 failed
logon attempts) and prevented the propagation of malware
binary to the Internet. However, if a victim machine had
used a weak SMB password, hypothetically the malware
might have been able to break into the victim machine be-
fore the traffic dispatching kicked in. On the other hand,
for m7.exe, if a working SMTP server had been present,
hypothetically the malware could have also succeeded in
its propagation beyond the border of our environment.

To show that our environment is secure even in these
hypothetical situations, we extended the experiment
testbed with an SMB server that takes empty logon pass-
word and an SMTP server that unconditionally accepts
and relays emails from m7.exe as shown in Figure 12.
We redid the experiment and found that the SMB password
guessing attack could succeed within three attempts, and
Snort rule 2924 was never triggered. However, when
malware started transmitting its executable binary through
the established SMB connection, Snort immediately raised
alert “NetBIOS SMB-DS ADMIN$ Unicode share access”
(Snort rule 2473), and the connection was dispatched right
away. For m7.exe, the malware could succeed in
establishing connection with the SMTP server. However,
once the malware started sending its malicious payload as
the email attachment over the SMTP connection (details
Figure 13. DNS que

Decoys

Dispatcher
Analysis

Environment
Internet

AB

C

Vulnerable
SMB server

SMTP
server

Figure 12. Test environment with vulnerable Server Message
Block (SMB) server and working Simple Mail Transfer Protocol

(SMTP) server for public relay.

Security Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
about the payload is described in Section 5.4), Snort imme-
diately raised alert “SHELLCODE x86 inc ecx NOOP”
(Snort rule 1394), and the SMTP connection was
dispatched before the SMTP server could finish receiving
the email with the payload.
5.4. Case study: running m7.exe

In Section 5.3, m7.exe queried Domain Name System Mail
Exchanger (DNS MX) records to look for SMTP servers
(Figure 13) for sending spam emails. We spoofed the
DNS records to trick m7.exe into using the SMTP server
that we set up. Traffic dispatching occurred during the
sending of spam email by m7.exe when Snort rule 1394
was triggered (Figures 14 and 15). This caused the dis-
patcher to initiate the three-stage traffic dispatching process
(replay, redirect, and relay) on the SMTP session. The spam
email never reached the Internet. On the other hand, the
transparent traffic dispatching allowed the decoy to capture
the entire content of the spam email. We were able to deter-
mine from the captured content that the email comes with a
copy of the malware itself Worm/NetSky.P in the attachment.
5.5. Case study: stateful module and traffic
dispatching

The use of stateful modules to rewrite MAC address (layer
2), IP address (layer 3), and TCP ACK number (layer 4) is
essential for transparent traffic dispatching. However, the
use of stateful modules for upper-layer protocols may not
be as obvious. In this case study, we shall give an example
showing the need for layer 7 stateful module in traffic
dispatching.

One example where layer 7 stateful module was needed
is the SMB protocol (a layer 7 protocol) used by some of
the malware in our experiments (Table I). If there was no
layer 7 stateful module, generally the traffic dispatching
ries by m7.exe.

Figure 14. Simple Mail Transfer Protocol (SMTP) session by
m7.exe during sending spam email.

637

Figure 15. Snort alert for m7.exe.

Figure 18. Using “at” scheduler.

Figure 17. Transfer the malware binary via Server Message
Block.

Secure and transparent network for dynamic malware analysis Y.-D. Lin et al.
would not succeed: The malware would not be able to
propagate to or cause damage to the decoy. Pertaining to
our environment, the reason is twofold: On one hand, such
a malware tends to start SMB logon attempts with weak
passwords such as the blank password first. Fortunately,
these weak passwords did not work for the victim in our
experiments and would result in a series of failed logon at-
tempts. This eventually triggered the Snort alert “NetBIOS
SMB-DS repeated logon failure” followed by the traffic
dispatching. From the malware’s perspective, none of the
logon attempts thus far succeeded. On the other hand,
when the SMB connections were replayed and redirected
to the decoy, the SMB logon request that used the blank
password (exactly what we set for the decoy) would suc-
ceed in the logon process with the decoy. This resulted in
an inconsistency in the SMB protocol states between the
malware and the decoy.

The situation did not get any better even in the relay
phase. In the relay phase, the malware would continue with
its SMB logon attempts with the decoy (via the relayed
connections). However, the malware was smart enough
not to use the same password more than once, so it could
never succeed in the logon process as the decoy was
expecting the blank password, which the malware had used
once long ago (Figure 16).

In the end, we needed to rely on a layer 7 module to re-
solve the inconsistency in the SMB protocol states. In the
current implementation, the layer 7 stateful module acted as
a proxy for the relayed SMB connections between the
malware and the decoy. The module replaced the chal-
lenge-response fields in the SMB packets so that the malware
could logon to a decoy with arbitrary password through a re-
layed SMB connection. With the help of the layer 7 stateful
module, we were able to capture the propagation of malware
m10.exe (being injected as Games.exe onto a victimmachine
as shown in Figure 17) and the scheduler registration activity
on the victim machine that was used to invoke the injected
malware binary as shown in Figure 18.
6. LIMITATION AND DISCUSSION

The use of IDS for distinguishing attack traffic from be-
nign traffic may be regarded as insecure because no
existing IDS can guarantee the detection of unknown
Figure 16. Server Message Block (SMB) log

638 Sec
attacks. Unknown malware running in the proposed
environment can possibly evade traffic redirection and
attack machines on the Internet. However, we believe the
risk is well worth for the timely dynamic analysis of
malware binaries. On one hand, if an unknown malware
collected from the Internet can evade IDS detection, there
is really no good reason why the proposed environment
would make the Internet less secure, as the unknown
malware most likely has been rampaging through the Inter-
net. On the other hand, we believe that unknown malwares
are likely to employ a known attack because, as a matter of
fact, the volume of new malware is obviously growing at a
much higher rate than the volume of new zero-day exploits.
An IDS can be handy in dealing with these malware.

Anomaly-based IDS can also be applied to the environ-
ment to help detect attack and propagation traffic by
unknown malware. However, anomaly-based IDS tend to
have a high false-positive detection rate. False positives
will cause unnecessary traffic dispatching and will increase
the chance of traffic without corresponding stateful
modules or decoys to be dispatched.

The evaluation only employs a limited number of
malware samples, as the focus of the evaluation is to dem-
onstrate the feasibility of transparent traffic dispatching
and the use of IDS in the dispatching process. For a
large-scale evaluation against a sizeable volume of
malware samples, we need to implement the stateful
modules for all well-known protocols (current prototype
only implements MAC, TCP, SMB, and NTLMSSP) and
the corresponding decoys. However, the dispatching
process will just be the same, and the samples used in the
evaluation suffice to demonstrate the validity of the
proposed environment.
on packets (no layer 7 stateful module).

urity Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Secure and transparent network for dynamic malware analysisY.-D. Lin et al.
7. CONCLUSIONANDFUTUREWORK

Dynamic malware analysis is conventionally performed in
a closed network environment without Internet connection.
This effectively prevents the malware under analysis from
attacking machines on the Internet. However, for malware
that depends on Internet connections to operate, a closed
network environment would defeat the purpose of dynamic
analysis, as much of the malware’s network behavior will
not be manifested and get analyzed.

We propose the secure and transparent network
environment that allows a malware under dynamic analysis
to manifest most of its network behavior. Non-malicious
control traffic is allowed access to the Internet, whereas
malicious attack and propagation traffic are dispatched to
decoys within the analysis environment.

To ensure that the traffic dispatching is transparent to
the malware, network connections at different stages have
to be handled in different ways. We devise a three-stage
process that involves traffic replay for closed connections,
traffic redirect for ongoing connections, and traffic relay
for subsequent new connections.

The evaluation result shows that our system signifi-
cantly increases the amount of observed network activities
during dynamic malware analysis compared with the
closed network environment. In some situations, the use
of traffic dispatching and decoys in our system can even
improve the effectiveness of dynamic analysis beyond
what an open network environment can offer. Except for
a few spam mails with advertising contents, our system
successfully dispatches all outbound malicious traffic to
decoys throughout the evaluation. The leakage of spam
mails can be addressed by setting up dispatching rules
based on protocol types (i.e., dispatch all SMTP traffic
by default) or employing an anti-spam filter as part of the
IDS infrastructure. Both are items we plan to pursue as part
of the future works.

The widespread use of mobile devices including
smartphones and tablets has created a new venue for
malware [42]. Some of these malware also involve Internet
connections in their attack vectors [42]. Our environment
can be used to redirect the attack and propagation traffic
sent from the Wi-Fi interface of a mobile device provided
that corresponding decoys and stateful modules are in
place. However, mobile devices can also send traffic
through the telephony network (e.g., the Long-Term
Evolution network), which is currently not supported by
the environment. As a future work, we will investigate on
possibilities for extending the environment to support the
telephony network interface of mobile devices.
ACKNOWLEDGEMENTS

This work was supported in part by the National
Science Council (NSC) and the National Center of High-
Performance Computing (NCHC) in Taiwan.
Security Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
REFERENCES
1. Network Benchmarking Lab. BotMasquerader,

2012/12/19. Available: http://sourceforge.net/projects/
botmasquerader/files/

2. Symantec. Threat Explorer—Spyware and Adware,
Dialers, Hack tools, Hoaxes and other risks, 2011/9/
16. Available: http://www.symantec.com/business/
security_response/threatexplorer/

3. Kaspersky. Kaspersky Securelist, 2011. Available:
http://www.securelist.com/en/find

4. Szor P. The Art of Computer Virus Research andDefense.
Addison-Wesley Professional: Boston, USA, 2005.

5. Bayer U, Moser A, Kruegel C, Kirda E. Dynamic
analysis of malicious code. Journal in Computer
Virology 2006; 2:67–77.

6. Collberg C, Thomborson C, Low D. A Taxonomy
of Obfuscating Transformations. Department of
Computer Science, The University of Auckland: New
Zealand, 1997; 1173–3500.

7. Willems C, Holz T, Freiling F. Toward automated
dynamic malware analysis using cwsandbox. Security
& Privacy, IEEE 2007; 5:32–39.

8. Bayer U, Kruegel C, Kirda E. TTAnalyze: a tool for analyz-
ing malware. In 15th Annual Conference of the European
Institute for Computer Antivirus Research (EICAR), 2006.

9. Greamo C, Ghosh A. Sandboxing and virtualization:
modern tools for combating malware. Security &
Privacy, IEEE 2011; 9:79–82.

10. Chen X, Andersen J, Mao ZM, Bailey M, Nazario J.
Towards an understanding of anti-virtualization and
anti-debugging behavior in modern malware. In
Dependable Systems and Networks. IEEE/IFIP:
Anchorage, Alaska, USA, 2008; 177–186.

11. Puri R. Bots & botnet: an overview. In SANS Institute.
SANS Institute: Bethesda, Maryland, 2003.

12. Barford P, Yegneswaran V. An inside look at botnets.
In Malware Detection. Springer: Berlin, Germany,
2007; 171–191.

13. Carpenter M, Liston T, Skoudis E. Hiding
virtualization from attackers and malware. Security &
Privacy, IEEE 2007; 5:62–65.

14. Crandall JR, Wassermann G, de Oliveira DAS, Su Z,
Wu SF, Chong FT. Temporal search: detecting hidden
malware timebombs with virtual machines. ACM
SIGPLAN Notices 2006; 41:25–36.

15. Dagon D, Gu G, Lee C, Lee W. A Taxonomy of
Botnet Structures. IEEE Annual Computer Security
Applications Conference. Miami Beach, Florida 2007.

16. Norman. Norman Sandbox, 2011. Available: http://
www.norman.com/security_center/security_tools/

17. Stewart J. The Reusable Unknown Malware Analysis
Net, 2011. Available: http://www.secureworks.com/
cyber-threat-intelligence/tools/truman/
639

http://sourceforge.net/projects/botmasquerader/files/
http://sourceforge.net/projects/botmasquerader/files/
http://www.symantec.com/business/security_response/threatexplorer/
http://www.symantec.com/business/security_response/threatexplorer/
http://www.securelist.com/en/find
http://www.norman.com/security_center/security_tools/
http://www.norman.com/security_center/security_tools/
http://www.secureworks.com/cyber-threat-intelligence/tools/truman/
http://www.secureworks.com/cyber-threat-intelligence/tools/truman/

Secure and transparent network for dynamic malware analysis Y.-D. Lin et al.
18. Kim M, Mun Y. Design and implementation of the
honeypot system with focusing on the session redirec-
tion. In Computational Science and Its Applications–
ICCSA 2004. Springer: Berlin, 2004; 262–269.

19. Kim I, Kim M. The DecoyPort: redirecting hackers
to honeypots. Network-Based Information Systems.
IEEE: Regensburg, Germany, 2007:59–68.

20. Alberdi I, Alata E, Nicomette V, Owezarski P, Kaâniche
M. Shark: Spy honeypot with advanced redirection kit.
In IEEE Workshop on Monitoring, Attack Detection
and Mitigation (MonAM’07), 2007; 47–52.

21. Alata É, Alberdi I, Nicomette V, Owezarski P,
Kaâniche M. Internet attacks monitoring with dynamic
connection redirection mechanisms. Journal in
Computer Virology 2008; 4:127–136.

22. John JP, Moshchuk A, Gribble SD, Krishnamurthy A.
Studying spamming botnets using Botlab. In
Symposium on Networked System Design and
Implementation, 2009.

23. Grizzard JB, Sharma V, Nunnery C, Kang BBH,
Dagon D. Peer-to-peer botnets: overview and case study.
In Proceedings of the first conference on First Workshop
on Hot Topics in Understanding Botnets, 2007; 1–1.

24. Ion A. Malicious Traffic Observation Using a Frame-
work to Parallelize and Compose Midpoint Inspection
Devices. Universite de Toulouse, 2010.

25. Kreibich C, Weaver N, Kanich C, Cui W, Paxson V.
GQ: practical containment for measuring modern
malware systems. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement
conference, 2011; 397–412.

26. Vrable M, Ma J, Chen J, et al. ACM SIGOPS
Operating Systems Review. Scalability, fidelity, and
containment in the potemkin virtual honeyfarm
ACM: Brighton, UK, 2005; 148–162.

27. Comparetti PM, Wondracek G, Kruegel C, Kirda E.
Prospex: protocol specification extraction. In Sympo-
sium on Security and Privacy, 2009; 110–125.

28. Cho CY, Shin ECR, Song D. Inference and analysis of
formal models of botnet command and control proto-
cols. In Computer and Communications Security.
ACM: Chicago, IL, USA, 2010; 426–439.
640 Sec
29. Berger-Sabbatel G, Duda A. Analysis of Malware
Network Activity. In Multimedia Communications,
Services and Security. Springer: Berlin, Germany,
2011; 207–215.

30. Song D, Brumley D, Yin H, et al. BitBlaze: a new
approach to computer security via binary analysis. In
Information systems security. Springer: Berlin,
Germany, 2008; 1–25.

31. GFI.com. Malware analysis with GFI Sandbox,
2013/1/14. Available: http://www.gfi.com/malware-
analysis-tool

32. International Secure Systems Lab. Anubis: analyzing
unknown binaries, 2013/1/14. Available: http://anu-
bis.iseclab.org/

33. Starnberger G, Kruegel C, Kirda E. Overbot: a botnet
protocol based on Kademlia. In Proceedings of the
4th International Conference on Security and Privacy
in Communication Netowrks, 2008; 13.

34. Chiang K, Lloyd L. A case study of the rustock rootkit
and spam bot. In Proceedings of the first conference on
First Workshop on Hot Topics in Understanding
Botnets, 2007; 10–10.

35. Snort. Snort, 2011. Available: http://www.snort.org/
36. SMB Protocol, 2011. Available: http://www.protocols.

com/pbook/ibm.htm
37. Netfilter. Netfilter, 2011. Available: http://www.

netfilter.org/
38. Microsoft. NT LAN Manager (NTLM) Authentication

Protocol Specification, 2011. Available: http://msdn.
microsoft.com/en-us/library/cc236621.aspx

39. Baecher P, Koetter M, Holz T, Dornseif M, Freiling F.
The nepenthes platform: an efficient approach to
collect malware. In Recent Advances in Intrusion
Detection. Springer: Hamburg, Germany, 2006; 165–184.

40. TCPDUMP, 2011. Available: http://www.tcpdump.org/
41. Yahoo. Yahoo 421 SMTP Error Code, 2011. Available:

http://help.yahoo.com/kb/index?page=content&y=
PROD_MAIL_ML&locale=en_US&id= SLN3434

42. Felt AP, Finifter M, Chin E, Hanna S, Wagner D. A
survey of mobile malware in the wild. In Proceedings
of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices, 2011; 3–14.
urity Comm. Networks 2014; 7:626–640 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://www.gfi.com/malware-analysis-tool
http://www.gfi.com/malware-analysis-tool
http://anubis.iseclab.org/
http://anubis.iseclab.org/
http://msdn.microsoft.com/en-us/library/cc236621.aspx
http://msdn.microsoft.com/en-us/library/cc236621.aspx
http://www.tcpdump.org/
http://help.yahoo.com/kb/index?page=content&y=PROD_MAIL_ML&locale=en_US&id=SLN3434
http://help.yahoo.com/kb/index?page=content&y=PROD_MAIL_ML&locale=en_US&id=SLN3434

