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Po-Rong Chang, Member, IEEE, Bao-Fuh Yeh, and Chih-Chiang Chang 

Abstract-This paper investigates the application of the mul- 
tilayer perceptron structure to the packet-wise adaptive deci- 
sion feedback equalization of a Mary QAM signal through a 
TDMA indoor radio channel in the presence of intersymbol in- 
terference (ISI) and additive Gaussian noise. Since the multi- 
layer neural networks are capable of producing complex deci- 
sion regions with arbitrarily nonlinear boundaries, this would 
greatly improve the performance of conventional decision feed- 
back equalizer (DFE) where the decision boundaries of conven- 
tional DFE are linear. However, the applications of the tradi- 
tional multilayer neural networks have been limited to real- 
valued signals. To tackle this difficulty, a neural-based DFE is 
proposed to deal with the complex QAM signal over the com- 
plex-valued fading multipath radio channel without perform- 
ing time-consuming complex-valued back-propagation training 
algorithms, while maintaining almost the same computational 
complexity as the original real-valued training algorithm. 
Moreover, this neural-based DFE trained by packet-wise back- 
propagation algorithm would approach an ideal equalizer after 
receiving a sufficient number of packets. In this paper, another 
fast packet-wise training algorithm with better convergence 
properties is derived on the basis of a recursive least-squares 
(RLS) routine. Results show that the neural-based DFE trained 
by both algorithms provides a superior bit-error-rate perfor- 
mance relative to the conventional least mean square (LMS) 
DFE, especially in poor signal to noise ratio conditions. 

I. INTRODUCTION 
N recent years, the possibility of using radio for indoor I data and voice communications within offices, manu- 

facturing floors, warehouses, hospitals, and convention 
centers has become an attractive issue. It would drasti- 
cally reduce wiring in a new building and provide the flex- 
ibility of changing or creating various communication 
services in existing buildings without the need for expen- 
sive, time-consuming rewiring. The relationship between 
behavior of radio-wave propagation and building archi- 
tecture in a small indoor environment is usually charac- 
terized by a time-varying multipath fading cluster channel 
model [ 11. In this model. the arriving paths are divided 
into clusters, formed by the building structure, and indi- 
vidual rays within the clusters, formed by objects in the 
vicinity of the transmitter and receiver. The arrivals of 
clusters and rays form Poisson processes with different 
rates. Data rates on the order of 10 Mbps are desirable for 
these indoor radio channels to make them compatible with 
the existing wired or cabled local area networks. Mean- 
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while, the severe multipath fading, which is characteristic 
of the indoor radio channels, limits the data rate. More- 
over, the multipath fading often introduces an inter-sym- 
bo1 interference (ISI) which deteriorates the system per- 
formance. 

Various techniques such as decision-feedback equal- 
ization (DFE) and adaptive equalization [2], [3] were de- 
veloped to eliminate the channel impairments. The per- 
formance, however, is limited by the linearity of decision 
boundaries produced by such equalizers. Recently, Siu et 
al. [4] have effectively utilized neural network as adaptive 
equalizers for a simplistic finite impulse response (FIR) 
channel model. They demonstrated that the neural-based 
equalizer trained by the back propagation algorithms 
showed superior performance over conventional decision 
feedback equalizer because of its capability to form com- 
plex decision regions with nonlinear boundaries. Never- 
theless, their applications have been limited to real-val- 
ued baseband channel models and binary signals. 
However, for indoor radio communication, the channel 
models and the information bearing signals are complex- 
valued. So, there is a great need to develop a neural net- 
work equalizer that can deal with higher level signal con- 
stellations, such as M-ary quadrature amplitude modula- 
tion (QAM), as well as with complex-valued channel 
models. QAM is a very effective technique to achieve a 
high bit-rate transmission without increasing the band- 
width. In Section 11, we proposed a new neural-based de- 
cision-feedback equalizer to QAM systems over complex- 
valued channel without performing complex-valued back 
propagation algorithms. In Section 111, a packet-wise 
neural equalization is introduced to track channel time 
variations and improve the system performance. Further- 
more, it will be proven that the neural equalizer trained 
by packet-wise back propagation algorithm approaches an 
ideal equalizer after receiving a sufficient number of pack- 
ets. In Section IV, an algorithm based on a recursive least- 
squares (RLS) routine is proposed to improve the com- 
putational efficiency of the back propagation and provide 
faster network training of the neural equalizers. Computer 
simulations are presented in Section V, and conclusions 
are outlined in Section VI. 

11. NEURAL-BASED DECISION FEEDBACK EQUALIZATION 
FOR COMPLEX-VALUED CHANNEL 

A feedfonvard neural network is a layered network 
consisting of an input layer, an output layer, and at least 
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one layer of nonlinear processing elements. The nonlinear 
processing elements, which sum incoming signals and 
generate output signals according to some predefined 
function, are called neurons. In this paper, the function 
used by nonlinear neurons is called the sigmoidal hyper- 
bolic tangent function G, which is similar to a smoothed 
step function 

G(x) = tanh(x). (1) 
The neurons are connected by terms with variable weights. 
The output of one neuron multiplied by a weight becomes 
the input of an adjacent neuron of the next layer. 

A. The Architecture of Neural-Based Decision Feedback 
Equalizer 

Before applying the multilayer feedforward neural net- 
works to adaptive equalization problem, it is important to 
establish their approximation capabilities to some arbi- 
trary nonlinear real-vector-valued continuous mapping y 
= f ( x )  : D C R”’ + P from input/output data pairs {x, 
y }  where D is a compact set on R. Consider a feedforward 
network NN(x, w) with x as a vector representing inputs 
and w as a parameter weight vector that is updated by 
some learning rules. It is desired to train NN(x, w) to 
approximate the mapping f ( x )  as close as possible. The 
Stone-Weierstrass theorem [SI showed that for any con- 
tinuous function f E C’ ( D )  with respect to x, a compact 
metric space, an NN(x, w) with appropriate weight vec- 
tor w can be found such that (INN(x, w) - f(x)II,  < E 

for an arbitrary E > 0, where llell, is the mean squared 
error defined by 

(2) 

For network approximators, key questions are how 
many layers of hidden units should be used, and how many 
units are required in each layer? Cybenco [6] has shown 
that the feedforward network with a single hidden layer 
can uniformly approximate any continuous function to an 
arbitrary degree of exactness provided that the hidden 
layer contains a sufficient number of units. However, it is 
not cost-effective for the practical implementation. 
Nevertheless, Chester [7] gave a theoretical support to the 
empirical observation that networks with two hidden lay- 
ers appear to provide high accuracy and better general- 
ization than a single hidden layer network, and at a lower 
cost (i.e., fewer total processing units). Since, in general, 
there is no prior knowledge about the number of hidden 
units needed, a common practice is to start with a large 
number of hidden units and then prune the network when- 
ever possible. Additionally, Huang and Huang [8] gave 
the lower bounds on the number of hidden units which 
can be used to estimate its order. 

As discussed above, the feedforward neural network re- 
sults in a static network which maps static input patterns 
to static output patterns. However, the radio channel ex- 
hibits the temporal behavior where the output has a finite 
temporal dependence on the input. These temporal pat- 

llell, = c (le(x)11*, where 11 * 1)  is the vector norm. 
x e D  

terns in the input data are not recognizable by such a net- 
work. If the input signal is passed through a set of delay 
elements, the outputs of the delay elements can be used 
as the network inputs and temporal patterns can be trained 
with the standard learning algorithms of feedforward 
neural network. An architecture like this is often referred 
to as time delay neural network (TDNN). It is capable of 
modeling dynamical systems where their input-output 
structure has finite temporal dependence. 

Generally, the received signal transmitted over the 
multipath channel can be governed by the following dis- 
crete-time difference dynamic equation: 

r ( t )  = C(s(t), * , s ( t  - nD + 1)) (3) 

where r ( t ) ,  s ( t ) ’ s  are the complex-valued received signal 
and the transmitted symbols, respectively; and nD is the 
maximum lag involved in the multipath channel. The 
symbol s ( t )  equals either 0 or 1 when the transmission is 
binary signaling. However, here s ( t ) ’ s  are suggested to 
be in bipolar form { - 1,  1 } . In a general M-ary signaling 
system, the waveforms used to transmit the information 
are denoted by {qm (t), m = 1, 2, - - , M}. It is possible 
to represent each symbol of the M-ary system by a log2 M 
X 1 binary-state or bipolar-state vector, s ( t ) .  Here, we 
are interested in QAM systems. The constellations have 
their signal points on a rectangular grid, at ({ f 11, { f. 1 }) 
for 4-QAM and ( { k l ,  +1/3}, (5-1, +1/3}) for 16- 
QAM, . . . etc. The location of any signal point may be 
assigned to a particular bipolar-state vector, s (t). The cor- 
respondence between signal location and the values of 
components in the bipolar-state vector is not unique. 
However, this correspondence is usually an one-to-one 
mapping. For example, the 16-QAM signal locations ( -  1, 
- l ) ,  (1/3, -1) and (1/3, 1/3) may be assigned to [-1, 
-1, 1, -1lT and [ l ,  -1, 1, -1IT which correspond to 
the decimal representations, “2,” “6,” and “10,” re- 
spectively. The above assignment is similar to the label- 
ing of 16-QAM in the coded modulation techniques. Gen- 
erally, the bipolar representation can be extended to any 
other M-ary systems, i.e., PSK, GMSK, and CPM. Equa- 
tion (2) becomes a weighted linear sum of transmitted 
symbols, s ( t ) ’ s ,  when the radio channel does not include 
the nonlinear transmission medium. Thus, the transfer 
function of the multipath channel between the transmitter 
and receiver is denoted as H ( z ) ,  which is a FIR system 
with time-varying coefficients resulted from the moving 
objects within the indoor communication environment. 
H ( z )  represents the reflected radio wave as well as the 
direct wave between the transmitter and receiver. 

Widrow [9] showed that a causal infinite impulse re- 
sponse (IIR) filter can achieve a delayed version of the 
system inverse to H ( z ) .  The inverse or the equalizer filter 
for the general channel model can be governed by the fol- 
lowing IIR-type dynamic equation 

i ( t )  = EQ ( r ( t ) ,  - , r(t - nf + 11, 

i ( t  - l ) ,  * * * 3 $0 - n b ) )  (4) 
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where ŝ  ( t )  represents the equalized output signal or vec- 
tor; nf and n b  are maximum lags in the input and output 
respectively. It should be noted that the responses B ( t )  are 
identical to the transmitted symbols s ( t )  when the equal- 
izer is a perfect and ideal channel inverse which can com- 
pensate the undesired multipath effect completely. More- 
over, to model the dynamics represented by (4), it is 
possible to convert the temporal sequence of radio fre- 
quency signal into a static pattern by unfolding the se- 
quence over time and then use this pattern to train a static 
network. From a practical point of view, it is suggested 
to unfold the sequence over a finite period of time. This 
can be accomplished by feeding the input sequence into a 
tapped delay line of finite extent, then feeding the taps 
from the delay line into a static feedforward network. 
Thus, the channel inverse is achieved by training the static 
feedforward network. This can be referred to as inverse 
system identification. The basic configuration for achiev- 
ing this is shown schematically in Fig. 1. The feedfor- 
ward neural network based decision feedback equalizer is 
placed behind the channel and receives both the channel 
outputs and detected symbols as its inputs. The network 
inputs at time t can be represented by x, = [r;, Sf']', where 
rt = [rT(t) ,  * * , r'(t - nf + l)lT and 3, = [3'(t - l),  
- - - , S T ( t  - nb)lT. Notice that the received complex-val- 
ued signals r( t )  should be represented by a 2 X 1 vector, 
i.e., [ r R ,  r1lT, because the error back-propagation algo- 
rithms cannot be applied to the complex-valued inputs di- 
rectly where r R  and rl represent the real and imaginary 
parts of r ( t ) .  The detected symbols S ( t )  are generated by 
feeding the static neural network outputs f ( t )  through a 
hardlimiter at time instant t and given by S = sign(B(t)) 
where I(t) = NN(x,; w ) .  According to Fig. 1, the input- 
output relationship of the neural equalizer can be char- 
acterized by the function 

S ( t )  = NNDFE (x,; w )  = sign(#@)) 

= sign (NN(x,; w ) )  ( 5 )  

where w is the weight vector of the feedfonvard network, 
and S ( t )  is the estimate of s ( t ) .  

The training data involved in transmitted symbols pro- 
vide the desired response of the static feedfonvard net- 
work, d, (= s (t))  to train the network to approximate the 
perfect channel inverse or ideal equalizer EQideal ( a ) .  No- 
tice that a replica of the desired response is stored in the 
receiver. By the Stone-Weierstrass theorem, it is possible 
to find the appropriate weight vector w* of the static feed- 
forward network of the neural-based equalizer, such that 

(6) 

for an arbitrary E > 0 and all the x, in the region of in- 
terest. 

Since d, is represented by a bipolar-state vector, each 
component of NN(x,; w * )  (= I(t)) becomes either - 1 or 
1 after a sufficiently long training period. This would im- 

(I" (Xt; w * >  - EQideal (st)IIx, < E 
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Fig. 1. Architecture of neural-based decision feedback equalizer for QAM 
system. 

NN(x,; w * ) .  From (6), we have 

II"DFE W * )  - EQideal(xt)IIxt < 6 (7) 

For a M-ary QAM signaling communication system, s ( t ) ,  
I(t), and S( t )  should be represented by log2 M X 1 vec- 
tors. Moreover, the received signal r ( t )  is complex-val- 
ued and then can be expressed as a two-dimensional vec- 
tor. Thus, the input layer of the network consists of a 
nf-tap two-dimensional vector-valued fonvard filter, and 
a nb-tap log2 M-dimensional vector-valued feedback filter. 
As a result, the number of neurons in the input layer is ni 
= 2 X nf + (log2 M )  x nb. In the output layer, the num- 
ber of neurons is no = log2 M. 

B. Feedfonvard Neural Networks and Their Learning 
Rules 

In 1986, Rumelhart et al. [lo] proposed a generalized 
delta rule known as back-propagation for training layered 
neural networks in a pattern-wise manner. In mathemati- 
cal sense, the back-propagation learning rule is used to 
train the feedfonvard network NN (x, w )  to approximate 
a function f ( x )  from compact subset D of n,-dimensional 
Euclidean space to a bounded subset f ( D )  of no-dimen- 
sional Euclidean space. Let x, which belongs to D be the 
tth pattern or sample and selected randomly as the input 
of the neural network at time instant t ,  let NN(x,, w)  
(= u t )  be the output of the neural network, and letf(x,) 

Ply that S ( t )  = sign(d(t)) = f ( t )  or NNDFE (xt; w * )  = (= d , )  which also belongs tof(D) be the desired output. 
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This task is to adjust all the variable weights of the neural 
network such that the pattern-wise quadratic error E, can 
be reduced, where Et is defined as 

where no is the number of output nodes, otj and dfj are the 
j t h  components of of and d,, respectively. 

Here, we define the weighted sum of the outputs of the 
previous layer by the presentation of input pattern x,: 

 net^ = C wjioli (9) 
i 

where wji is the weight which connects the output of the 
ith neuron in the previous layer with respect to the j t h  
neuron, and oti is the output of the ith neuron. 

It should be noted that 0,; is equal to xti when the ith 
neuron is located in the input layer, where xti is the ith 
component of pattern x,. Using ( l ) ,  the output of neuron 
j is 

if the neuron j belongs 
oti = ‘i‘ to the input layer (10) 

G(netti) otherwise. 

The pattern-wise or on-line back-propagation algorithm 
[lo] minimizes the quadratic error E,  by recursively al- 
tering the connection weight vector at each pattern ac- 
cording to the expression 

where the learning rate q is usually set to be equal to a 
positive constant less than utility. An error signal term 6 
called delta produced by the j th neuron is defined as fol- 
lows: 

Rumelhart [lo] showed that the error signals 6’s for all 
neurons in the network can be computed according to the 
following recursive procedure: 

(d,. - oti)G’ (netti) if neuron j belongs 
6 .  = to the output layer t/ 

[GI (netti) 6,/wQ otherwise. 

(13) 

It should be mentioned that oti is equal to xri when neu- 
ron i belongs to the input layer. The expression of (13) is 
also called the generalized delta learning rule. Once those 
error signal terms have been determined, the partial de- 
rivatives for the quadratic error of the tth pattern can be 

computed directly by 

Thus the update rule of the on-line back-propagation al- 
gorithm is 

Wji( t  + 1) = Wji( t )  + T)6t/Qti. (15) 

In the traditional equalizer, a replica of the desired re- 
sponse is stored in the receiver. Naturally, the generator 
of this stored reference has to be electronically synchro- 
nized with the known transmitted sequence. A widely used 
training signal consists of a pseudonoise (PN) sequence 
of length NB. Moreover, the training signal can also be 
expressed as a collection of input-output data pairs, 
{x,, of}:: 1. The weights of neural-based equalizer are up- 
dated by using the batch of these data pairs. Thus, the 
objective function should be modified in an expression of 
summation, E = E:! E,, during the initial training. Thus, 
the update rule becomes 

N B  az 
aw,, I = ]  

#ew = w?!~ - q - = w?Id + q 6 ,p f i .  (16) 

Notice that the quantity w ( t  + 1) is the updated weight 
vector after one pattern of learning; wWw is the updated 
weight vector after one batch of learning. 

It is shown that the batch back-propagation learning al- 
gorithm is used to initialize the weight coefficients of the 
neural-based equalizer when the channel is unknown. 
Nevertheless, the on-line learning algorithm is used to ad- 
just the weights to track channel time variations and said 
to be decision directed. However, from [l 11, the initial 
training can be executed by the on-line learning algorithm 
instead of batch learning since on-line learning is shown 
to approach batch learning provided that q is small. Ini- 
tialization may be aided by the transmission of NB known 
training symbols. The trained neural-based equalizer con- 
verges to the channel inverse when Ns is sufficiently large. 
It is known that the decision errors in equalizer tracking 
can lead directly to crashing of the equalizer, especially 
when the adaptation gain is high. Decision errors become 
more prevalent when the received signal-to-noise ratio is 
low, a condition that occurs unpredictably in fading chan- 
nels. The susceptibility of adaptive equalizers or neural- 
based equalizers to crashes caused by propagation of de- 
cision e m r s  implies that retraining procedures must be 
specified. For fading channel, periodic retraining is often 
used to improve reliability at some cost in throughput ef- 
ficiency, via periodic insertion of training symbols into 
the data stream. More details about the packet adaptive 
equalization will be discussed in the next section. 

111. NEURAL-BASED PACKET ADAPTIVE EQUALIZATION 
FOR TDMA WIRELESS CHANNELS 

Packet equalization is a problem that arises in TDMA 
communication systems, in which data is transmitted in 
fixed-length packets, rather than continuously. It is usu- 
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ally assumed that the packet is largely self-contained for 
error detection, i.e.,  in terms of equalizer initialization 
and at least fine synchronization. This overhead can 
achieve good performance with reasonable complexity. 
Packet equalization has some similarities with block-ori- 
ented methods for periodic training on continuous chan- 
nels, although it is assumed that the channel state is in- 
dependent from packet to packet. Frequency and packet 
synchronization are assumed to be maintained once ini- 
tialized, but symbol timing and phase synchronization 
typically need to be restored for each packet. It is known 
that the optimum approach to equalization is an off-line, 
noncausal batch processing of the received signal with a 
large amount of training data. Such a formulation would 
be infeasible and too complex to implement, but iterative 
approaches based on periodic training are possible. We 
will show that there is an equivalence of the off-line 
equalization and the packet-wise neural-based equalizer 
when the number of packets approaches infinity. 

Considering the packet transmission, it is assumed that 
the length of the training data contained in the packet 
header and the total packet length are nu and np,  respec- 
tively. The main idea of the packet training scheme is 
used to train the neural-based equalizer with nu training 
data for each packet. The neural-based equalizer can be 
retrained for every packet and thus track the time varia- 
tions in the channel. This is quite similar to the on-line 
training for a sequence of packets. 

The packet version of the back-propagation-based al- 
gorithm can be obtained by modifying (16), given by 

nu 

wy = wyi'd + 71 t = l  c 61jot,. (17) 

Furthermore, during data transmission after packet train- 
ing period, the decision-directed adaptation is executed 
by (15). 

A. Global Convergence and Approximation Capability 
of Packet- Wise Back-propagation Algorithm 

The most important feature of the packet-wise back- 
propagation algorithm is its global convergence property. 
It ensures that the algorithm can always find the optimal 
weight values of the neural equalizer from any arbitrary 
starting point in the training phase during the packet trans- 
mission. It has been shown in [l 11 that the batch back- 
propagation learning algorithm can exactly implement the 
gradient descent algorithm. Since the gradient descent al- 
gorithm is globally convergent, this implies that the batch 
back-propagation algorithm is also globally convergent. 

Lemma 1: Equivalence of Batch and Packet Back-Prop- 
agation Algorithms Reference [ 113 also showed there is 
an equivalence of batch and on-line back-propagation al- 
gorithms. As discussed above, for packet back-propaga- 
tion algorithms, their training procedures are executed in 
an on-line manner by inputting nu training data for each 
packet to the algorithm. Similarly, from [ l l ] ,  it can be 
shown that the packet-wise on-line algorithm will approx- 

imately implement the batch algorithm after multiple 
sweeps through the training data if the learning rate 71 is 
small enough. In other words, the resulting connection 
weights obtained by the batch learning are approximately 
the same as packet learning results after packet learning 
goes through the whole batch of training data. In a math- 
ematical sense, let, Ai'& & batch back-propagation al- 
gorithm with NB training data, and, A$::! e packet back- 
propagation algorithm with N packets, and nu training data 
in each packet. From [ 111, A$$:$ approaches Ai%\ when 
the learning rate 17 is sufficiently small and Ns = N nu. 
Thus by above discussion, Ab'$!! is globally convergent. 
Moreover, training data for each packet can be performed 
in either sequential adaptation of (15) or block adaptation 
of (17) since both adaptations yield the almost same re- 
sult. 

Furthermore, by Stone-Weierstrass theorem, the exact 
channel inverse can be obtained by the batch learning 
when the length of training data is large enough and the 
maximum lags in both input and output of channel inverse 
are known. Especially, for time-varying channels, Ns 
would approach infinity. But, it is infeasible for any chan- 
nel equalizer transmitting a large amount of training data 
continuously. Fortunately, Lemma 1 shows that the prob- 
lem is solved by inserting a finite number of training data 
into the data stream periodically. 

Theorem 1: The neural equalizer is guaranteed to be 
capable of converging to the channel inverse globally by 
performing the packet back propagation algorithms with 
a sufficient number of hidden nodes when the maximum 
lags in the input and output of channel inverse are known. 

From Lemma 1 and Stone-Weierstrass theorem, a so- 
lution w* can be generated by A:;::! such that 

IINNDFE (xt; w*) - EQldeai(~JI Ix,  < 6, (18) 
for an arbitrary E > 0, as N + 03. 

IV. EFFICIENT LEARNING ALGORITHMS FOR NEURAL 
NETWORKS 

The back propagation algorithm is an useful method to 
find an optimal solution of a set of weight values that en- 
ables a network to perform a certain input-output map- 
ping function. However, it is widely recognized that the 
back propagation suffers from the drawback of slow con- 
vergence. More recent work has produced the improved 
learning strategies based on a recursive least-squares al- 
gorithm (RLS) [ 121 and an extended Kalman routine [ 131. 
Although these two algorithms were each derived inde- 
pendently based on a different approach, they are actually 
equivalent. They both use the same search direction called 
the Gauss-Newton direction for which the negative gra- 
dient is multiplied by the inverse of an approximate 
hessian matrix of the given criterion. This is a more effi- 
cient search direction than the steepest-descent approach 
of back propagation and it significantly improves the con- 
vergence performance. Reference [ 121 showed that their 
RLS algorithm called ELEANNE7 involves the tradeoff 
between computational complexity and convergence. The 
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Back Propagation 

ELEANNM 

TABLE I .  
NUMBER OF ARITHMETIC OPERATIONS PER PATTERN ADAPTATION CYCLE 

4 n m  + 4nm. + 4n. + 2% t 1 

3 4  + 4nnn. + 4nhn. + 4n. -+ 3nn + 7 

3nnn. + 4nnn. + 2n. - nh + 1 
Zn: + 3nnn. + 4nnn. + 2n. - nh + 2 

I Algorithm I Multipllcatwns 1 Additions I 

ELEANNE7 algorithm is used to provide faster network 
training of our equalizer. Moreover, [ 141 showed that the 
packet version of ELEANNE7 can be obtained by modi- 
fying the RLS algorithm into a block-type RLS formula- 
tion. 

Usually, the efficiency of a learning algorithm depends 
on the number of arithmetic operations required for each 
pattern adaptation cycle. Table I shows the number of 
arithmetic operations per adaptation cycle required by 
LMS, back propagation, and ELEANNE7 algorithms for 
a network with single hidden layer, where nh is the num- 
ber of hidden units. Similarly, the comparison of these 
algorithms for a network with more than one hidden lay- 
ers in terms of their computational requirements can be 
found in [12]. For simplicity, we are interested in the 
analysis of three-layered neural networks. 

>> no and ni >> 1,  [12] showed 
that 

Assuming that 

where ME7 and MBp are the number of multiplications re- 
quired by ELEANNE7 and back propagation algorithms 
respectively. For M-ary QAM equalizer, ni = 2 X nf + 
(log2 M) X 126 and no = log2 M. Thus, (19) becomes 

In practical situations, 10 I nh < 30, M L 4 and nf 
= nb = 3 for the use of indoor radio channel [2], it can 
be shown that the ratio MDIMBp is upper bounded by a 
value of 2.57. A similar analysis can be carried out for 
the number of additions per adaptation cycle required by 
back propagation and ELEANNE7 algorithms. Further- 
more, one may use the fast RLS or RLS lattice algorithm 
to improve the computational complexity of ELEANNE7. 
In fact, the overall efficiency of a learning algorithm is 
evaluated on the basis of a criterion comprising the con- 
vergence rate achieved by the algorithm during the train- 
ing and the number of arithmetic operations per adapta- 
tion cycle required by the algorithm. In next section, the 
performance of algorithms, in conjunction with their 
computational requirements, indicates that ELEANNE7 
performs the network training faster than back propaga- 
tion algorithm to reach a predetermined small value of the 
total error. 

V. SIMULATION RESULTS 
The indoor radio channel model used in performance 

evaluation is on the basis of a cluster channel model de- 

veloped as a result of measurement [l]. Using the param- 
eters in [ l ] ,  Le., 200 and 5 ns cluster and ray mean 
interarrival times and 60 and 20 ns cluster and ray power 
delay time constants, a mean rms delay spread of 44 ns 
was found over 10000 sets of independent portable-to-base 
station antenna impulse response realizations. Moreover, 
the channel output is corrupted by zero-mean additive 
white Gaussian noise (AWGN). 

The complex-valued data are transmitted at a bit rate of 
20 Mb/s over a 1 G Hz radio channel. The modulation 
scheme is four-level QAM with a symbol rate of 10 M 
symbols/s and a symbol interval of 100 ns. The packet 
length is set to 400 symbols (800 bits). A 10% overhead 
would allow maximum of 40 symbols for training, Le., 
nu = 40. The neural-based decision feedback equalizer 
includes a four-layer feedforward neural network. For 
simplicity, the neural equalizer is denoted by a short hand 
notation NNDFE ((nf, n b ) ,  n l ,  n2, no) where nfis the num- 
ber of forward taps, nb is the number of feedback taps, n1 
is the number of neurons in hidden layer 1, n2 is the num- 
ber of neurons in hidden layer 2, no is the number of neu- 
rons in output layer. It should be mentioned that NNDFEl 
and NNDFE2 represent the neural networks trained by the 
back propagation and ELEANNE7 algorithms, respec- 
tively. Similarly, traditional LMS decision feedback 
equalizer is denoted by LMSDFE (nf, nb) .  [2] showed that 
nfis set to 3 which is found to be nearly optimal. In ad- 
dition, the minimum number of feedback taps necessary to 
eliminate the IS1 for data rates of interest is 3 [2]. As 
discussed in Section II-A, ni and no can be found as 12 
and 2 respectively for 4-QAM system. According to 
Huang and Huang’s [8] suggestions, it is possible to es- 
timate the lower bounds on the numbers of neurons in 
both hidden layers. Thus, nl and n2 can be chosen as 20 
and 10, respectively. Fig. 2 illustrates MSE (mean square 
error) convergence of the packet-wise neural equalizers, 
NNDFE 1((3,3) ,20,10,2), NNDFE2((3,3) ,20,10,2), and 
LMSDEF(3,3) with the same learning rate ( q )  0.03 for 
training mode and 0.005 for decision-directed mode. The 
NNDFEl requires at least 250 packets to converge while 
the LMSDFE converges in about two packets. The results 
also show that the steady-state value of averaged square 
error produced by the NNDFEl converges to a value 
(I - 100 dB) which is greatly lower than the additive 
noise (- 10 dB). This is a result of the approximation ca- 
pability of packet back propagation. Theorem 1 indicates 
that the approximation error approaches zero when the 
number of packets approaches infinity. Similarly, the 
NNDFE2 converges to a value (I - 160 dB) which is also 
considerably lower than the noise level in about 150 pack- 
ets. The LMSDFE gives a steady value of averaged 
squared error at about -20 dB which is around the noise 
floor. Fig. 3 illustrates MSE convergence of the symbol- 
wise (pattern-wise) training of NNDFEl , NNDFE2, and 
LMSDFE within the first packet. A comparison of the 
learning curves in Fig. 3 indicates that the NNDFE2 
(ELEANNE7) converges to the target error value ( I - 20 
dB) much faster than NNDFEl (back propagation). 
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Fig. 2. Comparison of mean square errors achieved by LMSDFE, 
NNDFE1, and NNDFE2 on a packet-by-packet basis when nu = 40 and 
SNR = 10dB. 
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Fig. 3. Comparison of mean square errors achieved by LSMDFE, 
NNDFEl, and NNDFE2 on a symbol-by-symbol basis when nu = 40 and 
SNR = 10dB. 
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Fig. 4. Comparison of bit error rated achieved by LMSDFE, NNDFEI, 
and NNDFE2 when n,, = 40. 

Among the algorithms proposed for training decision 
feedback equalizer, LMS algorithm is computationally 
less demanding. However, it can not achieve the better 
MSE with a value less than -20 dB. Fig. 4 compares the 
respective bit error rates (BER’s) achieved by NNDFEl , 
NNDFE2, and LMSDFE. It may be observed from Fig. 
4 that both the NNDFEl and NNDFE2 attain about the 

VI. CONCLUSION 
This paper has introduced an adaptive decision feed- 

back equalizer based on a four-layer perceptron structure 
which is capable of dealing with the M-ary QAM signals 
over the complex fading multipath radio channel by using 
cost-effective real-valued training algorithms, where each 
symbol of the M-ary system and received complex signal 
are represented by logz M x 1 and 2 x 1 vectors, re- 
spectively. The neural-based DFE offers a superior per- 
formance as a channel equalizer to that of the conven- 
tional LMS DFE because of its ability to approximate 
arbitrarily nonlinear mapping. For comparison of simu- 
lation results, it can be seen that the neural-based DFE 
provides better BER performance, especially in high noise 
conditions, also that the MSE of neural-based DFE con- 
verges to a value which is greatly lower than that of LMS 
DFE after receiving a sufficient number of packets. These 
results would be conducted to verify the performance and 
approximation capability of packet-wise back-propaga- 
tion and ELEANNE7 algorithms. 
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