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ARTICLE INFO ABSTRACT

Background: Pompe disease is an inherited autosomal recessive deficiency of acid a-glucosidase (GAA) and is due
to pathogenic sequence variants in the corresponding GAA gene. While the analysis of enzyme activity remains
the diagnostic test of choice for individuals with Pompe disease, mutation analysis remains for establishing a de-
finitive diagnosis.

Methods: High resolution melting (HRM) analysis was performed to screen GAA mutations. Genomic DNA was
extracted from peripheral blood samples of the two patients with Pompe disease and 250 normal controls.
Exons 2 through 20 of the GAA gene were screened by the HRM analysis. The results were subsequently con-
firmed by direct sequencing.

Results: This assay proved to be feasible in detecting seven known (¢.2T>C, ¢.1726G>A, c.1845G>A, c.1935C>A,
¢.1958C>A, ¢.2238G>C, and ¢.2815_2816del) GAA mutations. Each mutation could be readily and accurately iden-
tified in the difference plot curves. We estimated the carrier frequency of the most common mutation, c.1935G>A
(p.D645E), in the Taiwanese population to be 0.2%.

Conclusions: In clinical practice, we suggest that HRM analysis is assumed as a fast and reliable method for screen-
ing GAA gene mutations especially the most common mutations which are responsible for Pompe disease among
the Taiwanese populations.
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1. Introduction

Pompe disease (glycogen storage disease type II, acid maltase de-
ficiency, OMIM 232300) is an autosomal recessive progressive mus-
cular disorder caused by the deficiency of acid a-glucosidase (GAA;
EC.3.2.10.20) that results in impaired lysosomal degradation and the

Abbreviations: GAA, acid a-glucosidase; HRM, high resolution melting; DBS, dried
blood spot; PCR, polymerase chain reaction; WCN, weighted contact number; DHPLC, de-
naturing high performance liquid chromatography.
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accumulation of glycogen. The lysosomal glycogen accumulated in
many tissues such as skeletal, cardiac, and smooth muscles [1]. Pompe
disease is classified into infantile, juvenile, and adult types based on
clinical presentation and the onset of the disorder. The clinical manifes-
tations of the infantile form are cardiomyopathy with cardiomegaly and
rapidly progressive myopathy [1]. Late-onset Pompe disease is the re-
sult of a partial deficiency of GAA. The primary symptom is muscle
weakness progressing to respiratory weakness. They may develop re-
spiratory failure at a later stage during the course of the disease [2,3].
In general, GAA activity correlates with the age at onset and severity
of disease. Infantile patients have less than 1% GAA activity, and late-
onset patients have 2-40% of normal GAA activity in cultured skin fibro-
blasts [4]. The estimated frequency of Pompe disease in southern China
and Taiwan newborns is 1 in 20,000-40,000 [5]. The combined inci-
dence of all forms of Pompe disease is approximately 1:40,000 [6].
Measurement of GAA activity in skin fibroblasts is the current gold
standard for the diagnosis of Pompe disease. Recently, isolation of GAA
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from the dried blood spot (DBS) extracts has been developed for GAA
activity assay. These novel DBS methods are not only suitable for new-
born screening of Pompe disease, but also provide a quick and noninva-
sive diagnostic test for Pompe disease [1]. While enzyme activity
analysis remains the diagnostic test of choice for individuals with
Pompe disease, mutation analysis remains important. It is particularly
useful in identifying carriers when a familial mutation is known. In ad-
dition, there are also some common mutations with useful genotype-
phenotype correlations [3,7]. On the other hand, the availability of en-
zyme replacement therapy has increased the demand for rapid and
more sophisticated diagnosis at both enzymatic and molecular level [8].

The human structural gene encoding GAA is located at chromosome
17q25.2-q25.3 and contains 20 exons, the first of which is non-coding
[9]. The GAA cDNA is over 3.6 kb in length and with 2856 nucleotides
of coding sequence. The resulting product is a protein of 952 amino
acids [10,11]. The start codon begins at position 33 of exon 2 [9]. Muta-
tions are randomly spread over the whole gene and some mutations ap-
pear with considerable frequency in distinct ethnic groups [12].

High-resolution melting (HRM) analysis is a mutation-scanning
technology and offers considerable time and cost savings compared
with screening methods. HRM analysis has recently been tested in a va-
riety of clinical mutation-scanning and genotyping applications and is
shown to be sensitive, cost-effective, and economical. Unlike other scan-
ning method (such as sequencing), it is time-consuming and labor in-
tensive. HRM analysis offers a faster and more convenient closed-tube
method of assessing the presence of mutations and gives a result that
can be further investigated if it is of interest. Besides, the closed-tube
system reduces the risk of contamination. van der Stoep N et al. [13]
compared HRM analysis with sequence analysis, which is the current
gold standard for mutation detection in most diagnostic laboratories.
They reported that HRM analysis is a highly sensitive method with a
sensitivity of 100% in detecting all heterozygous mutations. Similarly,
a meta-analysis [14] indicated that HRM analysis is a highly sensitive,
simple and low-cost test to detect human disease-associated mutations,
especially for samples with mutations of low incidence. Recently, our re-
view article [15] also discussed about the effectiveness and limitations
of HRM analysis in the diagnosis of genetic disorders including autoso-
mal recessive, dominant, and X-linked disorders.

Identification of mutations in the GAA coding sequence is advan-
tageous that it can provide a noninvasive method for the confirma-
tion of the clinical and biochemical diagnosis. In addition, it is useful
in identifying rare or novel mutations and facilitates genotype-
phenotype correlations. Therefore, this present study aimed to as-
sess the value of the HRM analysis using real-time polymerase
chain reaction (PCR) (LightCycler® 480; Roche Applied Science)
for scanning GAA gene mutations in patients with Pompe disease.

2. Materials and methods
2.1. Diagnosis of patients

Confirmatory diagnosis included both biochemical and molecu-
lar tests. GAA activity in DBS was measured using artificial substrate
4-methylumbelliferyl-oi-p-glucopyrosidase (Fluka Chemical Corp,
Ronkonkoma, NY, USA) and the nature substrate glycogen. Genomic
DNA was isolated using the proteinase K and QIAamp® mini DNA ex-
traction kit (QIAGEN) according to the manufacturer's protocol. The
quality and quantity of the extracted DNA samples were measured
using the Nano-200 Nucleic Acid Analyzer (MEDCLUB, Tainan, Taiwan).
This study was approved by the Institutional Review Board (IRB) of
Kaohsiung Medical University Hospital (KMUHIRB-20130027).

2.2. Optimization of HRM curve analysis

Seven DNA samples with previously identified GAA mutations were
used for the optimization and validation of HRM. Optimized HRM

conditions were applied for further screening of GAA mutations in two
additional Pompe patients from our medical center. Meanwhile, we
also recruited 250 healthy subjects in order to estimate the allele fre-
quency of the most common GAA gene mutation, c.1935C>A (p.D645E).

2.3. Assay design and PCR conditions

Good amplicon design is essential to obtain a robust and reproduc-
ible HRM analysis. The difference between wild-type and heterozygote
curves became smaller and more difficult to differentiate when the
product length was increased [16]. Besides, extra care is needed to de-
sign PCR conditions to avoid primer dimers and non-specific amplifica-
tion in HRM analysis. In this study, all 25 pairs of primers for HRM
analysis were newly designed using Primer3 software (Supplementary
data 1). For exon 2 and exon 4, six sets and two sets of primers were
used to amplify the exons in overlapping segments, respectively. All
synthesized primers were of standard quality in molecular biology
quality (Protech Technology Enterprise Co., Ltd, Taiwan).

2.4. The HRM technique

PCR reactions were carried out in duplicate in 10}L final volume using
the LightCycler® 480 High-Resolution Melting Master (reference
04909631001, Roche Diagnostics) 1x buffer, containing Taq polymerase,
nucleotides and the dye ResoLight, and 50ng DNA. The primers and MgCl,
were used at a concentration of 0.25puM and 2.5 mM, respectively for de-
tecting the GAA gene mutations. The HRM assays were conducted using
the LightCycler® 480 Instrument (Roche Diagnostics) provided with the
software LightCycler® 480 Gene-Scanning Software Version 1.5 (Roche
Diagnostics). The PCR program required a SYBR Green I filter (533 nm),
and it consisted of an initial denaturation-activation step at 95 °C for
10min, followed by a 45-cycle program (denaturation at 95 °C for 15s, an-
nealing at 58 °C or 60 °C for 15 s and elongation at 72 °C for 15s with the
reading of the fluorescence; acquisition mode: single). The melting pro-
gram included three steps: (a) denaturalization at 95 °C for 1 min, (b) re-
naturation at 40°C for 1 min, and (c) subsequent melting that consists of a
continuous fluorescent reading from 60 to 90 °C at the rate of 25 acquisi-
tions per degree centigrade. The difference plot curves of the duplicate for
each DNA sample must be reproducible both in shape and peak height.

2.5. Sequencing of GAA exons 2-20

Exons 2 through 20 of the GAA gene were amplified by PCR as pre-
viously described with some modified reaction conditions [17]. Each
locus was amplified in a 20 uL volume including buffer [60 mM Tris—
SO4 (pH8.9), 18 mM (NH,4),S04, 2mM MgS04], 0.2 mM dNTP, 0.2 uM
forward PCR primer, 0.2 uM reverse PCR primer, 50-120 ng genomic
DNA and 1 U of AccuPrime Taq DNA polymerase (Invitrogen Canada
Inc., Ont.). The DNA was amplified using the following amplification
conditions: 94 °C for 3 min; 35 cycles of 92 °C for 15, 50 °C for 155,
and 68 °C for 1 min. After PCR, the samples were purified using the
Geneaid Gel/PCR DNA fragments extraction kit. The sequence reac-
tion was performed in a final volume of 10 pL, comprising 1 pL of
the purified PCR product, 2.5 uM of each PCR primer and 2 pL of ABI
PRISM terminator cycle sequencing kit v3.1 (Applied Biosystems).
The sequencing program is a 25-cycle PCR program (denaturation
at 96 °C for 10 s; annealing at 50 °C for 5 s and elongation at 60 °C
for 4 min). The sequence detection was performed in the ABI Prism
3130 Genetic Analyzer (Applied Biosystems).

2.6. Weighted contact number (WCN) and the sequence conservation
profiles

Protein packing is described using weighted contact number [18].
The weighted contact number (WCN) of an atom is the sum of the inverse
square of the distances between it and other atoms. The sequence-specific
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conservation scores were computed following the protocol of CONSURF
[19], based on the phylogeny of the sequences. The conservation scores
were normalized to the corresponding z-scores in such a way that
the average conservation score is zero and the standard deviation
is one. The series of the conservation scores of a sequence is referred
to as its conservation profile. Notably, in the conservation profile of a
protein, the residue of a lower conservation score is more conserved
than that of a higher conservation score [20].

2.7. Structure prediction of human GAA protein

Three-dimensional (3D) structures of the human GAA were predict-
ed using the (PS)? server [21]. (PS)? automatically uses an effective con-
sensus strategy. The above mentioned strategy combines structural- and
profile-based [22] comparison methods for both template selection and
target-template alignment. (PS)? server selected the Human intestinal
maltase-glucoamylase (PDB entry: 2QM]) [23] as the model template.

3. Results
3.1. Diagnosis and clinical manifestations in patients

3.1.1. Patient 1

A 5 year-old boy was presented with a gross motor developmental
delay since infantile. He started to head control when he was 5 months
old. Then, he could sit alone at the age of 9 months and be able to walk
independently at the age of 1year and 9months. He could not jump high
even when he was 3-years-old. He also had difficulty in climbing up

stairs and running. At his first visit to our clinic at the age of 3 years,
the patient showed positive Gowers' sign and deep tendon reflexes
in his lower extremities were absent. Creatine kinase levels were
mildly elevated. Muscle biopsy revealed intracytoplasmic huge au-
tophagic vacuoles with high acid phosphatase activity. Glycogen
storage disease type Il was thus suspected; DBS were collected for
GAA activity assay and it was confirmed by Pompe disease due to
the deficient activity of acid a-glucosidase (GAA) in net GAA (with
inhibitor), 0.29 umol/L/h (reference range: 12.22 + 5.88 umol/L/h).
Mutational analysis showed that he harbored compound heterozy-
gous mutations (p.R594H/p.D645E) (Fig. 1). His muscle biopsy re-
sults were shown in Fig. S1(C) & (D).

3.1.2. Patient 2

An 11 year-old girl presented with slowly progressive lower extrem-
ity weakness since the age of 10years. She had mild difficulty in climbing
upstairs and could not do sit-ups at all. On her first visit to our clinic,
marked abdominal and tongue weakness were observed. Proximal mus-
cle weakness was relatively mild but Gowers' sign was positive. Creatine
kinase levels were mildly increased to 300 IU/L and muscle biopsy was
thus performed. Cytoplasmic bodies with high acid phosphatase activity
were found in some muscle fibers. Late-onset glycogen storage disease
type Il was therefore highly suspected. DBS were collected for GAA activ-
ity assay. Pompe disease was confirmed by deficient activity of acid -
glucosidase (GAA) in net GAA (with inhibitor), 0.26 umol/L/h (reference
range: 12.22 4+ 5.88 umol/L/h). Mutational analysis showed that she har-
bored compound heterozygous mutations (p.R190H/p.D645E) (Fig. 2).
Her muscle biopsy results were shown in Fig. S1(A) & (B).
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Fig. 1. The melting profiles of the GAA mutations in patient 1. (A) Normalized and temperature-shifted difference plots, the melting profile of c.1935C>A; (B) normalized plots, and nor-
malized and temperature-shifted difference plots, the melting profile of c.569G>A; electropherogram of mutation: (C) ¢.1935C>A; Electropherogram of mutation: (D) c.569G>A.
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Fig. 2. The melting profiles of the GAA mutations in patient 2. (A) Normalized and temperature-shifted difference plots, the melting profile of c.1935C>A; (B) normalized plots, and nor-
malized and temperature-shifted difference plots, the melting profile of c.1781G>A; electropherogram of mutation: (C) c.1935C>A; electropherogram of mutation: (D) c.1781G>A.

3.2. Optimization of HRM curve analysis

Seven known GAA mutations (c.2T>C, ¢.1726G>A, c.1845G>A,
¢.1935C>A, ¢.1958C>A, ¢.2238G>C, and ¢.2815_2816del) were used
to assess the sensitivity of the HRM method for mutation scanning.
Complete GAA mutational screening required investigation of exon
2 through exon 20. Twenty five PCR amplicons (169-377 bp) were
evaluated with an average of 214 bp to cover exon 2 through exon
20 using LightCycler® system.

The normalized and temperature-shifted difference plots, the melt-
ing profile of GAA mutations c.2T>C, ¢.1845G>A, and c.2815_2816del
are shown in Figs. S1, S2, and S3, respectively. The results were con-
firmed by direct sequencing. Fig. 3 shows that ¢.1726G>A (heterozy-
gous, homozygous, and wild-type) are clearly described in the
normalized temperature-shifted difference plots. Fig. 4 shows that
¢.1935C>A (heterozygous, homozygous, and wild-type) are clearly de-
scribed in the normalized temperature-shifted difference plots. Fig. 5
shows that ¢.2238G>A (heterozygous, homozygous, and wild-type)
are clearly described in the normalized temperature-shifted difference
plots. All results were confirmed by direct sequencing. Intriguingly, we
identified a non-pathogenic mutation among the Taiwanese population,
€.1920T>G (p.P640P) [24] in normal populations (Fig. S4).

3.3. Allele frequency of the most common mutation, ¢.1935C>A (p.D645E),
among the Taiwanese population

In the current study, we recruited 250 healthy Taiwanese sub-
jects. We screened the subjects for the most common mutation,

¢.1935C>A (p.D645E), using HRM analysis and computed the allele
frequency for this mutant site. The results were confirmed by direct
sequencing. We found that only one subject harbors a heterozygous
mutation, c.1935C>A (p.D645E). The estimated allele frequency was
0.002 for ¢.1935C>A (p.D645E).

3.4. Structure packing density and sequence conservation analyses of the
GAA protein

The protein packing density is described using weighted contact
number (WCN) [25]. The larger the WCN of a residue, the more
packed its environment. The reciprocal of the WCN (rWCN) profile
is used to be compared with the sequence conservation profile. The
conservation scores of a protein were calculated using ConSurf[19].
These scores are a relative measure of evolutionary conservation at
each sequence site of target chain. The lowest score represents the
most conserved position in a protein. Qualitatively, the residues of
larger WCNs (or in more packed environments) are more con-
served than those of smaller contact WCNs (or in less packed envi-
ronments). Indeed, Fig. 6 demonstrates that rwWCN profile (dotted
line) and the conservation profile (solid line) overlap extremely
well in the GAA protein. The recent study shows that the catalytic
site residues tend to be located in regions of high packing density
[26]. Our results demonstrate that these mutations (p.R190H,
p.G576S, p.R594H, p.D645E, and p.W746C) are conserved residues
and also located in the more packed environments. Therefore, it is
reasonable to assume that these residues are highly associated
with the functionality of the GAA protein.
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Fig. 3. Optimization of HRM curve analysis specific for c.1726G>A. (A) Normalized and temperature-shifted difference plots, the melting profile of c.1726G>A (homozygous mutation, het-
erozygous mutation, and wild-type); electropherogram of mutation: (B) ¢.1726G>A (heterozygous mutation); (C) c.1726G>A (heterozygous mutation).

4. Discussion mutations, ¢.569G>A (p.R190H) [27] and ¢.1781G>A (p.R594H) in
our patients [28].
In this study, we have successfully established a diagnostic strategy To date, approximately 453 different sequence variants in the

by HRM analysis for identifying seven known (c.2T>C, c.1726G>A, GAA gene are listed in the Pompe disease mutation database
c.1845G>A, c.1935C>A, c.1958C>A, ¢.2238G>C, and c.2815_2816del) (www.pompecenter.nl). Numerous sequence variants have been
GAA mutations. We have also identified two previously described demonstrated to be pathogenic. The most frequent mutation

Normalized and Temp-Shifted Difference Plot

20311 ¢.1935C>Alheterozygous mutation)

178114
15311 | = ¢.1935C>A-¢.1958C>A

2 12811 ’ y \
10311 e
7811 $d /
53111

2811
0311
2189
-4.689
7189

Relative Signal Difference

'~—~_<=..--' ¢.1935C>A (homozygous mutation)

Temperature (°C)

g

€.1935C>Alheterozygous mutation) €.1935C>A (homozygous mutation) c.1958C>A

A) 85 855 8 865 a7 875 ) 885 9 895 0 905 91

—J

Fig. 4. Optimization of HRM curve analysis specific for c.1935C>A. (A) Normalized and temperature-shifted difference plots, the melting profile of c.1935C>A (homozygous mutation, het-
erozygous mutation, and wild-type) and c.1935C>A + ¢.1958C>A; electropherogram of mutation: (B) ¢.1935G>A (heterozygous mutation); (C) c.1935G>A (heterozygous mutation);
(D) c.1958C>A (heterozygous mutation).


http://www.pompecenter.nl
image of Fig.�4
image of Fig.�3

T.-K. Er et al. / Clinica Chimica Acta 429 (2014) 18-25

23

Normalized and Temp-Shifted Difference Plot

7.348
6548
5748
4.948
4.148
3.348 |
2548
1.748
0948
0148

Relative Signal Difference

\

€.2238G>C (heterozygous mutation)

omozygous mutation)
— Wild-type

-0652
-1.452

865 87 875 88

A)

895
Temperature (°C)

I

B) el

©.2238G>C {haterazygous mutation)

€.22386>C{homozygous mutation}

Fig. 5. Optimization of HRM curve analysis specific for ¢.2238G>C. (A) Normalized and temperature-shifted difference plots, the melting profile of ¢.2238G>C (homozygous mutation, het-
erozygous mutation, and wild-type); electropherogram of mutation: (B) ¢.2238G>C (heterozygous mutation); (C) ¢.2238G>C (heterozygous mutation).

among late-onset Pompe disease is the leaky c.-32-13T>G, which
gives rise to alternatively spliced transcripts, including a deletion
of the first coding exon, but still allows the production of a low
amount of normally processed mRNA [1]. The ¢.-32-13T>G muta-
tion was found over 40% patients of Caucasian origin [29-33]. In
contrast, the c.-32-13T>G mutation has not been found among
Asian population and this may indicate that the mutation shows
ethnic specificity. Among the Taiwanese population, Yang et al.
[34] revealed that two dual mutations in the GAA gene
c.1935C>A; ¢.1726G>A and c.2238G>C; c.1726G>A represented
66.5% of the mutated chromosomes. Besides, Wan et al. [24]
demonstrated that, the c.1935C>A (p.D645E) mutation was iden-
tified in 57.7% of both infantile and juvenile-onset GSD II. The au-
thor suggested that the c.1935C>A (p.D645E) mutation should be
detected first when one suspects a GSD II patient. The mutation,
¢.1935C>A (p.D645E) has also been observed in up to 80% of infantile
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cases. It is associated with a haplotype and suggested as a founder ef-
fect [35]. Meanwhile, Amarinthnukrowh et al. [36] revealed that the
mutation, c.1935C>A (p.D645E) accounts for 80% of the GAA muta-
tions in Thai patients with infantile-onset Pompe disease. In the cur-
rent study, both of the patients were compound heterozygous for
this mutation. Notably, the reported mutation, ¢.1781G>A
(p.R594H), is probably pathogenic because it involves the conserved
residue during the evolution suggesting its essential functional role
(Fig. 6). However, larger scale control experiment or further func-
tional experiment may be necessary.

It should be noted that, the pseudodeficiency mutation, c.1726G>A
(p.G576S), was found to be associated with severe mutation. The
allele frequency of pseudodeficiency mutation among Taiwanese
population is 14.5% [37]. It is far higher than that of European and
sub-Saharan/African populations [38]. Also, the pseudodeficiency
mutation may decrease the residual GAA activity of another mutation

L
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Fig. 6. The rWCN profile (dotted line) and ConSurf profile (solid line) of the GAA protein.

normalized to their respective z-scores.

The GAA mutations are marked in red circles. Both the rWCN and the conservation scores are
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[39]. This may be the reason that Chinese patients with later-onset
Pompe disease have earlier symptom onset than white patients. Indeed,
both patients harbored the pseudodeficiency mutation having earlier
symptom in the present study (Fig. S5). Aforementioned, two dual
mutations in the GAA gene ¢c.1935C>A; c.1726G>A and ¢.2238G>C;
c.1726G>A were represented in 66.5% of the mutated chromosomes
in the Taiwanese population [34]. On the other hand, the ¢.2238G>C
(p.W746C) was shown to be associated with juvenile-onset GSD II
and this mutation leads to a moderate disease phenotype. In this study,
we designed three of primer-specific pairs for identifying c.1726G>A
(p.G5768S), c.1935C>A (p.D645E), and ¢.2238G>C (p.W746S) using HRM
analysis (Supplementary data-1). The melting curve data showed
the difference in normalized temperature-shifted data between
the homozygous mutation, heterozygous mutation, and wild-type
samples (Figs. 3-5). Once Pompe disease is suspected, physicians
can screen these GAA mutations using HRM analysis.

Recently, Lobato et al. [32] developed the real-time PCR only for the
detection of ¢.-32T>G (IVS1-13T>G) mutation of Pompe disease from
DBS specimen. Besides, Pittis et al. [31] revealed 28 polymorphisms
spread over the GAA gene using denaturing high performance liquid
chromatography (DHPLC) analysis. The authors indicated that the
¢.-32-13T>G was the most frequent mutation, present as compound
heterozygote in Italian population. Besides, the RT-PCR and long
range-RT-PCR have also been used for the identification of GAA mu-
tation in Pompe disease [34,40]. Notably, Chou et al. [41] demon-
strated that HRM analysis had better sensitivity and specificity than
DHPLC with the added advantages that some homozygous sequence
alterations could be identified. Indeed, we could differentiate the
heterozygous, homozygous, and wild-type DNA samples in the cur-
rent study (Figs. 3-5). Till very recently, most screening approaches
are now utilizing the more sensitive techniques of massively paral-
lel sequencing. It has revolutionized genomics, providing a wide
range of novel application on a high throughput, genome wide
level. Although massively parallel sequencing has become the
promising tool in genetic and genomic analysis, this approach is
more expensive and the large amount of bioinformatics data creates
informatics challenges. Meanwhile, it is not affordable for a small to
the middle scale laboratory. In contrast, equipment, labor, reagent,
and supply costs for analysis using the HRM analysis are substan-
tially lower than the costs associated with analysis using massively
parallel sequencing [42]. The HRM analysis is faster and less expen-
sive than next-generation sequencing, facilitating rapid analysis of
disease-causing mutations especially the high frequency of hotspot
mutations.

In the current study, we also intended to model the proteins
encoded by GAA to understand the structural implications of the mu-
tations identified in this study. The atomic coordinates of the model
structure were predicted using maltase-glucoamylase (PDB entry:
2QMy]) [23] as the template. The model of human GAA protein is
shown in Fig. 7. The mutations of GAA are spread over the protein
structure and distributed from the core to the surface of the enzyme
molecule. A study showed that the substitution of G576 with S
causes a small conformational change of side chains and does not af-
fect the active site of the enzyme. The expressed protein may be un-
stable but exhibits considerable residual activity and normal affinity
for substrates [39]. The structure analyses also reveal that both resi-
dues R190 and R594 have the salt bridge interactions with residues
D253 and D860, respectively. A salt bridge is actually a combination
of two non-covalent interactions: hydrogen bonding and electrostat-
ic interactions. This is commonly observed to contribute stability to
the proteins. Therefore, the substitution R190 with H or substitution
D594 with H may reduce the salt bridge interaction and then desta-
bilize the structure of GAA. The D645 is a conserved residue and
is located at the catalytic domain. As previously described, the
D645E substitution results in a decrease in enzyme activity and ac-
counts for the observed defects in transport, phosphorylation and,

DistC
>
W746
R594 G518
D645
Catalytic
domain

Fig. 7. Molecular modeling of Human GAA. The predicted wild type of human GAA model.
The predicted structure comprises five domains: trefoil type P domain (light blue), N-
terminal (yellow), catalytic domain (red), proximal C (blue), terminal and distal C termi-
nal (green). The five residues R190, G576, R594, D645, and W746 are shown in a sphere
mode. The 3D molecular graphs are displayed using PyMOL.

proteolytic processing of the newly synthesized a-glucosidase pre-
cursor of the patient [43]. The W746 residue is located at the proxi-
mal C terminal. Tryptophan (W) is unique in terms of chemistry
and size. The substitution of W746 to S, a polar uncharged size
change, may lead to a deleterious effect on protein function and
structure.

In summary, we have demonstrated that HRM for mutation scan-
ning of the GAA in patients with Pompe disease is a feasible and effi-
cient method. This method differentiated all 7 known mutations
(€.2T>C, c.1726G>A, c.1845G>A, c.1935C>A, ¢.1958C>A, ¢.2238G>C,
and ¢.2815_2816del). Accordingly, HRM analysis is proved to be a
workable, sensitive and in-tube methodology to scan GAA mutations
in clinical practice. As aforementioned, the mutational analysis serves as
an important role in establishing a definitive diagnosis especially in
genotype-phenotype correlations in patients with Pompe disease.
Therefore, we suggest that patients who are suspected of having
Pompe disease should receive GAA gene analysis via HRM and direct se-
quencing for further diagnosis and appropriate treatments.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.cca.2013.10.013.
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