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A Modified Finite Element Method for 
‘Analysis of Finite Periodic Structures 

Shyh-Jong Chung and Jiunn-Lang Chen 

Abstract-A modified finite element method with new solving 
algorithm is proposed to analyze electromagnetic problems of 
finite periodic structures. Dielectric-loaded parallel-plate waveg- 
uides with rectangular and triangular dielectric gratings are 
tackled as an example of the present approach. Numerical results 
are checked by the self-convergence test and by comparing with 
those obtained by other methods. Finally, the dependence of the 
scattering parameters on the frequency, the period number, and 
the grating height is analyzed and compared. 

I. INTRODUCTION 
N recent years, the finite element method (FEM) has been I used to analyze wave guiding and scattering problems of 

microwave, millimeter-wave, and optical components [ 11-15]. 
When appropriately combined with other techniques (e.g., 
Green’s function technique 121, 131, eigenfunction expansion 
method [4], absorbing boundary condition [5]), this method 
can, in general, tackle arbitrary geometries with inhomoge- 
neous, anisotropic, and/or lossy mediums. 

Before applying the finite element method, one first estab- 
lishes a variational equation for the problem to be handled. 
According to the geometry of the problem, the structure is 
then divided into several subregions, called elements. The 
fields in each element are expanded by the so-called nodal 
field values, (which are values of the fields in some particular 
points (nodes) of the element and are to be determined,) and 
the corresponding “shape functions” (bases) [6]. After using 
the Rayleigh-Ritz procedure, a submatrix of the element can 
be obtained. Finally, by assembling the submatrices of all the 
elements, one gets a system matrix equation from which the 
nodal field values are solved. 

In most cases, the system matrix is highly sparse, and thus 
the frontal solution technique [7] is usually used in the solving 
process of the equation to reduce the computation time and the 
core storage requirements. The technique includes two phases, 
i.e., assembly and elimination. Whenever a submatrix of a new 
element is gotten, it is assembled to the existing (working) 
matrix. The working matrix is then reduced by eliminating 
the variables that won’t appear in the rest elements. As all 
the elements have been called in, the resulting working matrix 
becomes that corresponding to the variables of the boundary 
nodes. By this final matrix, the scattering parameters or the 
eigenvalues are calculated. 
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Although the finite element method coupled with frontal so- 
lution technique is versatile for the analysis of electromagnetic 
problems, it still needs improvement to increase its efficiency, 
especially for the structures with high repetition, e.g., periodic 
structures, or with large areas of homogeneous regions. (The 
later can be treated as special cases of the former.) In these 
structures, although the field distributions are different from 
one period to another, the discretization of the structure in each 
period may be made the same. The resultant matrix obtained 
from the frontal solution technique for each period is thus the 
same. This means that one only needs to establish the matrix 
once but not for every period. 

Periodic structures appear in many devices, such as filters, 
gratings, and distributed feedback lasers. For the analysis of 
these problems, most researchers assumed infinite periods ex- 
isting in the structure, and used Floquet’s theorem 181 to focus 
the problem into a single period. Only a few handled with 
the finite periodic structures [9]-[ll], among which [9] used 
the network representation to connect the contribution of each 
period and [lo] proposed a method based on the spectrum- 
domain analysis, combined with the sampling theorem, to 
treat finite periodic structures. Although available for arbitrary 
number of periods, these approaches could tackle only the 
periodic structures with step discontinuities. 

In this paper, we propose a modified finite element method 
for the analysis of structures with high repetition. In the dis- 
cretization of the structure, we first divide the whole area into 
several blocks, called “super-elements”. Due to the repetition 
property of the geometry, these super-elements belong only to 
a few patterns. (For example, in a finite periodic structure, 
each period is treated as a super-element, and the whole 
structure contains only one (geometric) pattern). For each 
pattern, we divide it into many ordinary elements, and expand 
the fields in each element by the nodal field values and the 
shape functions. Through the treatment of the Rayleigh-Ritz 
procedure and the frontal solution technique, one obtains a 
submatrix corresponding to the variables of boundary nodes 
of the pattern. To this end, the frontal solution technique is 
again used to assemble and eliminate the submatrices of the 
super-elements. The final matrix is then obtained after this 
process. 

The organization of this paper is as follows: Section I1 
describes the theory of the method. Section 111, as an example 
of the theory, deals with a finite periodic planar dielectric 
structure with top and bottom covers. The numerical results 
are then presented in Section IV, followed by conclusions in 
Section V. 
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Fig. 1 .  Dielectric scatterers located in a parallel-plate waveguide. 

11. THEORY 
As an illustration of the theory, consider a two-dimensional 

structure as depicted in Fig. I ,  which shows four dielectric 
obstacles located in a parallel-plate waveguide. The spacing 
between the first (rectangular) and the second (triangular) 
dielectrics is the same as that between the third and fourth 
(rectangular) dielectrics. A TE mode of the parallel-plate 
waveguide is incident from the left-hand side (LHS), which 
will excite some modes reflected back to the LHS and some 
transmitted to the right-hand side (RHS). From a partial 
variational principle [ 121, one obtains a variational equation 
as follows: 

6"I" = 0 

where 0, sandwiched by boundaries I?l and r2, denotes a 
finite region enclosing all the obstacles as shown in Fig. 2(a). 
I',, means the inner face (inside 0) of r1,2. The variational 
operator 6" operates only on the terms with superscript "a". 

To solve (1) by the finite element method, R is divided into 
N small triangular elements (as shown in Fig. 2(a)), so that 
the functional I" can be written as 

N 

I" = XI: +IF. 
e = l  

Here 1: represents the functional corresponding to the e- 
th triangular element, and If corresponding to the boundaries 

and rz. By the repetition nature of the structure, the N 
small elements are grouped into Ns(= 8) "super-elements", 
as indicated in Fig. 2(a). These super-elements belong to the 
three patterns shown in Fig. 2(b): super-element 1, 3, 4 are of 
pattern I, super-element 2 is pattern I, and super-elements 5, 6, 
7, 8 pattern IU. (Here super-element 6 is assumed to have the 
same dimensions as super-elements 5 ,  7, 8.) By appropriate 
division, the super-elements of the same pattern may have 
the identical discretization. Assuming pattern i, i=I, II, m, be 
comprosed of N ,  small elements, (2) is rewritten as 

PATTERNS 

(b) 

Fig. 2. 
triangular elements. (b) Three structure patterns of the super-elements. 

(a) Finite-element discretization including super-elements and small 

where I: represents the functional of the s-th super-element, 

The field in each triangular element is expanded by the 
field values at six nodes of the element, three on the vertices 
and three on the mid-pionts of the edges. By using the 
Rayleigh-Ritz procedure and the frontal solution technique, 
the variational operation on 1: would result in a submatrix 
A ,  associated only with the field values of the boundary 
nodes of the s-th super-element. Note that, owing to the 
same dimensions and discretization, the super-elements of 
a pattern would have the same submatrix. Thus, one only 
needs to calculate three submatrices for the present example. 
(Each submatrix of a pattern is obtained by assembling and 
eliminating N,  sub-submatrices of the triangular elements.) 

By using >e frontal solution technique a@n, the N, 
submatrices (zs, s=l,  ..., N s )  and the submatrix 2~ (associated 
with IF) are then gathered in turn to get the final matrix 
equation, 

- - 

with 3 being the nodal field values of boundaries rl and I'2, 

and S the sources terms associated with the incident field. The 
scattering parameters are determined from the solution of (5) .  

Before the end of this section, it is noticed that the eight 
super-elements shown in Fig. 2(a) can be considered as four 
new super-elements, that is, super-elements (1,5). (2,6), (3,7), 
and (4, 8). These new super-elements belong to two pattems, 
thus only two submatrices are needed to be obtained. 

111. APPLICATION TO FINITE PERODIC STRUCTURES 

Fig. 3 shows a periodic dielectric waveguide with top 
and bottom PEC covers, where a N,-period structure is 
connected to two semi-infinite dielectric-loaded parallel-plate 
waveguides. The materials in each period may be arbitrary and 
may contain PEC's. Let the incident field be the TE dominant 
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PEC 
Fig. 3. 
number of the periods in the structure. 

Periodic dielectric waveguide with top and bottom covers. AVc is the 

mode (slab-guide mode) of the dielectric-loaded parallel-plate 
waveguide. 

The fields exterior to the boundary r1 are expanded by 
the orthonormal modes of the dielectric-loaded parallel-plate 
waveguide, Le., 

A I  

E,(r;) = + R~+) (6) 
i=l 

and 
AI 

H,(r;) = hl(z) + nihi(z), (7) 
i= l  

where e;(z) is the modal function of the i-th mode, hi(.) = 
- 3 ,  -e;(x), with pi being the propagation constant of the mode. 
Ri is the reflection coefficient to be determined. By the 
continuities of the tangential fields and the orthonormality of 
the modes, one gets 

WPO 

R~ = -hli + i q , ( r ; ) / L i ( x ) d z ,  (8) 

and thus 

&(q) = &(q) 

With a similar treatment to the boundary r2, one obtains 

and 

where 'rl is the (unknown) coefficient of the ith mode trans- 
mitted to the RHS waveguide. 

By casting (9) and (11)  into ( l ) ,  a variational equation 
containing only the electric field inside R is obtained, which is 
then solved by the method mentioned in the previous section. 

In the discretization of the structure, each period is treated 
as a super-element. Besides, two aditional uniform sections 
immediately adjacent to the periodic stucture are included in 
(1 and are considered as two super-elements (see Fig. 3). The 
inclusion of these two sections can reduce the number (M) of 

I 
h 
r 

i c  
STRUCTURE A pi2 

'Pi2 STRUCTURE B 

t - P S  
STRUCTURE C 

Flg. 4. Periodic structures to be analyzed. For Ftructures A and C, f, = 5. 
t = 1.8mm, h l  = 0. For structure B, 6 ,  = 11.8, t = 0.7mm, hi = h2 = 1 
mm. 

the waveguide modes required to expand the fields on rl and 
rz, due to the decays of the higher-order evanescent modes. 
Thus, there are totally N ,  + 2 super-elements in R, which 
belong to two patterns, Le., the pattern of the period and that 
of the uniform section. 

The essential boundary condition on the PEC covers (Le., 
tangential electric fields to be zero) is enforced in the process 
of obtaining the submatrices of the patterns. This makes the 
submatrix associated only with the nodal field values of the 
two side boundaries of the pattern. Thus, whenever a new 
super-element is called in, after assembly and elimination, 
the resulting working matrix always contains the variables 
of rl and those of the RHS boundary of that super-element, 
assuming that the super-elements are called in one by one from 
left to right. (The variables of rl can not be eliminated since 
they will appear in the last element, Le., the last term of (3)). 
In other words, the size of the working matrix is kept constant, 
not getting larger with the increase of the number of treated 
super-elements. 

After the last element having been called in, the working 
matrix becomes the final (system) matrix and the source terms 
are introduced. The solutions of the resulting matrix equation 
are the electric fields on rl and rz, Le., Ey(I';) and EY(r;). 
The reflection coefficients Ri's and transmission coefficients 
T,'s are then calculated from (8) and (10). 

IV. NUMERICAL RESULTS 

We present in this section some numerical results for 
the finite periodic structures shown in Fig. 4. Some of the 
geometric parameters are indicated in the figure, others defined 
in Fig. 3. The number (M) of the modes, including propagation 
and evanescent modes, of the dielectric-loaded parallel-plate 
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Fig. 5. Variation of the reflection coefficient as a function of the frequency 
for the structure B shown in Fig. 4. .V, = 2 0 , p  = 1.36mm, t ,  = 0.03". 

waveguide is set to be 10. Although not shown here, further 
increase of this number does not influence the calculated 
results. 

Table I shows a convergence test of the slab-guide reflection 
(R) and transmission (T) coefficients for the structure A with 
2 periods (Ne  = 2). Nx and Nz represent the division mesh 
numbers in the x and z directions, respectively, inside a 
period. It is seen that good convergence is obtained both 
for the magnitudes and phases of the coefficients. The power 
conservation law, i.e., the absolute squares of the scattering 
coefficients of all the propagation modes are added to be unity, 
is always obeyed for this and the following calculations. 

As a further test of the present method, Fig. 5 shows the 
magnitude of the reflection coefficient R (of the slab-guide 
mode) as a function of the frequency for the structure B 
with Ne = 20. The results of the dash line are from [ l l ] ,  
in which the obstacles (PEC's) embedded in the uniform slab 
are replaced by highly dopped plasmas (a = 2.44 x 10'S/rn). 
The infinite conductivity of the obstacles makes the curve of 
the present analysis (solid line) having higher values in the 
flat band and larger oscillations than that of [ I  11. Except for 
these differences, the two curves behave quite similarly in the 
whole frequency band. 

22 24 26 28 30 32 34 6 

FREQUENCY (GHz)  

Fig. 6.  
for the structure A shown in Fig. 4. 

Variation of the reflection coefficient as a function of the frequency 
= 2O.p = 3.6". H2 = 2 t .  

1 
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Fig. 7. Variations of the reflection (R-) and transmission CPt) powers as 
a function of the period number (Xc) for the structure A shown in Fig. 4. 
f = 29.2GHz, p = 3.6mm, h2 = 2 t .  

Fig. 6 illustrates the frequency response of the reflection 
coefficient for the structure A (Ne  = 20) with h = 0.25t (solid 
line) and h, = 0.5t (dash line). It is seen that the increase of 
the height of the ridges has a little influence on the upper end 
of the reflection band, but has large on the lower end. The 
expense of this increased bandwidth is the raise of the side 
lobes in the lower frequency. 

There are three dielectric thicknesses associated with the 
stuctures of Fig. 6, i.e., t ,  1 . 2 3  (for h = 0.25t), and 1.5t (for 
h = 0.5t). For the given period length (p = 3.67nm) and 
dielectric constant (er  = 5 . ) ,  to satisfy the Bragg reflection 
condition based on the first order perturbation theory [13], i.e., 
, O ( f ) p  = 7r. the required frequencies for the slab waveguides 
with the three dielectric thicknesses are calculated to be 30.75, 
27.85, and 25.90 GHz, respectively. It is interesting to note that 
the mean value of the first two frequencies is 29.3 GHz, which 
is approximately equal to the maximum-reflection frequency 
(29.2 GHz) for the solid-line curve (which is the result for the 
periodic structure formed by two equally spaced dielectrics 
with thickness t and 1.2%). Similarly, the mean value of the 
first and last frequencies, i.e., those for dielectric thicknesses 
t and 1 3 ,  is 28.33 GHz, which, again, is approximately 
equal to the maximum-reflection frequency (28.2 GHz) for 
the dash-line curve. 

Fig. 7 shows the variations of the reflection (P,) and 
transmission (P,) powers (of the slab-guide mode) with the 
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Fig. 8. Variations of the reflection (solid lines) and transmission (dash lines) 
powers as a function of the period number (LVc.) for the structure A shown in 
Fig. 4. The arrows indicate the increase of h . 2 .  f = 29.2GHz, 11 = 3.Gmm. 
I t  = 0.25t. 

increase of the period number (N,.) for the structure A with 
h = 0.25t and h = 0.5t. Since the frequency is chosen to be 
29.2 GHz, which is simultaneously inside the two reflection 
bands of Fig. 6, the reflection power P, (transmission power 
Pt) increases (decreases) monotonically to unity (zero) both 
for h, = 0.25t and h = 0.5t .  For a given number of periods, 
the reflection power of 11 = 0.5t (dash line) is larger than that 
of \i = 0.25t (solid line), due to the stronger reflection at each 
step-discontinuity. In other words, to get a given reflection 
power, the total length of the structure with h = 0.5t will be 
shorter than that of the structure with h = 0.25t, since less 
periods are needed for the former structure. 

Fig. 8 presents the reflection (solid lines) and transmission 
(dash lines) powers as a function of the period number for the 
structure A with several heights h2 (defined in Fig. 3) of the 
upper cover. The curves for h,2 = 4t,  6t, 10t (t  = 1.87rl7rL) 
are almost the same since their propagation constants of the 
slab-guide mode are nearly identical ( p  0.796 rcdlmni). 
As the height of the upper cover is reduced to h2 = 2t, the 
propagation constant is varied a little ( f i  = 0.788 r n d . / m r r r ) ,  
but the curve of P, (Pt) still increases (decreases) monotoni- 
cally with the increase of the period number. This phenomenon 
is changed when the upper cover is further pressed down to 
h2 = t .  At this height the propagation constant is changed to 
0.730 rad./mrn due to the strong influence of the cover on 
the field of the slab-guide mode. This seriously destroys the 
Bragg reflection condition for the given length of the periods 
(JJ = 3 . 6 7 r i m ) .  For this reason, the curves of P, and Pt for 
hz = t oscillate and do not change monotonically with the 
increase of N,. 

The frequency response of the reflection coefficient of 
a triangular grating shown as the structure C of Fig. 4 is 
illustrated in Fig. 9. The solid line respresents the result for 
20 periods, and the dash line for 40 periods. It is noted 
that the increase of the period number can raise the main- 
lobe level, while keep the main-lobe bandwidth and side-lobe 
levels unchanged. Also note that from our calculations, the 
magnitudes of the reflection coefficients for a TE dominant 
mode incident from RHS are the same as those for that coming 
from LHS, as is the consequence of the power conservation 
law [8]. 
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Fig. 9. 
for the structure C shown in Fig. 4. 11 = S.Gmm, h = 0.2.5t. h2 = 2 t .  

Variation of the reflection coefficient as a function of the frequency 

V. CONCLUSIONS 
We have improved the algorithm of the finite element 

method for solving scattering and guiding problems of highly 
repetitive structures. The whole structure is divided into sev- 
eral super-elements which can be grouped into a few pat- 
terns due to the repetition property of the structure. Each 
super-element is discretized to many small elements and the 
Rayleigh-Ritz procedure and the frontal solution technique are 
used to obtain a submatrix for the super-element. Only a few 
submatrices are needed to calculate since the super-elements 
belonging to a pattern would lead to the same matrix. By 
assembling the submatrices of all the super-elements, a final 
system matrix equation is obtained and then solved. 

The validity of the proposed method has been checked 
by the self-convergence test and by comparing the numerical 
results with those obtained by another method. Also the power 
conservation law has been fulfilled for all the calculations. 
Numerical results, including the frequency response and the 
dependence on the period number of the scattering parameters, 
for finite periodic structures in dielectric-loaded parallel-plate 
waveguides have been presented. It has been found that, to 
predict the maximum-reflection frequency of a rectangular 
grating, one may approximately take the mean value of the 
Bragg-reflection frequencies (for a given period length) of the 
two slab waveguides with thicknesses t and t + h (see the 
structure A of Fig. 4). The increase of the period number 
has little influence on the main-lobe bandwith and the side- 
lobe levels of the frequency spectrum, but it does increase the 
reflection power in the main lobe. 

The proposed method can be applied to any variational 
equation to be solved by the finite element method, although 
a partial variational equation has been used in this paper. 
Besides, the efficiency of the present method is more obvi- 
ous when more complicated structures, such as semiperiodic 
structures arbitrarily formed by two or more structure patterns, 
are tackled. 
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