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Semantic high-level event recognition of videos is one of most interesting issues for multimedia search-
ing and indexing. Since low-level features are semantically distinct from high-level events, a hierarchical
video analysis framework is needed, i.e., using mid-level features to provide clear linkages between low-
level audio-visual features and high-level semantics. Therefore, this paper presents a framework for video
event classification using temporal context of mid-level interval-based multimodal features. In the
framework, a co-occurrence symbol transformation method is proposed to explore full temporal relations
among multiple modalities in probabilistic HMM event classification. The results of our experiments on
baseball video event classification demonstrate the superiority of the proposed approach.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction event, fly ball, can be recognized by detecting interval-based fea-
The amount of multimedia information has grown explosively
over the past decade. To search and index through these data is a
difficult task and dependent upon techniques that can recognize
events in videos. Event mining has been an active research area
with notable recent progress and a detail review can be found in
[1]. The event application systems from these works make the
delivery and searching of video contents more effective and effi-
cient. However, most of current systems employed domain specific
heuristics to model audiovisual feature patterns in event classifica-
tion. [2–4] pointed out that there is a lack of a framework for event
classification. In this paper, a framework of modeling interval based
multimodal features is proposed for video event classification. In
this framework, videos from different domains are represented by
interval-based structures and reasoned by their temporal context.

Temporal context of interval-based features can be utilized as
important cues for video classification. Take a fly ball event in base-
ball video for example as shown in Fig. 1, where the video starts
with a pitching scene. After the hitter hits the ball, the video is chan-
ged into an outfield scene and the cameraman tracks the ball loca-
tion, producing pan up camera motions. At the same time, the
audience cheers loudly as the ball fly. After the ball was caught by
the outfielder, the video is switched to a close up scene of the pitch-
er to show his reaction. This example indicates that the high-level
tures: pitching scene, outfield scene, close-up scene, camera pan-
up as well as audience cheering in the video and verifying whether
all these features meet the temporal context described above.

Researchers have made some progresses in modeling the tem-
poral context structure inherent to high-level events. Zhu et al.
[6] took into account the temporal continuity besides association
rules. Therefore, they introduced multilevel sequential association
mining to explore associations among the audio and visual cues.
However, the temporal knowledge used in their work is rather
simplified. Chen et al. [7,8] proposed a hierarchical temporal asso-
ciation analysis framework using multimodal data mining method.
In their method, temporal analysis is used to identify significant
temporal patterns. Unfortunately, since the temporal pattern
adopted is sequential, this method cannot detect events with com-
plex temporal relationships. Allen [9] defined all possible temporal
relations between time intervals. According to Allen [9], the tem-
poral relation between any two features can be described by one
of 7 temporal logics: before, meet, overlap, equal, during, start, and
finish. Snoek et al. [10] used a relaxed version of Allen’s relations,
called TIME, to detect events in two different domains: soccer
and news. But the relaxed Allen’s relations cannot convey temporal
interval information precisely. Fleischmann et al. [11,12] proposed
an unsupervised method based on Allen temporal algebra [9] by
searching for commonly occurring event temporal relationships.
The main contribution of their work is the temporal structures of
complex events and the integration of external text-modal infor-
mation. However, as pointed out by Wu et al. [13], there are two
ambiguous problems in Allen’s temporal algebra when dealing
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Fig. 1. Temporal compositions of interval-based features, including pitching scene, camera pan up, field scene, and cheer for a fly ball event in baseball video [5].
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with more than two features. They are (1) different representations
may exist for the same temporal relation among features, and (2)
the same representation can stand for different temporal relations
among features. To overcome these problems, Wu et al. [13]
proposed a new non-ambiguous representation (called temporal
sequence, or TS) by using feature type, start/end symbols, occur-
rence number, and temporal order. For example, the temporal
relation ‘‘x meets y’’ in Allen’s method is represented by
x+1 < x�1 = y+1 < y�1 in Wu et al.’s method, where x and y are
feature types, < and = are temporal order relation, + and � mean
feature start/end, and the number following the +/� is the occur-
rence times of this feature type. For m features, we can construct
2m � 1 TSs to describe all of their temporal relations: one TS for
one relation. Given five features as shown in Fig. 2, there would
be 25 � 1 = 31 TSs among them. Due to space limit, we only show
three TS examples in Fig. 2. Moreover, for two temporal sequences,
if one is a subset of the other one, we say there is a containment
between them. As shown in Fig. 2, ts3 is contained in ts1, but not
contained in ts2. The formal definition of temporal sequence can
be found in [13] and thus, it is not described in details here.

By using Wu et al.’s representation, Dao et al. [14] proposed a
temporal frequent pattern-based event classification (TFPEC)
method for event detection of sports video. Their method has
two stages: training and testing. In training stage, frequent pattern
set (FPS) for each event are constructed using its training TSs,
where the FPS is a set of frequently occurring feature patterns
among the training sequences of an event class. Since any subset
of a TS could be a frequent pattern candidate, all the subsets for
each training TS are enumerated and verified by counting their
occurrence number. If any subset occurs more than N times for
an event class, it is called a frequent pattern, where the N is spec-
ified by users [13]. In TFPEC method, an event class is distinguished
by its FPS. Therefore, for N event classes, there will be N frequent
pattern sets (FPS1, . . . , FPSN) after the training stage. In the testing
stage, for a test sequence, containment check is performed between
all its TSs and each FPS. This test sequence is classified to an event
class (say i) if one of its TSs are contained by one of the patterns in
FPSi. If some of its TSs are contained by multiple FPSs, the event
class corresponding to the one with the longest containment is
selected. Although this method is able to represent events with
Time

Fig. 2. TS examples denoting some temporal relations among five features.
complex temporal relations, their classification method of using
containment match makes it suffer from multiple-recognition
problem (i.e., one test data is recognized as multiple exclusive
event classes), resulting in a poor accuracy rate. Therefore, proba-
bilistic classification based on HMM would be adopted to solve this
problem.

HMM has been regarded as an effective tool to recognize con-
tinuous-time signals since it has been successfully used in many
applications including speech recognition [15], gesture/action rec-
ognition [16,17] and biological sequence modeling [18]. A discrete
HMM is characterized by a set of parameters k ¼ ðA;B;pÞ, where A
is the state transition probability matrix, B is the observation sym-
bol probability matrix, and p is the initial state distribution. Using
HMM for events classification involves training and testing stages.
At training stage, each event class will have a HMM trained with
corresponding sequences for it. At testing stage, maximum likeli-
hood method is used to classify events. The details of HMM can
be found in [15].

HMM was also introduced to video event analysis [19] such as
soccer [20], baseball [21], and basketball [22]. Even though these
works of using HMM can classify events in video content effi-
ciently, most of them use information from one single modality
such as scene transitions, camera motions, or object motions, etc.
This kind of approaches is called the single-model approach. Effec-
tive event analysis, however, requires a multimodal approach in
which information from different modalities are exploited [23–
28]. However, multiple modalities produces more temporal rela-
tionships which make it hard to apply HMM which can only model
temporally sequential data. To apply HMM, each video (no matter
training video or testing video) must be transformed into a symbol
sequence, with different symbols representing different features
and the order of symbols in the sequence standing for the temporal
order of the features in that video. Note that if all the features used
for classification belong to one feature model, then the resulting
symbols for this video sequence will be sequential, which can be
fed into HMM directly. However, if the features used for classifica-
tion are from more than one feature modal, these features may
have overlap in time within the video and thus, cannot be repre-
sented as one sequential symbol sequence.

Huang et al. [29] proposed a method called product-HMM which
applies multimodal information on HMM-based classification. In
product-HMM, modalities are assumed to be mutually indepen-
dent. Thus, for each video, different symbol sequences are gener-
ated independently for different feature modalities; and for each
event class, multiple HMMs are trained, one for each feature mod-
al. Taking three feature modalities: visual, motion and audio, as an
example, instead of using one HMM ki for each event class, three
HMMs kV

i , kM
i , kA

i are trained for each event class, where kV
i is for vi-

sual model, kM
i for motion and kA

i for audio. At testing stage, symbol
sequences of different feature models generated from test video
are fed into corresponding HMMs of each event class. Since prod-
uct-HMM assumes that feature models are mutually independent,
the observation probability of event class i is computed as:

PðOjkiÞ ¼ PðOV jkV
i Þ � PðOMjkM

i Þ � PðOAjkA
i Þ;
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where kV ¼ ðAV
;BV ;pV Þ; kM ¼ ðAM

;BM ;pMÞ and kA ¼ ðAA
;BA;pAÞ. The

test video is classified to the class with maximum likelihood accord-
ing to this probability. Note that although product-HMM provides a
way of utilizing multimodal features in HMM-based event classifi-
cation, it did not utilize full temporal relations among different
modalities because modalities are assumed to be mutually
independent.

In light of these discussions, this paper proposes a new method
of applying multimodal features on HMM for video event classifi-
cation. There are two main contributions in our approach. (1) A
HMM-based event classification framework is proposed using mul-
timodal interval features. (2) A co-occurrence symbol transforma-
tion method is proposed with the capability of exploiting full
temporal relations among multiple modalities in HMM-based clas-
sification without suffering the multiple-recognition problem. In
the remainder of this paper, detailed procedures of the proposed
framework are introduced in Section 2. Section 3 gives perfor-
mance evaluations from baseball event recognition and the results
indicate that the performance and effectiveness of the proposed
framework are satisfactory. Conclusions are drawn in Section 4.
Fig. 3. Conceptual diagram of the proposed event detection system.
2. Proposed method

As described, TFPEC-based methods exploit multimodal fea-
tures in event classification by using temporal sequence represen-
tation. But they suffer from a multiple-recognition problem (i.e.,
one test data is recognized as multiple exclusive event classes since
one frequent pattern could occur in multiple event classes) by
using frequent pattern match, resulting in poor accuracy rate of
recognition. This could happen easily especially when some event
classes have parts of frequent patterns in common. With probabi-
listic model and maximum likelihood decision making, although
HMM-based methods will not encounter the multiple-recognition
problem, it is hard to exploit temporal relationship among multi-
modal features. The assumption that feature models are indepen-
dent of each other may result in poor recognition performance
because temporal relationship is not fully utilized.

The proposed event classification method aims at taking advan-
tages of both TFPEC- and HMM-based methods. In order to achieve
a better recognition performance, multimodal features are
exploited in our approach; and to overcome the multiple-recogni-
tion problem, probability based HMM rather than pattern-match
based TFPEC is adopted. To utilize full temporal relationship of
multimodal features in HMM, a co-occurrence symbol transforma-
tion method is proposed, which encodes multimodal features as a
sequence of symbols. The sequence not only keeps full temporal
relationship among features, but also can be fed to HMM directly.
The conceptual diagram of the proposed system is shown in Fig. 3.
It consists of three functional blocks: interval-based multimodal fea-
ture representations, co-occurrence symbol coding transformation,
and event classification using HMM. First, input videos are processed
to find selected multimodal features and these features are repre-
sented in temporal structure called temporal database. Then, they
are transformed to the proposed co-occurrence symbol sequences
which exploit temporal context of multimodal features in a man-
ner that HMM can use. These sequences are then used as the inputs
of HMM for video event recognition based on probabilistic classifi-
cation. The details of each functional block are described in the fol-
lowing subsections.
2.1. Interval-based multimodal feature representation

Our approach adopts time interval-based temporal representa-
tion to denote video data using selected features and the resulting
data is called a temporal database. To generate a temporal database,
the event classes for recognition and the corresponding interval-
based features should be determined first. Both of them are decided
based on domain specific knowledge. Here, we use baseball appli-
cation as an example to explain this module as shown in Fig. 4.

High-level events such as homerun, outfield hit, outfield out, in-
field out, strike out, walk, etc. are the typical baseball event classes
for recognition. The features used to recognize these high-level
events can be low-level features such as color and texture or
mid-level features such as video shot, scene, camera motion, etc.
Compared with low-level features, since mid-level features are
more semantically related to high-level events, they are widely
employed in the recent researches and the methods for mid-level
feature detection have been developed well and proven efficient
in sports domain [30–32]. Fig. 4 shows the interval-based mid-
level feature detection in baseball from different sources: visual
shot, camera motion, audio, and misc. Eight baseball shots includ-
ing Pitching, Infield, Outfield, Audience, Base, Close-up, Running,
and Misc can be detected and classified using a decision tree
classifier based on feature vectors composed of different low level
visual features [12]. In addition to video shots, camera motions
such as Pan Right, Pan Left, Zoom In, Zoom Out, Tilt Up and Tile
Down can be detected by the methods in [33] using an affine mod-
el. Audio features such as exciting commentator speech, audience
cheering can be detected by segmenting, classifying and clustering
audio frames represented by feature vectors composed of different
low-level audio features [12]. The interval-based features utilized
in the proposed framework can be low-level or mid-level. Since
mid-level feature detection is somewhat mature now, we adopt
mid-level features in the proposed framework to illustrate inter-
val-based representation and high-level event recognition. When
the mid-level features are selected from different source models
such as visual scene shot, camera motion, audio, object, replay,
and misc, they are called multimodal mid-level features.

Since mid-level features are strongly application-related, how
to select them properly will not be discussed in details in this pa-
per. Here we only focus on proposing a framework based on se-
lected mid-level features. Assume seven baseball mid-level
feature types (Close-up, Outfield, Audience, Zoom In, Pan Right,
Excited Speech, Cheering) from three modalities (Baseball Shot,
Camera Motion, Audio) are selected. Fig. 5(b) shows an example
of temporal database for the video in Fig. 5(a). A mid-level feature
selection for baseball event detection in Section 3.1 can be refer-
enced for better comprehension.
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Fig. 4. Interval-based mid-level feature detection from different source models in baseball.

(a) A video consisting of seven feature types from three modalities 

Feature
Type

Time
Period

Feature
Type

Time
Period

Feature
Type

Time
Period

Close-up {0, 4} Zoom In {0, 4} Excited 
Speech

{4, 8} 

Outfield {4, 10} Pan Right {8, 12} Cheering {12, 15} 
Audience {10, 15} Zoom In {15, 19} Excited 

Speech
{19, 23} 

Close-up {15, 19} Pan Right {21, 26} Cheering {26, 30} 
Audience {19, 24}     
Outfield {24, 30}     

(b) An example of temporal database 
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Fig. 5. Interval-based representation of multimodal features.
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2.2. Co-occurrence symbol transformation

As described, we adopt a probabilistic classification method,
HMM, to solve the multiple-recognition problem in event classifi-
cation. HMM requires that the symbols fed into it are sequential
temporally without symbol durations overlapped in time. Namely,
when a temporal database is constructed from multimodal fea-
tures, it cannot be utilized by HMM directly because the features
selected from different modalities may occurs simultaneously in
video, resulting in overlapped symbol durations within a temporal
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sequence. To apply multimodal features in HMM-based classifica-
tion, a symbol transformation method is proposed to convert a
temporal database into co-occurrence symbol representation.

Co-occurrence symbol transformation method includes two
steps: temporal segmentation and symbol coding. In temporal seg-
mentation, a time period is segmented whenever a new feature(s)
starts or the feature which occurred previously ends. Features from
each modality should be considered in order to convey the context
of multimodal features. There is a buffer called BUF to record the
occurring feature type(s) in the current time period. In symbol cod-
ing, each segmented time period is coded by a single symbol which
represents all the feature-type(s) occurring during it and the cod-
ing process is achieved by looking up a codebook which records
all the generated symbols for the mapping that have occurred.
The mapping could be one-to-one (one symbol to one feature) or
one-to-many (one symbol to many co-occurring features). If the
mapping is found in the codebook, the corresponding symbol is
output. Once a mapping cannot be found, a new symbol is gener-
ated to represent the co-occurrence feature type(s) in BUF and then
this mapping is added to the codebook and the symbol is output.
After a series of symbol outputs, a sequential symbol sequence,
called a co-occurrence symbol sequence, can be obtained for used
in HMM. The detailed algorithm is described in Fig. 6.

The visualization of symbol transformation process using the
proposed algorithm is shown in Fig. 7, where the example tempo-
ral database in Fig. 5 is used as input data. The vertical dashed lines
show how the input temporal database is segmented according to
the start times and end times of features; and each symbol on the
bottom of the figure represents the co-occurring feature(s) in the
corresponding segmented time period. In this example, the output
symbol string (called the co-occurrence symbol sequence) is ‘abc-
deaefdcb’. A step by step explanation of process in Fig. 7 is shown
in Table 1. At t = 0, features Close-up & Zoom In are inserted into
BUF because of their occurrence. At t = 4, the codebook is looked
up using the content of BUF, Close-up & Zoom In, but the symbol
mapping is not found. Therefore, the mapping between features
Close-up & Zoom In and a new codeword symbol ‘a’ is added to
codebook and the symbol ‘a’ is outputted to represent the co-
occurring features Close-up & Zoom In in time period [0,4]. Then,
Close-up & Zoom In are removed from BUF because of their end;
and Outfield & Excited Speech are added into BUF because of their
occurrence. Similar process goes till t = 15 and four more new
Multimodal Co-occurrence symbol coding algorithm
Functionality: Transform temporal database of multimodal fe
Input: Temporal database of multimodal features 
Output: Sequential co-occurrence symbol sequence 

1. Sort multimodal features by start time in ascending order
2. While(there is still start of feature or end of feature) { // occ

if( BUF not empty ) { 
          // co-occurrence symbol lookup 

if( symbol = codebook_look_up(features in BUF) is no
output the symbol; 

else { generate a new symbol to represent the features in
                  add the new symbol and its corresponding features
                  output the new symbol; }
       } 
       // update BUF 

 if( end of feature(s) occurs ) remove the vanishing feature
 if( start of feature(s) occurs ) put the new feature(s) into B

}

Fig. 6. Multimodal co-occurrenc
symbols, b, c, d, and e, are produced to represent the co-occurring
features, Outfield & Excited Speech, Outfield & Pan Right, Audience &
Pan Right, Audience & Cheering, respectively. At t = 19, the codebook
is looked up for the content of BUF, Close-up & Zoom In. Since Close-
up & Zoom In can be found in codebook, the corresponding map-
ping symbol ‘a’ is outputted to represent it in time period
[15,19]. Then, features Close-up & Zoom In are removed from BUF
because they end; and Audience & Cheering are added into BUF be-
cause of their occurrence. The process goes for each time period of
the input temporal database and finally, the co-occurrence symbol
sequence is ‘abcdeaefdcb’. It is observed that, with this representa-
tion, full temporal relations (including overlapping) among multi-
modal features are captured by using co-occurring symbols in a
sequential manner that HMM can use.
2.3. HMM classification for event detection

Multimodal features in a video can be represented by co-occur-
rence symbol sequences after data representation and symbol
transformation; then event class is obtained by HMM classification
which consists of training and testing. In training, separate HMM of
each event class is trained by training co-occurrence symbol se-
quences of each category using the Baum-Welch method and
trained HMMs are used for reference during testing. In testing,
the event class of an un-annotated test sequence O is obtained
: 
atures into co-occurrence symbol sequences

urring features change 

t NULL )

 BUF;
 to the codebook; 

 from BUF ; 
UF ; 

e symbol coding algorithm.



Table 1
Step by step operations of co-occurrence symbol coding algorithm.

Time BUF Codebook Output symbols

t = 0 Empty Empty

t = 4 Close-up & Zoom In a: Close-up & Zoom In a

t = 8 Outfield & Excited Speech a: Close-up & Zoom In b
b: Outfield & Excited Speech

t = 10 Outfield & Pan Right a: Close-up & Zoom In c
b: Outfield & Excited Speech
c: Outfield & Pan Right

t = 12 Audience & Pan Right a: Close-up & Zoom In d
b: Outfield & Excited Speech
c: Outfield & Pan Right
d: Audience & Pan Right

t = 15 Audience & Cheering a: Close-up & Zoom In e
b: Outfield & Excited Speech
c: Outfield & Pan Right
d: Audience & Pan Right
e: Audience & Cheering

t = 19 Close-up & Zoom In a: Close-up & Zoom In a
b: Outfield & Excited Speech
c: Outfield & Pan Right
d: Audience & Pan Right
e: Audience & Cheering

t = 21 Audience & Cheering a: Close-up & Zoom In e
b: Outfield & Excited Speech
c: Outfield & Pan Right
d: Audience & Pan Right
e: Audience & Cheering

t = 23 Audience & Pan Right & Cheering a: Close-up & Zoom In f
b: Outfield & Excited Speech
c: Outfield & Pan Right
d: Audience & Pan Right
e: Audience & Cheering
f: Audience & Pan Right & Cheering

t = 24 Audience & Pan Right a: Close-up & Zoom In d
b: Outfield & Excited Speech
c: Outfield & Pan Right
d: Audience & Pan Right
e: Audience & Cheering
f: Audience & Pan Right & Cheering

t = 26 Outfield & Pan Right a: Close-up & Zoom In c
b: Outfield & Excited Speech
c: Outfield & Pan Right
d: Audience & Pan Right
e: Audience & Cheering;
f: Audience & Pan Right & Cheering

t = 30 Outfield & Excited Speech a: Close-up & Zoom In b
b: Outfield & Excited Speech
c: Outfield & Pan Right
d: Audience & Pan Right
e: Audience & Cheering
f: Audience & Pan Right & Cheering
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by choosing the maximum likelihood between test sequence O and
each trained HMM.

3. Experiments

3.1. Experiment setup

Baseball event recognition is used to evaluate the performance
of the proposed framework. Six major event classes in typical base-
ball video are chosen: home run (HR), outfield hit (OutHit), outfield
out (OutOut), infield out (InOut), strike out (SO), and walk. The
mid-level features adopted come from three modalities: visual,
camera motion and audio. For visual modality, a game is seg-
mented into video shots based on changes in the visual scene
due to editing and video shots are classified into eight categories:
pitching, infield, outfield, audience, base, close-up, running, misc.
For camera motion modality, they are clustered into six kinds:
pan right, pan left, tilt up, tilt down, zoom in and zoom out. For
audio modality, we extract audience cheering and exciting com-
mentator speech. Manually labeled ground truth features are used
since this study focuses on the event recognition performance
using temporal context of multimodal mid-level features. How-
ever, labeling of these mid-level features can be potentially auto-
mated with methods in [12,33,34]. Fig. 8 shows an example
temporal database of a homerun event, using selected features
from three modalities.

In our experiments, baseball videos from five baseball games of
MLB (Major League Baseball/USA) and NPB (Nippon Professional



Table 2
Event statistics of experimental video dataset.

HR OutHit OutOut InOut SO Walk Total

NPB 7 40 33 65 31 17 193
MLB 8 30 47 48 43 15 191
NPB + MLB 15 70 80 113 74 32 384

Table 3
Performance comparison of three methods.

Proposed method Product-HMMs FP-match

Accuracy 64.3% 54.5% 34.2%

Table 4
Confusion matrix of proposed Co-occurrence HMM method.

Homerun OutHit OutOut InOut SO Walk Recall
(%)

Homerun 5 5 0 0 0 0 50.0
OutHit 0 30 16 0 1 0 63.8
OutOut 2 0 44 0 7 0 83.0
InOut 0 1 0 37 36 1 49.3
SO 1 0 0 0 45 3 91.8
Walk 0 1 0 0 17 3 14.3

Precision 62.5% 81.1% 73.3% 100% 42.5% 42.9%

Table 5
Confusion matrix for Product-HMMs method.

Homerun OutHit OutOut InOut SO Walk Recall
(%)

Homerun 2 5 3 0 0 0 20.0
OutHit 4 31 12 0 0 0 66.0
OutOut 2 7 42 0 2 0 79.2
InOut 1 5 48 13 7 1 17.3
SO 0 0 2 0 47 0 96.0
Walk 0 0 0 0 17 4 19.0

Precision 22.2% 64.6% 39.3% 100% 64.4% 80.0%

Table 6
Confusion matrix for FP-match method.

Homerun OutHit OutOut InOut SO Walk Recall
(%)

Homerun 10 10 0 0 0 0 50.0
OutHit 22.8 41.6 3 0.2 0 0 61.5
OutOut 12 29.5 20.3 1.9 1.2 0 31.3
InOut 10.9 30.1 16.4 27.3 1.3 0.3 31.6
SO 26 26 0 0 4.5 18.5 6.0
Walk 5 6.3 0 0 2.1 12.6 48.5

Precision 11.5% 29.0% 51.1% 92.9% 49.5% 40.1%
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Baseball/Japan) totalling 18.5 h are evaluated. All the videos are
compressed in MPEG-1 format with frame size of 352 � 240 and
frame rate of 30 fps. The event numbers of experimental videos
are shown in Table 2. One-third videos of each event class were
used as training set while the other two-thirds were used for test-
ing set. The manually labeled events in the testing data were used
as the ground truth to evaluate the event classification of our sys-
tem. Confusion matrix is used to give the full picture of the classi-
fication performance. The precision/recall rates of each event class
are calculated from the confusion matrix. Accuracy is the overall
correctness of the model and is calculated as the sum of correct
classifications divided by the total number of classifications. The
number of original vocabularies in our experiments is 16, including
8 visual scenes, 6 camera motions, and 2 audio interval features.

3.2. Experiment results

The performance of the proposed method is evaluated with re-
spect to six parts: event recognition results, effect of multimodal
feature integration, effect of dataset selection, recognition of more
event classes, testing on type of sequences not learned before, and
comparisons of computational complexity and execution time.

3.2.1. Event recognition results
Three different methods integrating temporal information of

multimodal features are compared to evaluate the event recogni-
tion performances: (1) proposed co-occurrence HMM, (2) Product-
HMMs, (3) FP-match methods, where Product-HMM and FP-match
are the approaches described in introduction.

Table 3 shows the performance comparison of the three meth-
ods. It is observed that the proposed method outperformed the
other two methods and the accuracy of FP-match method is appar-
ently lower than the two HMM-based methods. To detail the clas-
sification results for each type of event, Tables 4–6 show the
confusion matrix of the three methods separately. For the pro-
posed method, OutHit and OutOut are classified better than the
other four baseball events. Homeruns, compared to other event
classes, are much easier to be misclassified by all three methods.
Since our experiments consist of much fewer Homerun samples
than others, the misclassification problem may be due to insuffi-
cient training samples. For learning-based methods such as the
proposed method and the product-HMM, the classification perfor-
mance could be improved if more training samples are provided.
Although InOut samples are the largest set among all categories,
there are still some misclassification. More samples need to be col-
lected for each category so that HMM could learn different transi-
tion patterns among the event class. The classification of Walk is
apparently low. The SO and Walk events are different in semantics
(the batter is out or safe), however, they are quite similar in feature
context: a short close-up shot transitions of the pitcher, batter, or
coach. Therefore, it is very difficult to tell SO from Walk by selected
mid-level features. More distinguishable mid-level features need
to be investigated to solve this problem. For Product-HMMs meth-
od, the overall classification is somewhat lower than the perfor-
mance of proposed method, and it performs poorly for InOut
Pitching Outfield Audience Close-up Close-up Close-up

Pan
Right

Pan
RightZoom_In

CheeringExcited Speech

4 7 8 10 11 12 13 18 210

Time (Sec)

Fig. 8. Temporal database of a homerun event.
classification, obtaining relatively low ratio in recall. For FP-match
method, we impute the poor performance to the multiple-match-
ing problem. During the experiments of total 255 test sequences,
182 test sequences (about 71%) are classified to multiple events,
resulting in overall poor performance. As for the non-integer val-
ues in the confusion matrix of FP-match method, this phenomenon
is due to different classification results of multiple candidates of
maximum length. Suppose three candidates with maximum length
L are matched for one test sequence, two candidates are classified
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into homerun and one is classified into OutHit. The test sequence is
recognized as 0.66 HR and 0.33 OutHit.

Number of states is an important design parameter in the con-
text of HMM. To know how it affects recognition performance,
experiments were conducted for using different numbers of
HMM states in the proposed method, where mixed dataset
(MLB + NPB) with multimodal features (Visual/Motion/Audio)
were adopted and the result is shown in Fig. 9. It is observed that
the maximum recognition accuracy occurred at state number = 8,
which is the value the proposed method used in our experiments.
Since the optimal number of state is not universal for all HMM
methods, we also conducted similar experiments for Product-
HMMs. By comparing Fig. 9 and Table 3, it is worth noticing that,
even with non-optimal state number (e.g., 10), the proposed meth-
od still outperformed Product-HMMs with optimal state number,
indicating the superiority of the proposed method.
3.2.2. Effect of multimodal feature integration
To explore the effect of multimodal features integration, differ-

ent combinations of multimodal features were employed for the
three methods and the performance comparisons are listed in
Table 7. It is worth noticing that if only single-modality feature is
employed, both proposed co-occurrence HMM and Product-HMM
become conventional HMM and therefore, obtain the same perfor-
mance as shown in the last three rows of the table. As the number
of adopted feature types increases, however, the performance of
the proposed method improves significantly, but that of Product-
HMM does not have obvious improvement. The difference of accu-
racy rates can be up to 11.0% when three modalities are employed.
The reason is that Product-HMM which assumes independent rela-
tion among different feature-types utilizes only before, after, and
meet temporal relationships among single features. Besides before,
after, and meet relationships, the proposed co-occurrence coding
can describe temporal overlapping relationships among multi-
modal features such as the overlap among outfield shot, pan right,
and excited speech or the overlap between close-up shot and
cheering in homerun example of Fig. 7. Therefore, Product-HMM
cannot obtain much benefit from the increase of adopted feature
types, while the proposed method which can utilize full temporal
relationship among multimodal features can improve the perfor-
mance much more. Moreover, the proposed method performed
better for visual + motion than for visual + audio. The reason is
that, compared to the integration of visual and audio features,
the integration of visual and motion makes the event classes more
distinguishable to each other by the proposal method. However,
this may not be always true for all the test data and all the appli-
cations. As for FP-match method, it did not have obviously
improvement when the number of adopted feature types
increases. The reason is that it suffers from multiple-matching
Fig. 9. Variation of recognition accuracy over number of HMM states.
problems. As the simple example shown in Fig. 10, the temporal
sequence of SO event is also contained by that of OutHit event,
therefore the SO test data will be recognized as both SO and OutHit
events. Such multiple-matching problems make FP-match method
unable to take advantages from multimodal features.

3.2.3. Effect of dataset selection
To examine how dataset selection affects event recognition per-

formance, baseball videos are divided into three datasets: MLB,
NPB and MLB + NPB (mixed), according to the countries that broad-
casted them. The three methods are performed on each dataset and
the event recognition performances are compared. Since the shoot-
ing habits of the cameramen and the reactions of the sports anchor
and the audience could be different, mixed dataset combined dif-
ferent temporal feature transition patterns from different broad-
casts. As shown in Table 8, the performances of product-HMMs
and FP-match methods on single dataset alone were better than
on the mixed dataset. On the contrary, the proposed method per-
formed better on mixed dataset, indicating that the more training
data we used, the more benefits the proposed method can take
from the different feature-patterns of different datasets and there-
fore, improve the recognition performance. Since HMM is essen-
tially a statistical method, large training set is needed to obtain
the statistical characteristics. The more and different the training
samples are adopted, the better classification performances the
HMM is probably to perform unless the training set has been large
enough to cover all the characteristics to distinguish all the event
classes. Because of the statistical property of HMM, the proposed
method benefits from more training datasets.

3.2.4. Recognition of more event classes
This section shows event recognition performances of recogniz-

ing more event types. In addition to event recognition on six-type
events (described in the experiment setup section), experiments
were also conducted for four more event types: double play (DP),
sacrifice hit (SH), infield hit (InHit), and hit by pitch (HBP). We col-
lected 15 DP, 13 SH, 7 InHit, and 4 HBP events from 8 baseball
games totaling 28 h. The sample set is not large because the four
event types are not frequent events in baseball games. The occur-
rence rate of the four event types in 8 games is about 9% which is
approximated by dividing (15 + 13 + 7 + 4) to 432 (8 games ⁄ 9 inn-
ings in a game ⁄ 6 events in an inning). The results of recognizing
10 events were shown in Tables 9 and 10 and it is observed that
all three methods achieved a lower recognition rate than on six-
type events. This is due to that the more event types we selected
for recognition, the more similarities there may exist among them
and therefore, it is more difficult for recognition methods to distin-
guish them correctly. Noticing that, compared to 6-type event clas-
sification, even though the performance of all the methods
dropped on 10-type event classification, the proposed method still
performed the best, with 52.1% accuracy rate. For the proposed
method, recognition of Homerun, OutHit, OutOut, SO and Walk
events are nearly not affected by the new event types. However,
many InOut events are misclassified into DP, SH and InHit because
they are all infield events. The multiple matching problem of FP-
match method became more serious for 10-type event recognition
with a poor accuracy rate of 21.6%.

3.2.5. Testing on type of sequences not learned before
This section examines the performance of the proposed method

by using the kind of test sequences that are not learned before. To-
wards this goal, a CPBL (Chinese Professional Baseball League/Tai-
wan) baseball dataset consisting of 70 events as shown in Table 11
is adopted for event testing on the HMMs trained from MLB and
NPB training datasets. Note that these trained HMMs were not
trained by any CPBL sequence. The classification results of the



Table 7
Performance comparisons for different multimodal feature integration.

Proposed method (%) Product-HMMs (%) FP-match (%)

Visual + motion + audio 64.3 54.5 34.2
Visual + motion 58.0 53.3 33.9
Visual + audio 54.5 53.3 40.3
Motion + audio 48.6 51.8 32.5
Visual 53.3 40.9
Motion 47.1 38.1
Audio 40.0 27.0

Fig. 10. A simple example of multiple recognition problem of FP-match method.

Table 8
Performance comparisons for different dataset selection.

Proposed method
(%)

Product-HMMs
(%)

FP-match
(%)

MLB dataset 54.1 60.3 35.7
NPB dataset 61.7 67.2 40.3
MLB + NPB

dataset
64.3 54.5 34.2

Table 9
Performance comparison of three methods for 10 event recognition.

Proposed method Product-HMMs FP-match

Accuracy 52.1% 48.6% 21.6%

Table 10
Precision/Recall of the three methods for 10 event recognition.

Proposed method Produc

Prec. (%) Recall (%) Prec. (%

Homerun 50 40 25
OutHit 73.7 59.6 73.7
OutOut 70.7 77.4 55.3
InOut 93.3 18.7 100
SO 55.6 91.8 73.4
Walk 100 14.3 100
DP 17.4 40 12.5
SH 13.3 44.4 15.4
InHit 5.9 25 2.4
HBP 28.6 100 0

Table 11
The CPBL dataset.

HR OutHit OutOut InOut SO Walk Total

CPBL 3 13 14 21 13 6 70

Table 12
Performance comparison of three methods.

Proposed method Product-HMMs FP-match

Accuracy 51.4% 48.6% 32.7%
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three methods are shown in the tables below where Table 12
shows the accuracy rate and Table 13 shows the precision and re-
call rates. It is observed that the accuracy of all methods drop since
this kind of sequences were not learned before. However, the
t-HMMs FP-match

) Recall (%) Prec. (%) Recall (%)

20 13.5 48.8
59.6 37.2 52.4
79.2 74.5 25
8 89 3.2
95.9 0 0
19 39.1 33.8
20 4.7 20.5
44.4 4.6 29.7
25 2.5 3.6
0 2.5 50



Table 13
Precision/recall of the three methods CPBL dataset.

Proposed method Product-HMMs FP-match

Prec. (%) Recall (%) Prec. (%) Recall (%) Prec. (%) Recall (%)

Homerun 50 33.3 0 0 11.1 50
OutHit 55.6 38.5 46.7 58.3 28.4 59.4
OutOut 58.8 71.4 35.7 71.4 53.1 33.7
InOut 100 38.1 100 9.5 92.3 22.7
SO 33.3 76.9 65 100 71.4 11.8
Walk 50 33.3 66.7 33.3 29.1 33.3

Table 14
Execution time comparison of three methods.

Proposed method (s) Product-HMMs (s) FP-match (s)

Training Time 0.197 0.188 0.016
Testing Time 0.0002 0.0002 9.34
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decrease is not very large (about 5.9% on average). The results im-
ply that the interval feature structures of different baseball video
dataset are similar in some extent although they might have differ-
ent shot transitions and editing habits.

3.2.6. Comparisons of computational complexity and execution time
The computational complexity of HMM consists of time com-

plexity and memory space complexity. Given a HMM which has
N states, M symbols, average length of training sequences as T,
and average length of testing sequences as L, the time complexity
of HMM training is O(N2T) using Baum-Welch method and the time
complexity of HMM testing is O(L).

Therefore, the time complexity bound of HMM training and
testing is determined by HMM training. The space complexity of
HMM is O(N2 + NM). Let Lv, Lm, and La be the average lengths of
training sequences from visual, motion, and audio sources, respec-
tively. The training time complexity of product HMM method is
O(N2 �max (Lv, Lm, La)). The average sequence length of proposed
co-occurrence HMM method is determined by endpoint number
of multiple source features, therefore it is bounded by O(Lv +
Lm + La). The average sequence length of the two methods are the
same order, therefore the training time complexities of proposed
co-occurrence HMM and product-HMMs methods are both
O(N2 �max (Lv, Lm, La)), and the testing time complexities are both
O(L). The total time complexities of both methods are O(N2 �
max (Lv, Lm, La)). On the other hand, the proposed co-occurrence
HMM method have higher space complexity than product-HMMs
method since combined features generates more symbols. The
space complexity of product-HMMs method is OðN �maxðLv ; Lm;

LaÞÞ and the space complexity of the proposed co-occurrence
HMM method is OðN � ðLv þ 1Þ � ðLm þ 1Þ � ð La þ 1ÞÞ. For the actual
case in the experiments, the maximum symbol number of
proposed co-occurrence HMM method is (8 + 1)(2 + 1)(2 + 1)
(2 + 1)(2 + 1) = 729 which is obtained by multiplying feature-type
number of visual, pan, tilt, zoom, and audio. After incrementally
adding new symbols for co-occurrence features during the coding
process, the total number of produced co-occurrence symbols is
159.

The FP-match method has two main steps: (1) frequent pattern
mining, and (2) classification by TS containing verification. There-
fore, the time depends totally on these two steps. Let TM denote
the training time which is the time to mine the frequent pattern
sets of each event class. Let L denote the average length of testing
temporal sequences, and W denote the sliding window size. The
classification by TS containing verification consists of (L-W + 1)
times of window slides and generates (L �W + 1)2W candidate
temporal sequences for verification. Let TC denote the containment
verification time between one temporal sequence and the frequent
pattern sets. Then the testing complexity is OððL�W þ 1Þ2W TC ,
and the total complexity of FP-match method will be O(2W) .

Besides computational analysis, execution time comparison has
also been made by running the three methods on an Intel Duo CPU
T7300, 2.00 GHz with 2 GB RAM for our baseball experimental data-
set. The execution times of the three methods are compared and
listed in Table. 14. It is observed that the two HMM-based methods
have similar training times, while the FP-match method has a rela-
tively short training time. However, the two HMM-based methods
have much shorter testing time, compared to FP-match method.
This is due to that, once HMMs have been trained, the classification
using HMMs can be done very fast by computing probabilities. The
testing time of FP-match method is much slower because of con-
tainment verification of candidate temporal sequences.
4. Conclusions and future work

In this paper, we have developed a novel system that is able to
automatically detect and classify high-level events by using tem-
poral context of multimodal mid-level features. A new event clas-
sification approach aiming at taking advantages of full temporal
relationship of multimodal features and recognizing events by
HMM probabilistic classification is proposed. By representing a vi-
deo using a temporal database of mid-level features, a co-occur-
rence symbol transformation method is proposed, which encodes
multimodal features as a sequence of symbols with full temporal
relationship kept among them. Then, the resulting co-occurrence
symbol sequence is fed into HMM directly for maximum likelihood
event classification. The experimental results have demonstrated
the efficiency, effectiveness, and robustness of the proposed meth-
od. In the future, more features will be studied to explore the fea-
ture selection problem. The following questions need to be
answered: (1) How to find the optimal set of mid-level features;
(2) How to decide whether a mid-level feature should be selected;
(3) What kind of measurement could be used for feature selection.
Automatic detected features would be tested to demonstrate the
fault tolerance of proposed method. Moreover, more application
domains will be investigated thoroughly, not only in baseball do-
main but other sports domain and stocks etc., to support the gen-
erality of the proposed method.
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