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Neuromorphic Pitch Based Noise Reduction for
Monosyllable Hearing Aid System Application
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Abstract—This paper presents a low computational complexity
hardware-oriented neuromorphic pitch based noise reduction
(NR) algorithm and hardware implementation for monosyllable
hearing aid system applications. The proposed NR design consists
of a pitch-based voice activity detector (pitch-based VAD) for
speech detection and a neuromorphic noise attenuator for speech
enhancement. The pitch-based VAD is developed on ANSI S1.11
based filter bank architecture and employs the characteristics of
monosyllable and nonlinear energy operator (NEO) to improve the
accuracy of VAD. The neuromorphic noise attenuator reduces the
background noise by using the characteristics of human hearing
system and the clues of speech. Simulation results show that
the proposed algorithm has better SNR and PESQ performance
than other non-pitch based NR algorithms in non-stationary
background noise environments. Compared with multiband
(mband) spectral subtraction and minimum mean square error
(mmse) algorithms, the computational complexity of the proposed
algorithm can save 90% computational complexity. The hardware
implementation consumes 47.74 at 0.5 V operation with 65
nm HVT standard cell library.

Index Terms—Hearing aids, Mandarin, neuromorphic, noise re-
duction, non-stationary, pitch.

I. INTRODUCTION

I N hearing aids (HA) systems, signals are amplified to com-
pensate the hearing loss of patients. However, the amplified

background noise may degrade the speech quality and intelligi-
bility or even damage the residual hearing ability of patients.
Thus, noise reduction is a key block in hearing aid system ap-
plications. The noise reduction algorithms based on one micro-
phone can be categorized into three types: spectral subtraction
algorithm [1], [2], statistical model based algorithm [3], [4] and
subspace algorithm [5]. Although the noise reduction algorithm
based on the statistical model and subspace type can efficiently
suppress background noise, the computational complexity is too
high to be implemented for HA applications. Thus, the spec-
tral subtraction algorithm is frequently used in a low power HA
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hardware implementation. Although spectral subtraction has the
superiority on computational complexity and hardware imple-
mentation, the spectral subtraction algorithm implemented in
filter bank architecture might introduce artificial noise problem.
This noise is mainly caused by the time-domain noise subtrac-
tion and the switches among non-linear functions of time-do-
main spectral subtraction algorithm.
Besides, for high de-noise efficiency and low power, noise re-

duction in an HA system always embeds VAD in order to distin-
guish between speech dominated duration and noise dominated
duration. The traditional VAD usually detects voice based on
energy [6], zero crossing rate [7] or entropy [8]. The computa-
tional complexity of these methods is low enough for HA ap-
plications and the accuracy is quite high in high SNR stationary
noise environment, but, at the low SNR or non-stationary noise
environments, the accuracy of VAD is quite low due to the in-
accurate background noise estimation.
Since noise reduction algorithms use different signal pro-

cessing algorithms on the noisy signal based on the indication
of VAD, the performance of VAD has great impact on noise
reduction performance and the power efficiency. A high per-
formance VAD in HA systems should have the following char-
acteristics in general: (1) High accuracy—in order to improve
the speech quality and intelligibility. (2) Low computational
complexity—due to limited battery power in HA systems. (3)
Robust to dynamic environment—because an HA system is a
portable device, and the background noise might change dra-
matically in the real world.
Recently, LTSV-VAD [9] uses long-term signal variability

measure to discriminate noise from noisy speech and this feature
is used as VAD. Due to the computation of the R frames, the
computational complexity is very high and the latency incurred
(300 ms) by the algorithm will exceed the latency tolerance of
HA (about 10 ms 15 ms) [10]. Also, due to the observation of
long-term signal variability, large storages are required which
is not beneficial for HA systems. Hidden-Markov-model-based
(HMM-based) VAD [11] shows that the accuracy is very high in
spite of the low SNR, however, the computational complexity
of this method is too high (Mel-frequency spectral or cepstral is
required) to be applied in HA systems. For HMM-based VAD,
its high accuracy is followed by high false rate. High false rate
will result in preservation of noise signal in speech enhancement
block. Also, due to using 20 ms frames, the latency incurred by
the algorithm will exceed the latency tolerance of HA.
Finally, these two works do not show if they work in our

defined non-stationary noise environment. Thus, although they
have some fairly good VAD feature and may be applied in
speech communication systems, they certainly are not suitable
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Fig. 1. Block diagram of filter bank based HA system.

to be used in HA system due to computational complexity and
long latency.
Therefore, in this paper, a neuromorphic pitch-based noise re-

duction algorithm and design for HA systems are proposed. The
proposed algorithm consists of a pitch-based voice activity de-
tector (pitch-based VAD) and a neuromorphic noise attenuator.
The proposed pitch-based VAD algorithm detects speech dura-
tion depending on the features of speech and the characteris-
tics of monosyllable language, for example Mandarin. The pro-
posed VAD is designed for an HA system with ANSI S1.11 [12]
or low latency quasi-ANSI based filter bank architecture [13].
The filter bank used in this paper employs the subband 22nd
and 39th (F22 F39) of 1/3 octave filter bank in ANSI S1.11
standard [14] which covers the most sensitive range in human
hearing system. The ANSI S1.11 standard is defined to mimic
the characteristic of human hearing system, whose bandwidth is
narrow in low frequency and wide in high frequency subbands.
In addition, a modified nonlinear energy operator is also applied
in each subband to enhance the accuracy of the proposed VAD
algorithm.
For speech enhancement, a neuromorphic noise attenuator

is used to preserve speech and attenuate background noise de-
pending on the characteristics of human hearing system and
the onset feature of consonant. In addition, the neuromorphic
noise attenuator also employs multiplication for time-domain
gain smoothing to reduce the artificial noise problem of tradi-
tional spectral subtraction algorithm. Finally, considering the
power limitation of HA systems and the latency tolerance of
user (about 10 ms 15 ms) [10], the proposed algorithm is sim-
plified to reduce the computational complexity. With appro-
priate parameter modification, the proposed algorithm is also
suitable in low latency quasi-ANSI based filter bank architec-
ture which is designed to reduce the HA system latency [13].
This paper is organized as following. Section II describes the

block diagram of a filter bank based hearing aid system and the
function of each block. Section III presents the details of the
proposed neuromorphic noise reduction algorithm. Section IV
is the simulation results in each noise environment. Section V
is the hardware implementation results and Section VI is the
conclusion.

II. THE PROCESS FLOW OF FILTER BANK BASED HA SYSTEM

Fig. 1 shows the block diagram of a filter bank based HA
system [15]. First, the voice signal collected by microphone
is converted from analog to digital signal with sampling rate
of 24 KHz and data word-length of 16 bits. An acoustic feed-
back cancellation (AFC) block reduces the feedback of the HA
system. The feedback-free signal is decomposed into 18 sub-
band signals with the ANSI S1.11 based acoustic filter bank
(AFB) [12]. Then, noise reduction (NR) block attenuates the

Fig. 2. The block diagram of the proposed neuromorphic pitch based noise
reduction system.

background noise and enhances the speech quality. The inser-
tion gain (IG) block amplifies the enhanced signal of each sub-
band individually to compensate the hearing loss of patients in
each subband [16]. Wide dynamic range compressor (WDRC)
block compresses the dynamic range of the amplified signal to
match the residual dynamic range of patients and also protects
the residual hearing ability of patients [17]. Finally, the syn-
thesis filter bank (SFB) recombines the compressed signal of
each subband.

III. PROPOSED NEUROMORPHIC PITCH BASED NOISE
REDUCTION ALGORITHM

Fig. 2 is the block diagram of the proposed neuromorphic
pitch based noise reduction algorithm. The proposed algorithm
consists of a pitch-based VAD and a neuromorphic noise
attenuator. In the pitch-based VAD block, the output from
filter bank is firstly processed by nonlinear energy operation
to enhance the pitch and harmonic characteristics. Then pitch
and onset detector are employed to help the decision of VAD.
The parameters and noise amount are updated after each VAD
decision. The neuromorphic noise attenuator block reduces
background noise based on characteristic of human hearing
perception system, masking effect and lateral inhibition effect
in cochlear. Depending on the VAD result, speech enhancement
or noise attenuation block processes the noisy speech or noise
signal respectively to produce the enhanced signal.
Firstly, this section shows the characteristics of monosyllable

language and human hearing system. Secondly, the design prin-
ciple of the pitch-based VAD and neuromorphic noise attenu-
ator are addressed. Finally, for HA hardware implementation,
the proposed algorithm is modified to reduce the computational
complexity.
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Fig. 3. Spectrogram of clean speech. (a.1) onset of consonant. (a.2) offset of
consonant. (a.3) onset of vowel. (b) pitch and corresponding harmonics. (c)
length of each word in monosyllable language.

A. Characteristics of Monosyllable Language and Human
Hearing System

Fig. 3 shows the spectrogram of speech signal. The indica-
tions in the figure illustrate several important features of mono-
syllable language (in this case, Mandarin), which is described
as following [18], [19]:
1) Onset and Offset Features: (a.1) and (a.3) show that con-

sonant or vowel in each subband occurs almost at the same time.
Also, the termination time of consonant in each subband is al-
most the same, as indication (a.2) shows.
2) Pitch and Corresponding Harmonics: Indication (b)

shows that the spectrogram of vowel is composed of a fun-
damental frequency F0, called pitch, and the corresponding
harmonics of F0. The pitch and harmonics feature is due to the
vibration of the vocal cords during speaking and is the most
important feature of speech detection in low frequency. Of
course, the pitch and corresponding harmonics also have the
onset and offset features described in (a).
3) Length of Each Word in Monosyllable Language: Lan-

guage like English has monosyllables and polysyllables, which
means the length of time of each word is different. Unlike Eng-
lish, the length of time of each monosyllable language is almost
the same for the same speaker, as indication (c) shows.
The characteristics of human hearing system are described as

following:
4) Masking Effect: The human hearing system is like a fre-

quency discriminator. However, if two or more sound sources
are close to each other, either in frequency or time domain, the
one with the highest energy will raise the threshold of audi-
bility of other low energy sound sources. The highest energy
sound source is called the masker and those inaudible low en-
ergy sound sources are called the masked. Whenever the mag-
nitude of masked sound is smaller than the masking threshold
caused by the masker sound, the masked sound is not audible
to human hearing system. Moreover, the closer to the masker
component the masked component is, the higher the masking
threshold is. This phenomenon is called masking effect [20].
Because the speech concentrates on particular subbands,

under the situation that the segmental SNR is high

Fig. 4. Lateral inhibition effect in human hearing system.

enough, it is reasonable to assume that the background noise
is masked by speech and do not need to be processed in those
pitch and corresponding harmonics dominated subbands.
5) Lateral Inhibition Effect: In the cochlea of human hearing

system, the phenomenon of lateral inhibition effect is that a sub-
band with high energy component will enhance itself and in-
hibits the neighboring low energy subbands. Therefore, the ac-
tivity of each subband in cochlea is decided not only by the en-
ergy of the target subband but also by the neighboring ones. As
shown in Fig. 4, although there are only two kinds of input am-
plitudes, the output responses of neurons are different because
of the lateral inhibition effect, especially at the edge of the two
magnitudes.
The lateral inhibition effect was used for speech enhancement

and recognition algorithms [21]. Because the speech concen-
trates on particular subbands, the speech tones can inhibit back-
ground noise of neighbor subbands under the assumption that
the segmental SNR is high enough.

B. Pitch Based Voice Activity Detector

The proposed pitch-based VAD algorithm is developed based
on ANSI S1.11 standard 1/3 octave filter bank architecture [12].
The unique feature is to use pitch and onset feature of speech to
detect speech duration. In addition, nonlinear energy operator
(NEO), phoneme keeper and majority vote are also adopted to
improve the VAD accuracy. Since the pitch and its harmonics
mainly locate at low frequency subbands, we consider subbands
F22 to F30 for pitch and onset detection.
1) Nonlinear Energy Operator: The nonlinear energy oper-

ation is a general method in neuron signal processing to high-
light the peak of neuron spike to further separate it from noise
and DC level in the time domain [22].Therefore, the proposed
pitch-based VAD adopts a modified nonlinear energy operator
in each subband, as shown in (1).

for

for

(1)

where is the magnitude of sample , is the
frame index, is the target subband and is the number of



466 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 2, FEBRUARY 2014

sample at the target subband. is the average power
of to frames. is set as 16 corresponding to
21.3 ms which can be considered stationary for analysis [23].

is the result of NEO process of subband in
frame . Eqn (1) processes the decomposed signal of low fre-
quency subband F22 to F30 simultaneously to emphasize those
subbands dominated by pitch or harmonics.
2) Pitch Detector and Onset Detector of Speech: When-

ever pitch and its harmonics occur, the average power of cor-
responding subbands will increase quickly. For example, as-
sume pitch occurs at subband F23 with center frequency at 260
Hz. Because the filter bank is 1/3 octave based, the second har-
monic will locate at subband F26 and the fourth harmonic will
locate at subband F29. Therefore, the average power of sub-
bands F23, F26, and F29 will become larger than other noise
dominated subbands. Although in some situations, pitch may
locate at the overlap range of two neighbor subbands or the
third harmonic locates at the neighbor subband of the second
or fourth harmonic, causing the power of these neighbor sub-
bands to be quite the same. Fortunately, the NEO is a bi-sides
operation, which means it will consider the average power of
subbands at both sides of the target subband. Therefore, with
appropriate threshold value, the NEO operator can still separate
the pitch dominated subbands from noise dominated subbands
in these situations. Therefore, of pitch domi-
nated subbands become very large due to the modified nonlinear
energy operation. Thus, the proposed VAD employs pitch de-
tector (2) and onset detector (3) to decide the temporal result of
pitch-based VAD, . First, the pitch detector,

, will be set to 1 if at least one of the pitch detec-
tion criteria is satisfied, meaning the pitch and corresponding
harmonics are detected.

Otherwise
(2)

where

where is the threshold of pitch detector of the ith
frame for subband j. The operator ‘ ’ implies logical OR and
‘ ’ implies logical AND. The relational operator ‘ ’ checks
if the values of two operands are equal or not and ‘ ’ checks
if the value of left operand is greater than the value of right
operand. Due to different bandwidth among subbands in ANSI
S1.11 standard, is larger for lower subbands as
compared to higher subbands. So in pitch detection, we parti-
tion subbands 22 to 30 into three segments. Each segment has
its own threshold which is higher for lower segment and lower
for higher segment. Then, another speech characteristic, onset
feature, is embedded into VAD equation. The onset detector,

, means that only the appearance of harmonic
pattern is not enough. These harmonics must appear simulta-
neously to match the onset characteristic of speech, as shown
in (3). is the average magnitude of subband in
frame . is the average magnitude in the previous

frames of subband and is the long term
average magnitude of subband . It is the convex combination
between and for tracking the
long term variation of magnitude for subband . is the
threshold of onset detector of the target subband . The choice
of is similar to pitch detector. is the same with
and the larger the is, the smoother the long term average
magnitude is. is set as 6 empirically.

Otherwise
(3)

where

with

Whenever one of the three pitch detector conditions is sat-
isfied (case or 23 or 24), the pitch-based VAD will
check whether the corresponding onset condition is also satis-
fied or not. If both conditions are confirmed, the temporal result
of VAD, , will be set to 1. Because the shape
of the oral tract will affect the distribution of the average power
among subbands, the power of subband F26may be smaller than
power of subband F29. By adding the pitch and onset detection
criteria, and , the case can be covered. Other
special case such as power only located in one subband can be
solved by examining if there is large power concentrated in one
subband when (2) and (3) are not satisfied.
It is worth to mention that unlike the traditional noise estima-

tion, the function of is independent of the result
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of VAD. Therefore, the noise estimation is not affected by the
performance of VAD and environment variation.
3) Phoneme Keeper and Majority Vote: Since the length

of time of each monosyllable word is almost the same for a
speaker, a phoneme keeper uses this feature
to keep the continuity of monosyllable word and enhance the
accuracy of VAD. In addition, a majority vote scheme is also
employed to smooth the result of VAD and avoids the distur-
bance caused by short time peak noise. Fig. 5 shows the flow
chart of the proposed pitch-based VAD and (4) shows the equa-
tion for and .

(4a)

(4b)

The operator ‘ ’ checks if the value of left operand is greater
than or equal to the value of right operand.
is valid whenever the speech is detected and stable for a span of
frames which is close to the length of time of a phoneme
(about 10 ms). In this case, is set to be 6. The output of
VAD, , will be kept at 1 for the time of single
monosyllable character which is about 300 ms. The
and are used to control the duration of phoneme
keeper and is the result of majority vote. The

is decided by calculating the number of 1 of tem-
poral result of VAD, , in the previous
frames. If is larger than , the will
be set to 1. Otherwise, will be set to 0. and

(roughly equals to 0.5 times ) are set as 12 and 6 respec-
tively in this experiment and is a trade-off factor. With the
phoneme keeper and majority vote, the proposed VAD can keep
the speech continuality and filter out the short time peak noise
disturbance.

C. Neuromorphic Noise Attenuator

The proposed neuromorphic noise attenuator (NNA) algo-
rithm shown in Fig. 6 enhances speech intelligibility based on
the characteristic of human hearing system. That is, the noise
in the speech dominated subband is not necessary to be pro-
cessed when the is above or equals to 0 owing to the
masking effect principle. Moreover, the subbands processed by
attenuator are partitioned into groups of low frequency sub-
bands and high frequency subbands. Finally, in order to protect
the short-term voice and the continuity of speech, a short voice
protector (SVP) mechanism is also applied into the neuromor-
phic noise attenuator algorithm.
First of all, if is 0 and the current frame is

not detected as short voice protection zone, which means
, the current frame is processed by noise

attenuation block and the gain is set to , 0.25 in our
case, for background noise attenuation. The neuromorphic
noise attenuator reduces background noise by using multi-
plication instead of subtraction to prevent the artificial noise
problem of time-domain spectral subtraction.

Fig. 5 Flow chart of the proposed pitch based VAD algorithm.

Fig. 6. The block diagram of the proposed neuromorphic noise attenuator al-
gorithm.

On the other hand, when the current frame is detected as
speech, the low frequency subbands and high frequency sub-
bands use different approaches to do speech enhancement. For
low frequency subbands, the energy of speech is concentrated
on several subbands, especially the subbands with pitch and
corresponding harmonic tones. Therefore, low frequency sub-
bands, F22 to F30, shall do pitch and corresponding harmonic
tones analysis. Thus, the proposed neuromorphic noise attenu-
ator algorithm employs the lateral inhibition principle to atten-
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uate the background noise and preserves the speech signal in
low frequency subbands, as shown in (5).

for

for
(5)

The lateral inhibition effect makes the subband with high energy
be boosted and attenuates the energy of neighbor subbands, and
vice versa. In addition, the energy of target subband is squared
in order to normalize the . It is worth to men-
tion that the equation of is identical to (1) for
modified nonlinear energy operation. Thus, the computational
complexity can be reduced by merging these two operations.
Then, the gain of subband F22 to F30, , is de-

cided by (6).

(6)

where

The temporal gain of target subband, , will
be set to , whenever the is higher
than threshold value, . This situation means that the
current subband is speech and the target subband is dominated
by pitch or corresponding harmonic tones. Hence the signal of
target subband should be preserved. Otherwise, the temporal
gain of target subband will be set to . Because this
situation means although the current frame is speech, the target
subband is noise dominated and should be attenuated. and
are constants. The neuromorphic noise attenuator algorithm

averages the of current frame with the pre-
vious frames to produce the final gain, ,
of the target subband. is set as 3, one fourth of , and

is chosen as 4 to smooth gain in our case.
and are 1 and 0.25 respectively to simplify hardware
implementation. In addition, to preserve the speech and reduce

distortion during speech duration, is designed to be
smaller than 1 so that is smaller than .
In high frequency subbands, F31 to F39, the speech com-

ponents in these subbands are consonants instead of vowels.
Therefore, the neuromorphic noise attenuator algorithm uses the
most obvious characteristic of consonant, the onset feature, as
the gain index in high frequency subbands, as shown in (7).

(7)

where

where is the average magnitude of subband in
frame . is the averagemagnitude from
to frames of subband . and are constants and the
principle to select the values of these two constants is the same
with and . Eqn. (7) means that the of
the target high frequency subband is proportional to the slope
of magnitude. For the target subband with high slope of magni-
tude, it might indicate the onset feature of a new component has
been detected and the neuromorphic noise attenuator will pro-
vide corresponding gain to the target subband depending on its

, as shown in (8).

(8)

where (See equation at bottom of page)
The neuromorphic noise attenuator algorithm averages the

of the current frame with previous
frames to produce the final gain, , of the target
subband. The starting duration of speech and the short duration
speech might be missed because it always takes time to react
the pitch or onset feature on the average magnitude or power.
Therefore, this part of speech will be attenuated before the

switches to 1, which may influence the speech
quality and intelligibility. In order to improve this situation,
the neuromorphic noise attenuator has a short voice protec-
tion zone. Whenever , although
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Fig. 7. Simulation results of noisy speech in 0 dBwhite noise environ-
ment. (a)Waveform of noisy speech. (b) Waveform of clean speech. (c) The de-
composed input signal of subband F23. (d) The decomposed input signal of sub-
band F24. (e) The result of . (f) The result of .
(g) The enhanced speech.

the is 0, the signal will be detected as short
voice protection zone and processed by speech enhancement
block instead of noise attenuation block. ,

, and are set as 1, 0.75, 0.5,
respectively for hardware implementation. After the gain is
decided, the threshold can be decided empirically.
The latency incurred by the proposed algorithm is only 1

frame which is 32 samples and corresponds to only 1.3 ms. The
data utilized by the average operation in (1) to (8) are previous
information. Thus, there is no latency introduced by this opera-
tion.
Fig. 7 shows the simulation results of the noisy speech in

0 dB white noise environment. Fig. 7(c), (d) are the
original decomposed input signals of subband F23 and F24,
and Fig. 7(e), (f) are the results of of subband F23
and F24. As shown in the figure, the fundamental frequency of
the pitch are in subband F23 and F24 during speech. Through
the NEO process, the difference between speech dominated du-
ration and noise dominated duration can be greatly enhanced
to improve the accuracy of VAD. Fig 7(g) is the waveform of
enhanced speech after the neuromorphic noise attenuator algo-
rithm.
Fig. 8 shows results of the proposed VAD algorithm and onset

detector in 0 dB white noise environment. Fig. 8(b) is

Fig. 8. Simulation results of the proposed algorithm and onset detector in
0 dB white noise environment. (a)Waveform of noisy speech (b)

Waveform of clean speech and ideal VAD signal. (c) The result of onset
detector of subband F23, . (d) The result
of onset detector of subband F26, . (e) The
result of onset detector of subband F29, .
(f) The enhanced speech after the neuromorphic noise attenuator algorithm and
the results of the pitch based VAD algorithm.

the clean speech and the ideal VAD signal. Fig. 8(c)–(e) are
the results of onset detector in three subbands, F23, F26 and
F29. As shown in the figure, the slope of magnitude increases
rapidly during the start-up of the speech. Fig. 8(f) is the en-
hanced speech by using the neuromorphic noise attenuator al-
gorithm and the results of the proposed pitch-based VAD algo-
rithm, as we can see, the background noise is attenuated and the
speech is preserved due to precise results of VAD.

D. Low Power Architecture Design

In the proposed algorithm, multiplications are the bottleneck
of the computational complexity. There are three major usage
of multiplication: the NEO operation of low frequency sub-
bands, the average power calculation of subband F22 to F31 and
the output signal multiplication of each subband. Without de-
grading the performance seriously, the proposed VAD and neu-
romorphic noise attenuator algorithms are modified to reduce
the computational complexity.
First of all, the average power of subband F22 to F31 in (1)

are modified from mean of square to average of magnitude in
order to reduce the number of multiplication and the bit-width of
the multiplier. In addition, (3) for needs division
operations in each low frequency subband. However, a division
operation has a higher hardware complexity as compared with a
multiplication operation. In order to avoid division operations,
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Fig. 9. (a) Waveform of white (0 dB)—factory (0 dB) test pattern (b) Spectro-
gram of white (0 dB)—factory (0 dB) test pattern.

the denominator is transposed to the other side of the equation.
After this modification, these equations can avoid the usage of
division operation which can save many hardware resources and
does not affect the performance.
Finally, each frame in the proposed algorithm has 32 samples,

so the number of sample after ANSI S1.11 analysis filter bank
becomes 189

, which means there are 189
multiplication operations just for output signal calculation in a
frame.
The computational complexity of this part is even higher than

spectral subtraction algorithm. Therefore, the proposed algo-
rithm employs a shift-and-add operator with 0.125 resolution to
replace the multiplication. With this tradeoff between flexibility
and complexity, 1 multiplication operation can be replaced by
about 1.5 shift operation and 1 addition operation in average.

IV. SIMULATION RESULTS AND COMPARISONS

A. Simulation Results

Simulations are executed to evaluate the performance of the
proposed pitch-based VAD and neuromorphic noise attenuator
algorithm. For Mandarin speech database, 27 Mandarin 2-char-
acters and 10 Mandarin sentences are utilized. Among the
speech frames, 33 % and 67% of the frames is high frequency
sounds (more than 50% of the sound energy is located above
1000 Hz) and low frequency sounds (more than 50% of the
sound energy is located below 1000 Hz), respectively. Both
stationary and non-stationary noise environments are applied to
the simulations. There are four types of background noises in
the stationary noise environment, white, factory, car and babble
provided by NOISEX-92 database [24]. Each type of noise is
added to speech to have 11 different levels (0 dB 10

dB). On the other hand, the non-stationary noise environment is
with different kinds of the background noises (like the situation
that people moves from indoor to outdoor in real world). There
are three kinds of non-stationary background noises, white-fac-
tory, white-car and white-babble. These non-stationary noises
are also added to speech to have five various levels
(0-0 dB, 0-3 dB, 0-5 dB, 0-7 dB, 0-10 dB). The white (0
dB)—factory (0 dB) situation means the background noise
changes dramatically between 0 dB white noise and

0 dB factory noise during speech, as shown in Fig. 9.
In the following performance simulations, the accuracy of

the proposed pitch-based VAD (VAD_accuracy) is compared
with the ideal VAD signal (manually labeled). VAD_accuracy
is the percentage of the number of correctly detected frames
to total number of frames. The number of correctly detected
frames is total number of frames minus the number of missing
frames (speech frame but detected as noise frame) and false
alarmed frames (noise frame but detected as speech frame). For
the proposed neuromorphic noise attenuator algorithm, SNR,
segmental SNR and perceptual evaluation of speech
quality (PESQ) [25] indices are used for the performance eval-
uation. PESQ is the index of objective measurement based on
the speech quality. Eqn. (9) shows the definition of SNR and

,

(9a)

(9b)

where is the energy of clean speech and the
is the energy of the noise. reflects the per-

formance of NR during speech duration and the SNR reflects the
performance of NR in overall duration.
The accuracy of the proposed pitch-based VAD algorithm is

compared with SNR based [6] and entropy based [8] VAD algo-
rithm. Note that SNR based VAD algorithm utilizes 512-point
FFT of which the frequency resolution is higher than 18-sub-
band ANSI filter bank employed by entropy based VAD algo-
rithm. The speech enhancement performance of the proposed
algorithm is also compared with diverse types of algorithms
such as multiband (mband) spectral subtraction [2], wiener filter
(wiener_as, wiener_wt) [26], [27], minimum mean square error
(mmse) [3] and subspace (klt) [5] algorithms. The programs of
these compared algorithms are provided by [23].
In average, the VAD accuracy of the modified algorithm for

low power architecture design is about 3% lower than the orig-
inal algorithm in stationary noise environment and about 4%
lower in non-stationary noise situation. With the slight degra-
dation of the performance, we can reduce the computational
complexity dramatically for low power consideration as will be
shown in Table IV. The following results are presented by the
original algorithm.
Table I and Table II show the accuracy of the proposed

pitch-based VAD algorithm in stationary noise environment
and non-stationary noise environment. The accuracy of the
proposed VAD is above 85 % at the white, factory and car
noise. This is because the pitch feature is basically independent
of these noise environments. However, the accuracy in babble



CHEN et al.: NEUROMORPHIC PITCH BASED NOISE REDUCTION 471

TABLE I
THE ACCURACY OF THE PROPOSED PITCH BASED VAD ALGORITHM IN

STATIONARY NOISE ENVIRONMENTS

TABLE II
THE ACCURACY OF THE PROPOSED PITCH BASED VAD ALGORITHM IN

NON-STATIONARY NOISE ENVIRONMENTS

noise is around 70 % since there are several pitch components
in the background noise. Therefore, the number of false alarm
frames in babble noise environment is much higher than that of
other background noise environments. Another characteristic
of the proposed VAD is the accuracy is basically independent
of the , which is also due to that the pitch is independent
of background noise. Therefore, the proposed VAD algorithm
can have high accuracy in low noise environment. This
is very important since a hearing loss person needs better SNR
as compared to a normal hearing person. According to [28], the
average SNR deficit of mild hearing loss people is about 4 dB.
For a normal hearing person, a speech with SNR of 5 dB can be
well recognized. In addition, the accuracy of the proposed VAD
is almost no degradation in non-stationary noise environment,
which means the proposed VAD algorithm works well at the
dramatic change of background noise.
Table III shows accuracy of the proposed pitch-based VAD

algorithm with the phoneme keeper procedure for all the back-
ground noise cases. The accuracy of the proposed VAD can be
improved about 20%with the phoneme keeper procedure which
means the phoneme keeper improves the VAD accuracy effec-
tively.

TABLE III
THE ACCURACY IMPROVEMENT OF THE PROPOSED PITCH BASED VAD
ALGORITHM BY PHONEME KEEPER IN STATIONARY AND NON-STATIONARY

NOISE ENVIRONMENTS

Fig. 10. Comparison of the VAD accuracy in (a) stationary noise environments
and (b) non-stationary noise environments.

Fig. 10 shows the VAD accuracy of the proposed algorithm
and other algorithms [6], [8] in stationary and non-stationary
noise environments. In low SNR case, the accuracy of the pitch
based algorithm is about 20% higher in stationary and 25%
higher in non-stationary noise environment than the other algo-
rithms. Note that in non-stationary noise environment, there is
no simulation result of entropy based VAD algorithm. So, only
two curves are shown in Fig. 10(b).
For the performance of neuromorphic noise attenuator,

Fig. 11 and Fig. 12 show the average improvement in SNR,
and enhanced PESQ of the proposed algorithm and

the other algorithms. In the four types of stationary noise envi-
ronments, the proposed algorithm performs better than mband,
wiener_wt algorithm and comparable to klt subspace algorithm
in low noise environment. More important, at 0 dB, the
SNR/ improvement is 8.0/5.5 dB which can compensate
the deficit of mild hearing loss patients. Although the
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Fig. 11. Comparisons of the SNR, and PESQ improvements in sta-
tionary noise environments (a) SNR improvement. (b) improvement.
(c) Enhanced PESQ.

improvement of mmse method is about 2 to 3 dB better than
that of our proposed algorithm, its computational complexity
is very high as will be shown in Table IV. Also, at speech
dominated subbands, noise will be masked by speech due to the
masking effect. So our algorithm does not process these sub-
bands to avoid musical effect so SNR improvement will be not
that high. The performance indices of the proposed algorithm
in the three types of non-stationary noise environments are the
same with that in stationary noise environments. However, the
performance indices of all other algorithms used in Fig. 11
are seriously degraded because of inaccurate noise estimation
due to dramatic background noise variation. The average
improvement (enhanced output PESQ—original input PESQ)
of PESQ is 0.210/0.216 in high (5 dB 10 dB/0-5
dB 0-10 dB) stationary/non-stationary noise environment
where the patients usually suffer from the speech distortion

Fig. 12. Comparisons of the SNR, and PESQ improvements in non-
stationary noise environments. The 0-3 in x-axis means the background noise
changes dramatically between 0 dB and 3 dB, and so on. (a)
SNR improvement. (b) improvement. (c) Enhanced PESQ.

in this environment. In the non-stationary noise environment,
the improvement of PESQ of the proposed algorithm is only a
little less than mmse and is better than other algorithms. The
good performance both in stationary and non-stationary noise
environments and low computational complexity make the
proposed algorithm suitable for HA systems.

B. Complexity Comparison

Low power consumption is the most important criterion in
HA system implementation. Because low computational com-
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TABLE IV
THE COMPARISON OF COMPUTATIONAL COMPLEXITY OF EACH SAMPLE BASED
ON THE NUMBER OF MULTIPLICATION, DIVISION, LOGARITHM AND ADDITION

plexity during speech procession or speech process means low
power consumption, the computational complexity compar-
isons of the proposed algorithm and several selected algorithms
in HA system implementation are shown in Table IV. The
specsub means the full band spectral subtraction algorithm
[1]. The comparison is based on the average usage of multi-
plication (Mul.), division (Div.), logarithm (Log.) and addition
(Add.) per sample in each algorithm. The proposed algorithm
(Original) means the original neuromorphic pitch based noise
reduction algorithm and the proposed algorithm (Implement)
means the proposed algorithm with those low-power architec-
ture designs mentioned at Section III-D. As shown in Table IV,
the usage of multiplication of the proposed algorithm (Orig-
inal) is about 35% to 65% of the other algorithms while the
usage of division is about 2% to 18% of the other algorithms.
Furthermore, the computational complexity of the proposed
algorithm (Implement) is further reduced by using the proposed
low power architecture.

V. HARDWARE IMPLEMENTATION RESULT

The proposed NR algorithm with low power architecture de-
sign is implemented with the AFC, AFB,WDRC and SFB block
of HA system in Fig. 1. The implementation of the proposed
system uses cell based flow and 65 nm high (HVT) CMOS
cell library. In addition, the gated clock and operand isolation
techniques are applied in order to reduce the power consump-
tion. Fig. 13 shows the layout and die photo of the HA system.
Table V is the measurement data of implementation results and
power analysis of the proposed NR design. The clock rate of
the proposed NR block is 2.5 MHz and the data rate is 24 kHz.
The number of cycle count of the proposed architecture is 389
which means the hardware latency incurred for the proposed al-
gorithm is about 0.156 ms. The memory usage of the proposed
NR block is 12 Kbits. All the memory used in this chip is imple-
mented by register cell. Finally, the total power consumption of
the proposed NR block is 47.74 at 0.5 V supply voltage.

VI. CONCLUSION

In this paper, a low computational complexity hardware-ori-
ented neuromorphic pitch based noise reduction algorithm
and hardware implementation for monosyllable hearing aid
system applications are proposed. The proposed NR algorithm,
suitable in ANSI S1.11 or quasi ANSI filter bank architecture,
consists of a pitch-based VAD to detect speech duration and a
neuromorphic noise attenuator to reduce the background noise.
In stationary noise environment, the proposed NR algorithm

Fig. 13. The die photo of the HA system.

TABLE V
THE MEASUREMENT DATA OF IMPLEMENTATION RESULT OF THE PROPOSED

NOSIE REUCTION (NR) BLOCK

can improve by 4.238 dB in low environment
and improve PESQ by 0.210 in high environment
in average. In non-stationary noise environment, the average
improvement of is 4.943 dB and the average improve-
ment of PESQ is 0.216. The most important advantage is that
unlike multiband (mband) spectral subtraction [2], wiener filter
(wiener_as, wiener_wt) [26], [27], minimum mean square error
(mmse) [3] and subspace (klt) [5] algorithms, the performance
of the proposed neuromorphic pitch based NR algorithm is
not degraded in non-stationary noise environment. In addition,
the computational complexity of the proposed NR algorithm
with the low power architecture can save 90% complexity than
the other compared NR algorithms. Therefore, the proposed
neuromorphic pitch based noise reduction algorithm is suitable
in monosyllable HA system application. Chip implementation
shows the proposed NR algorithm consumed 47.74 at 0.5
V supply voltage.
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