
616
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.2 FEBRUARY 2014

PAPER

Efficient Multiply-by-3 and Divide-by-3 Algorithms and Their Fast
Hardware Implementation

Chin-Long WEY†, Nonmember, Ping-Chang JUI††a), Student Member, and Gang-Neng SUNG†††, Nonmember

SUMMARY This study presents efficient algorithms for performing
multiply-by-3 (3N) and divide-by-3 (N/3) operations with the additions
and subtractions, respectively. No multiplications and divisions are needed.
Full adder (FA) and full subtractor (FS) can be implemented to realize the
N3 and N/3 operations, respectively. For fast hardware implementation,
this paper introduces two basic cells UCA and UCS for 3N and N/3 oper-
ations, respectively. For 3N operation, the UCA-based ripple carry adder
(RCA) and carry lookahead adder (CLA) designs are proposed and their
speed performances are estimated based on the delay data of standard cell
library in TSMC 0.18 µm CMOS process. Results show that the 16-bit
UCA-based RCA is about 3 times faster than the conventional FA-based
RCA and even 25% faster than the FA-based CLA. The proposed 16-bit
and 64-bit UCA-based CLAs are 62% and 36% faster than the conventional
FA-based CLAs, respectively. For N/3 operations, ripple borrow subtractor
(RBS) is also presented. The 16-bit UCS-based RBS is about 15.5% faster
than the 16-bit FS-based RBS.
key words: ripple carry adder (RCA), carry-lookahead adder (CLA),
ripple-borrow subtractor (RBS), multiplier, divider

1. Introduction

Constant multiplier (divider) performs a multiplication (di-
vision) of a data-input with a constant value. They are es-
sential components in various types of arithmetic circuits,
such as filters in digital signal processor (DSP) units and
they are prevalent in modern VLSI designs. The hardware
complexity of digital filter is mainly dominated by the con-
stant multipliers [1].

The multiplication by a fixed-point constant can
be done “multiplier-less” using additions/subtractions and
shifts only. In such filters the number of adders/subtractors
determines the implementation cost. Since the shifters are
implemented as hard-wired inter-block connections, they
are considered “free” in transposed implementation of an
FIR filter; each input is multiplied by several coefficients
[2].

Instead of multiplying the processing data by 3, the 3N
can be efficiently generated by adding N to its 1-bit left-
shifted value 2N. The constant value can be a fractional
number, i.e., multiply-by-(1/3). The multiply-by-(1/3) op-
eration is equivalent to the divide-by-3 (N/3) operation. The

Manuscript received July 3, 2013.
Manuscript revised October 3, 2013.
†The author is with the Department of Electrical Engineering,

National Chiao Tung University, Hsinchu, Taiwan.
††The author is with the Department of Electrical Engineering,

National Central University, Jhongli, Taoyuan, Taiwan.
†††The author is with the Chip Implementation Center, National

Applied Research Laboratories, Hsinchu, Taiwan.
a) E-mail: kwoyei@gmail.com (Corresponding author)

DOI: 10.1587/transfun.E97.A.616

constant divider can be done “divider-less” using the sub-
tractions.

In addition to the function of constant multiplication/
division, the 3N operation can be applied for arithmetic 3N
encoding and Radix-8 Booth encodings, while the N/3 op-
eration for arithmetic 3N decoding [3]–[9].

This study presents efficient algorithms for performing
3N and N/3 operations with the additions and subtractions,
respectively. No multiplications and divisions are needed.

The addition can be simply done by the combinational
circuits, such as full adder (FA), FA-based ripple carry adder
(RCA) or carry look-ahead adder (CLA) [8], [9]. Note that
the RCA achieves low hardware cost, while the CLA accom-
plishes high speed performance. Similarly, the subtractions
can be performed by full subtractor (FS) or FS-based ripple
borrow subtractors (RBS).

In this study, two cells, UCA (Unit Cell for Addition)
and UCS (Unit Cell for Subtraction), are introduced for 3N
and N/3 operations, respectively. Based on FA and UCA
cells, the fast hardware implementations of FA-based and
UCA-based RCA and CLA are presented for 3N operation
and their speed performances are estimated and compared
based on the gate delay data in TSMC 0.18 µm standard cell
library. Similarly, based on the FS and UCS cells, the RBS
designs and their speed performance will be presented.

Results will show that the proposed 16-bit UCA-based
RCA with a delay of 0.7043 ns is about 316% faster than
the FA-based RCA with 2.9267 ns; and the 16-bit and 64-bit
UCA-based CLAs are about 62% and 36% faster than the
FA-based CLAs, respectively. Similarly, the 16-bit UCS-
based RBS is about 15.5% faster than the FS-based one.

In the next section, both 3N and N/3 operations and
their conversion algorithms are presented. Section 3 de-
scribes the conventional and proposed architectures and
their speed performances are estimated in Sect. 4. Finally,
a brief concluding remark is given in Sect 5.

2. Efficient Algorithm Development

This section first describes the design concept and algorithm
development for 3N operation and then presents those for
N/3 operation.

2.1 3N and N/3 Operations

Let N = (an−1an−2 . . . a0) be an n-bit code. The 3N can be
accomplished by adding A to its 1-bit left-shifted value 2N,

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

WEY et al.: EFFICIENT MULTIPLY-BY-3 AND DIVIDE-BY-3 ALGORITHMS AND THEIR FAST HARDWARE IMPLEMENTATION
617

where 2N = (an−1an−2 . . . a00). Thus, 3N=N+2N as follow,

N 0 an−1 an−2 . . . a1 a0

+ 2N an−1 an−2 an−3 . . . a0 0
3N sn sn−1 sn−2 . . . s1 s0

(1A)

The computation of (1A) can be achieved using a RCA
in which each cell is a full adder (FA). A FA takes two data
inputs, ai and ai−1, and one carry input bit ci, and produces
one carry output bit ci+1 and sum bit si+1, for i = 0∼n−1,
where a−1 = 0 and c−1 = 0, and the functions are

si = ai ⊕ ai−1 ⊕ ci−1

ci = (ai ⊕ ai−1)ci−1 + aiai−1
(2A)

Similarly, N = (bnbn−1bn−2 . . . b0) and N/3 = (0an−1an−2

. . . a0), then (2N)/3 = (an−1an−2 . . . a00). Thus, N/3=N−(2N)/
3 as follows,

N bn bn−1 bn−2 . . . b1 b0

− 2N/3 an−1 an−2 an−3 . . . a0 0
N/3 0 an−1 an−2 . . . a1 a0

(1S)

The computation of (1S) can be performed by a ripple
borrow subtractor (RBS), where each unit contains a one-
bit full subtractor (FS). Each 1-bit FS performs the subtrac-
tion of (bi−ai−1) by taking two data bits, bi+1 and ai, and the
borrow-out bit, Bi−1, as its inputs, and producing the differ-
ence bit (ai) and the borrow-in bit (Bi). The logic functions
of the 1-bit FS can be expressed as follows,

ai = bi ⊕ ai−1 ⊕ Bi−1

Bi = b′iBi−1 + ai−1Bi−1 + b′iai−1
(2S)

2.2 3N and N/3 Algorithms

The basic conversion concept behind this development can
be explained from the following example. Table 1 shows the
addition of N and 2N for an 8-bit number N=(0001101), or
|N|=13, and 2N=(00011010), or |2N|=26. Thus, the sum is
3N=(00100111), or |3N| = |2N| + |N|=39.

Let ai and a3i denote as the i-th bit values of N and 3N,
respectively. We define u[i]=0 if ai=a3i; Otherwise u[i]=1,
i.e.,

u[i] = ai ⊕ a3i (3)

The bottom row of Table 1 shows u=(00101010). If we
were able to construct the relationship between ai and a3i as
in (3), then both 3N and N/3 operations can be formulated
as the following simple conversions,

a3i = ai ⊕ u[i] (4)

Table 1 Description of example.

ai = a3i ⊕ u[i] (5)

Given ai of N, ai is derived by (4), i.e., 3N operation. On the
other hand, in (5), given a3i for 3N, ai is generated by (5),
i.e., N/3 operation.

The 3N operation can be summarized as the following
Algorithm.

The N/3 operation can be summarized as the following
Algorithm.

The next step is to generate the finite state machines to
construct the relationship u[i] for both 3N operation and N/3
operation.

2.2.1 3N Operation

Based on (2A), the 3N operation can be described by a state
machine with 3 states, where State A, (ai,ci) = (0, 0), State
B, (ai, ci) = (0, 1), or (1, 0), and State D, (ai, ci) = (1, 1).

Let (ai, ci) and (ai+1, ci+1) denote as the Present State
(PS) and Next State (NS), respectively. The state input and
output are ai+1 and u[i+1] = si+1⊕ai+1, respectively. The
state machine is constructed as follows.
State A: (ai, ci)=(0, 0)

By (2A), si+1 = ai+1⊕ai⊕ci=ai+1 and ci+1 = (ai+1⊕ai)ci +

ai+1ai = 0; The state output u[i+1] = si+1⊕ai+1 = 0 because
si+1 = ai+1. This concludes that

If ai+1 = 0, then ai+1/u[i+1] = 0/0 and NS = (ai+1, ci+1)
= (0, 0) = A;
If ai+1 = 1, then ai+1/u[i+1] = 1/0 and NS = (ai+1, ci+1)
= (1, 0) = B;

State B: (ai,ci) =(0, 1) or (1, 0)
By (2A), si+1 = ai+1⊕ai⊕ci = ai+1’ and ci+1 = ai+1; The
state output u[i+1] = si+1⊕ai+1 = ai+1’⊕ai+1 = 1. It con-
cludes that

618
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.2 FEBRUARY 2014

Fig. 1 State diagram of proposed 3N operation.

Table 2 3N operation.

If ai+1 = 0, then ai+1/u[i+1] = 0/1 and NS = (ai+1, ci+1)
= (0, 0) = A;
If ai+1 = 1, then ai+1/u[i+1] = 1/1 and NS = (ai+1,ci+1)
= (1, 1) = D;

State D: (ai,ci) = (1, 1)
By (2A), si+1 = ai+1⊕ai⊕ci = ai+1 and ci+1 = 1; The state
output u[i+1] = si+1⊕ai+1 = ai+1⊕ai+1 = 0. It concludes
that

If ai+1 = 0, then ai+1/u[i+1] = 0/0 and NS = (ai+1,ci+1)
= (0, 1) = B;
If ai+1 = 1, then ai+1/u[i+1] = 1/0 and NS = (ai+1, ci+1)
= (1, 1) = D;
Figure 1 summarizes the state machine. Based on the

state diagram in Fig. 1, Table 2 lists the detailed conversion
process of the example in Table 1.

Note that State A is the initial state and also the termi-
nal state. If the terminated state is not at State A, it implies
that the final result is not 3N.

2.2.2 N/3 Operation

Based on (2S), the N/3 operation can be described by a state
machine with 3 states, where State S0, (ai, Bi) = (0, 0), State
S1, (ai, Bi) = (0, 1), or (1, 0), and State S2, (ai, Bi) = (1, 1).

Let (ai, Bi) and (ai+1, Bi+1) be the Present State (PS) and
Next State (NS), respectively. The state input and output are
bi+1 and u[i+1] = a3(i+1)⊕ai+1 = bi+1⊕ai+1, respectively. The
state machine is constructed as follows,
State S0: (ai,Bi) = (0, 0)

By (2S), ai+1 = bi+1 and Bi+1 = 0; The state output u[i+1]
= 0 because ai+1 = bi+1. This concludes that

If bi+1 = 0, then ai+1/u[i+1] = 0/0 and NS = (0, 0) = S0;
If bi+1 = 1, then ai+1/u[i+1] = 1/0 and NS = (1, 0) = S1;

State S1: (ai,Bi) = (0, 1) or (1, 0)
By (2S), ai+1 = bi+1’, and Bi+1 = bi+1’. With the state
output u[i+1] = 1, the followings are concluded.

If bi+1 = 0, then ai+1/u[i+1] = 1/1 and NS = (1, 1) = S2;
If bi+1 = 1, then ai+1/u[i+1] = 0/0 and NS = (0, 0) = S0;

State S2: (ai,Bi) = (1, 1)
By (2S), ai+1 = bi+1, Bi+1 = 1. With the state output u[i+1]
= 0, the followings are concluded.

If bi+1 = 0, then ai+1/u[i+1] = 0/0 and NS = (0, 1) = S1;

Fig. 2 State diagram of proposed N/3 operation.

Table 3 Conversion process.

If bi+1 = 1, then ai+1/u[i+1] = 1/0 and NS = (1, 1) = S2;
Therefore, the state machine is shown in Fig. 2.
Based on the state diagram, Table 3 lists the detailed

conversion process of the example in Table 1. At bit 0, the
present state is the initial state S0, with the input is 1, the
next state is moved to S1 with the output u[0] = 0. Thus,
with b0 = 1, we have a0 = b0⊕u[0] = 1.

Note that State S0 is the initial state and also the termi-
nal state. If the terminated state is not at State S0, it implies
that the final result is not N/3.

3. Fast Hardware Implementation

This section presents the fast hardware implementation for
the building blocks for both 3N and N/3 operations.

3.1 Basic Cells

The three states of the state machine in Fig. 1 can be repre-
sented by two state variables x and y, where A = (x, y) = (0,
0), B = (0, 1), and D = (1, 1). Figure 3 shows the state table,
logic functions, and logic circuit implementation for Fig. 1.
Note that u[i] in (4) is the term ui in Fig. 3(b). Figure 3(d) is
the logic circuit implementation for (4).

Similarly, two state variables x and y represent the three
states in Fig. 2, S0 = (x, y) = (0, 0), S1 = (0, 1), and S2 = (1,
1). Figure 4 shows the state table, logic functions, and logic
circuit implementation. Note that u[i] in (5) is the term ui in
Fig. 4(b). Figure 4(d) is the logic circuit implementation for
(5).

Figure 5 shows the basic cells of FA and FS which re-
alizes the equations in (2A) and (2S), respectively.

3.2 Sequential Circuit Implementation

Figure 6 presents the sequential type of hardware implemen-
tation for the 3N and N/3 operations which achieve lower
hardware cost and high flexibility for converting any bit
sizes. However, the operating speed is relatively slow.

In order to develop fast hardware implementation, both

WEY et al.: EFFICIENT MULTIPLY-BY-3 AND DIVIDE-BY-3 ALGORITHMS AND THEIR FAST HARDWARE IMPLEMENTATION
619

Fig. 3 Unit cell (UCA) for 3N operation: (a) state table; (b) logic func-
tions; (c) logic circuit implementation for Fig. 1; and (d) logic circuit for
(4).

Fig. 4 Unit cell (UCS) for N/3 operation: (a) state table; (b) logic func-
tions; (c) logic circuit implementation for Fig. 2; and (d) logic circuit for
(5).

Fig. 5 Basic cells: (a) FA; and (b) FS.

RCA and RBS structures and CLA are presented.

3.3 Carry/Borrow Ripple Structures

Figure 7(a) and Fig. 7(b) present the n-bit FA-based RCA
and FS-based RBS, respectively. Similarly, Fig. 7(c) and

Fig. 6 Sequential circuit types: (a) 3N operation; and (b) N/3 operation.

Fig. 7 n-bit ripple structures: (a) RCA(FA); (b) RBS(FS);
(c) RCA(UCA); and (d) RBS(UCS).

Fig. 7(b) show the UCA-based RCA and UCS-based RBS,
respectively.

With the initial conditions, UCA0 and UCA1 in
Fig. 7(c) can be simplified as Fig. 8(a), and the UCA cell in
Fig. 3(d) can be realized as shown. Similarly, Fig. 8(b) is the
simplified building block for the ripple structure in Fig. 7(d).

3.4 Carry Lookahead Adder (CLA) for 3N Operation

Figure 9(a) shows a 16-bit conventional CLA [8], [9] with
the basic building blocks 4-bit BCLA and 4-bit CLA [8], [9].
For 3N operation, the initial carry c−1 = 0, the 4-bit CLA can
be simplified as shown in Fig. 9(b), denoted as CLA-c.

Now, consider the 16-bit UCA-based CLA. Based on

620
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.2 FEBRUARY 2014

Fig. 8 Basic cells: (a) UCA; and (d) UCS.

Fig. 9 Conventional CLA: (a) 16-bit CLA; and (b) 4-bit CLA with C−1

= 0.

the logic functions described in Fig. 3(b), both xi and yi, i =
0∼3, can be expressed as follows,

x0=y−1a0 y0=x−1+a0

x1=y0a1=x−1a1+a0a1 y1=x0+a1=y−1a0+a1

x2=y1a2=y−1a0a2+a1a2 y2=x1+a2=x−1a1+a0a1+a2

x3=y2a3=x−1a1a3+a0a1a3+a2a3 y3=x2+a3=y−1a0a2+a1a2+a3

Therefore, both x3 and y3 can be written as

Fig. 10 A 16-bit CLA(UCA): (a) block diagram; (b) RB0 & QB0; (c)
inputs to CLA-4; (d) CLA-y with C−1 = 0; and (d) SUj circuit.

x3 = x−1R00 + R01 y3 = y−1Q00 + Q01 (6)

where

R00=a1a3,R01=a0a1a3+a2a3,Q00=a0a2,Q01=a1a2+a3 (7)

As a result, we have

x3 = x−1R00+R01 y3 = y−1Q00+Q01

x7 = x3R10+R11 = x−1R00R10+R01R10+R11

y7 = y3Q10+Q11 = y−1Q00Q10+Q01Q10+Q11

x11 = x−1R00R10R20+R01R10R20+R11R20+R21

y11 = y−1Q00Q10Q20+Q01Q10Q20+Q11Q20+Q21

x15 = x−1R00R10R20R30+R01R10R20R30+R11R10R30

+R21R30+R31

y15 = y−1Q00Q10Q20Q30+Q01Q10Q20Q30+Q11Q20Q30

+Q21Q30+Q31

(8)

Figure 10(a) shows a 16-bit UCA-based CLA. The
RB0 and QB0, as shown in Fig. 10(b), generate R00, R01,
Q00, and Q01 in (7). The CLA-x and CLA-y are exactly the
same as CLA-c in Fig. 9(b) because the initial carries x−1

and y−1 are all zeros. However, since both x15 and y15 can

WEY et al.: EFFICIENT MULTIPLY-BY-3 AND DIVIDE-BY-3 ALGORITHMS AND THEIR FAST HARDWARE IMPLEMENTATION
621

Fig. 11 Block diagram of A 64-bit CLA(UCA).

be generated by Block SU3 with better speed performance
and hardware cost, only 3-bit CLA-x and CLA-y, as shown
in Fig. 10(c), are used. Figure 10(d) illustrates the circuit of
SUj, j = 0∼3.

Further, Fig. 11 shows the block diagram of a 64-bit
CLA structure with UCA cells. It comprises of 16 QBs and
16 RBs, 8 4-bit BCLAs, 3-bit CLA-x and CLA-y, and 16
SUj units.

4. Speed Performance Evaluation

This section presents the performance evaluation for the
speed performance of the hardware implementation of both
3N and N/3 circuits. The circuit performance is evaluated
based on the TSMC 0.18 µm process technology. Table 4
lists the information for the standard cells in TSMC 0.18 µm
CMOS process, where the cell height is 5.04 µm.

For simplicity of notation, the FA-based RCA and
CLA are denoted as RCA(FA) and CLA(FA), respec-
tively. Similarly, RCA(UCA) and CLA(UCA) are referred
to UCA-based RCA and CLA, respectively. RBS(FS) and
RBS(UCS) are referred to FS-based and UCS-based RBS,
respectively.

The following delay calculation only considers the to-
tal delay of the gates included in the critical path, where the
path delays and loading effects are not taken into considera-
tion for rough estimation and comparison.

4.1 Basic Cells

The FA cell, as shown in Fig. 5(a), can be realized by 3
NAND2/NOR2 gates, a XOR gate, and a XNOR gate, and
its delays are

ΔFA(input-to-carry) = 2ΔNAND2 + ΔXOR = 0.2095 ns

ΔFA(input-to-sum) = ΔXOR + ΔNXOR = 0.2900 ns

Similarly, the FS, as shown in Fig. 5(b), can be realized by
3 NAND2 gates, a XOR gate, and a XNOR gate, and one
inverter. Its delays are exactly the same as those of FA.

The UCA cell in Fig. 3(d) and Fig. 8(a) can be realized
by one NAND2 gate, one NOR2 and two XOR gates. Since
NOR2 has longer delay than NAND2, the delays of UCA

Table 4 Cell delay data.

are

ΔUCA(input-to-carry) = ΔNOR2 = 0.0426 ns

ΔUCA(input-to-sum) = ΔXOR + ΔNXOR = 0.2900 ns

By Fig. 4(d) and Fig. 8(b), the delay of an adjacent pair of an
odd-numbered UCS cell and an even-numbered UCS cell
includes the delays of two XNOR gate, one NAND2 gate,
and one NOR2 gate. Thus, the average delay for the UCS
cell from input-to-borrow is (ΔNAND2 + ΔXNOR + ΔNAND2 +

ΔXNOR)/2; and the delay for UCS cell from input-to-sum is
the delays of two XOR gates, by Table 4, the delays are

ΔUCS(input-to-borrow) = 0.1828 ns

ΔUCS(input-to-sum) = 0.2894 ns

These four basic cells have almost the same delay from the
inputs to the sum outputs. However, the UCA cell is about
4.92 times faster than the FA cell for their carry delays. If
the improvement ratio of A over B is defined as (A−B)/B,
the improvement ratio of UCA cell over the FA cell is 3.92.
Similarly, the improvement ratio of UCS cell over the FS
cell is 14.6%.

4.2 Ripple Structures

Consider the delays of 16-bit RCA(FA) and RCA(UCA), as
shown in Fig. 7(a) and Fig. 7(c). The half-adder (HA) for the
least significant bit is an AND2 gate which can be realized
by an NAND2 gate and an inverter for shorter delay, i.e.,
ΔAND2 = ΔNAND2 + ΔINV = 0.0585 ns. Thus, their delays are

ΔRCA16(FA)=ΔNAND2+ΔINV+13ΔFA+ΔXOR=2.9267 ns

ΔRCA16(UCA)=ΔINV+12ΔUCA+2ΔXOR=0.7043 ns

622
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.2 FEBRUARY 2014

The proposed 16-bit RCA(UCA) is 4.16 times faster than
the RCA(FA). The improvement ratio is 316%.

In Fig. 8(b), the delay of UCS1 with x0 = 0 is (ΔINV +

ΔNOR2), or 0.0687 ns. The delays of 16-bit RBS(FS) and
RBS(UCS), as shown in Fig. 7(b) and Fig. 7(d), are

ΔRBS16(FS)=ΔXOR+13ΔFS+ΔXOR+ΔXNOR=3.1582 ns

ΔRBS16(UCS)= (ΔINV+ΔNOR2)+13ΔUCS+2ΔXOR=2.7345 ns

Thus, the improvement ratio of the proposed 16-bit
RBS(UCS) over RBS(FS) is 15.5% for N/3 operation.

4.3 Carry Lookahead Structures for 3N Operation

The delay of the conventional 16-bit CLA(FA) includes
the delays of P-G unit, 3 levels of CLA/BCLA, and sum
unit. The NAND4 in BCLA can be realized with two
NAND2 gates connected with an OR gate, i.e., ΔNAND4 =

ΔOR2 + ΔNAND2. Thus, the delay of 16-bit CLA(FA) can be
expressed as

ΔCLA16(FA)=ΔPG+3ΔCLA-c/BCLA+Δsum=0.8774 ns

where

ΔPG = ΔXOR = 0.1447 ns

ΔBCLA = 2ΔNAND4 = 2(ΔOR2 + ΔNAND2) = 0.196 ns

ΔCLA-c = ΔBCLA = 0.196 ns

Δsum = ΔXOR = 0.1447 ns

The 16-bit CLA(UCA) in Fig. 10(a) takes only one level of
3-bit CLA-x, and its delay can be estimated as follows,

ΔCLA16(UCA) = ΔRQ + ΔCLA-x + Δsu = 0.5426 ns

where

ΔRQ = 2ΔNAND2 = 0.0648 ns

ΔCLA-x = 2ΔNAND3 = 0.0906 ns

Δsu = 3ΔNAND2 + ΔXOR + ΔXNOR = 0.3872 ns

The improvement ratio is 62%, i.e., the proposed 16-bit
CLA(UCA) is 62% faster than the conventional CLA(FA)
for 3N operation. Similarly, the 64-bit CLA(FA) takes 5-
level of CLA/BCLA and its delay can be expressed as

ΔCLA64(FA) = ΔPG + 5ΔCLA/BCLA + Δsum = 1.2694 ns

The 64-bit CLA(UCA) in Fig. 11 takes only 3 levels of
BCLA/ CLA and its delay is

ΔCLA64(UCA) = ΔRQ+ΔBCLA+ΔCLA-x+ΔBCLA+Δsu

= 0.9346 ns

The improvement ratio is 36%, i.e., the proposed 64-bit
CLA(UCA) is 36% faster than the conventional CLA(FA)
for 3N operation. Table 5 summarizes the speed perfor-
mance comparison of various structures discussed above for
3N and N/3 operations. Results also show that the pro-
posed 16-bit RCA(UCA) with a delay 0.7343 ns is about

Table 5 Speed performance comparison.

25% faster than the conventional 16-bit CLA(FA) with a de-
lay of 0.8774 ns.

5. Conclusion

This paper presents simple, yet efficient, algorithms for both
3N and N/3 operations and their fast hardware implementa-
tion. A simple relationship between the input data and the
output data for both 3N and N/3 operations was derived to
simplify the circuit design. This study has shown that, for
3N operations, the improvement ratio of the proposed 16-
bit UCA-based RCA over the conventional 16-bit FA-based
RCA is about 316%. The proposed 16-bit and 64-bit UCA-
based CLA’s are approximately 62% and 36% faster than
the conventional FA-based CLA structures, respectively. It
should be mentioned that the proposed 16-bit UCA-based
RCA with a delay of 0.7043 ns is about 25% faster than
the conventional 16-bit FA-based CLA, due to the simplic-
ity of the UCA cell. On the other hand, the proposed 16-
bit UCS-based RBS with a delay of 2.7345 ns is approxi-
mately 15.5% faster than the conventional 16-bit FS-based
RBS with 3.1582 ns.

References

[1] P.R. Cappello and K. Steiglitz, “Some complexity issues in digi-
tal signal processing,” IEEE Trans. Acoust. Speech Signal Process.,
vol.ASSP-32, no.5, pp.1037–1041, 1984.

[2] D. Pradhan, Fault-tolerant Computer System Design, Prentice Hall,
1996.

[3] B. Johnson, Design and Analysis of Fault-Tolerant Digital Systems,
Addison-Wesley, 1989.

[4] S. Wang, Z. Wen, and L. Yu, “High-performance fault-tolerant
CORDIC processor for space applications,” Proc. International Symp.
on Systems and Control in Aerospace and Astronautics, pp.360–363,
2006.

[5] P.-C. Jui, G.-N. Sung, and C.L. Wey, “Efficient algorithm and hard-
ware implementation of 3N for arithmetic and for radix-8 encodings,”
Proc. IEEE Midwest Symp. on Circuits and Systems, pp.418–421,
Boise, Idaho, Aug. 2012.

[6] N. Gaitanis, “Totally self-checking checker for 3N arithmetic codes,”
Electron. Lett., vol.19, pp.685–686, 1983.

[7] D. Knuth, The Art of Computer Programming: Seminumerical Algo-
rithms, vol.2, Addison-Wesley, 1969.

[8] I. Koren, Computer Arithmetic Algorithms, Prentice-Hall, New Jer-
sey, 1993.

[9] K. Huang, Computer Arithmetic: Principles, Architecture, and De-
sign, John Wiley & Sons, 1979.

WEY et al.: EFFICIENT MULTIPLY-BY-3 AND DIVIDE-BY-3 ALGORITHMS AND THEIR FAST HARDWARE IMPLEMENTATION
623

Chin-Long Wey received his Ph.D. degree
in Electrical Engineering from Texas Tech Uni-
versity, Lubbock, Texas, in 1983. He is cur-
rently the University Distinguished Professor of
Electrical Engineering at National Chiao Tung
University, Hsinchu, Taiwan. He was the Direc-
tor General of the National Chip Implementa-
tion Center (CIC), Hsinchu, Taiwan, in 2007–
2010, and the Dean of College of Electrical
Engineering and Computer Science at National
Central University (NCU) in 2003–2006. He

came to NCU from Michigan State University where he was a tenured full
professor of Electrical and Computer Engineering Department from 1983
to 2003 for 20 years. His research interests include design, testing, and
fault diagnosis of analog/mixed-signal VLSI circuits and systems; digital
circuit design automation; and Battery management systems. He has pub-
lished more than 250 technical journal and conference papers in these areas.
Dr. Wey is a Fellow of the IEEE.

Ping-Chang Jui received her M.S. de-
gree in E.E. of National Cheng-Kung Univer-
sity, Tainan, Taiwan. She is currently work-
ing toward her Ph.D. degree in E.E. at National
Central University, Jhongli, Taiwan. Her re-
search interests include communication systems
and infrastructures; and Technology manage-
ment/strategic development.

Gang-Neng Sung was born in Taiwan
in 1981. He received the B.S. degree in De-
partment of Computer and Communication En-
gineering in National Kaohsiung First Univer-
sity of Science and Technology in 2004, and
the M.S. degree in Department of Electrical En-
gineering in National Sun Yat-Sen University
(NSYSU) in 2006. In 2010, he received the
Ph.D. degree in the Department of Electrical En-
gineering at NSYSU. He is currently working in
the National Chip Implementation Center (CIC),

National Applied Research Laboratories (NARL), Hsinchu, Taiwan. His
recent research interests include VLSI mixed-signal circuit design, low
power design and car electronics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

