
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005 283

A Multisymbol Context-Based Arithmetic Coding
Architecture for MPEG-4 Shape Coding

Kun-Bin Lee, Member, IEEE, Jih-Yiing Lin, and Chein-Wei Jen, Member, IEEE

Abstract—MPEG-4 shape coding comprises context-based
arithmetic encoding (CAE) as its centerpiece. Since the CAE
algorithm has a complicated coding procedure and strong data
dependency, it is hard to exploit its pipeline and parallel facilities.
Furthermore, to encode multiple symbols within one clock cycle,
it needs to overcome the issues of extracting multiple contexts of
these symbols, deriving multiple probabilities from these contexts,
and performing multiple multiplicative range update operations.
This paper presents an efficient pipelined multisymbol CAE
architecture for real-time MPEG-4 shape encoding. The proposed
design is based on the inherent characteristics of binary alpha
blocks as well as the numerical properties of the probabilities
indexed by the contexts, and it is capable of encoding either a singe
symbol or multiple symbols within each clock cycle. To overcome
the aforementioned issues under the consideration of the hardware
cost and the critical path delay, only symbols with a particular set
of contexts are chosen to be processed simultaneously within the
same clock cycle. Theoretical analysis shows that the majority of
symbols have contexts belonging to this particular set, and there-
fore CAE processing can be significantly accelerated. An example
VLSI implementation of proposed architecture that encodes two
symbols within each clock cycle without sacrificing the clock rate
can achieve a speedup of 1.47 in comparison with traditional CAE
architectures. This particular two-symbol design can support
MPEG-4 Main Profile at levels 3 and 4 under extreme and typical
conditions, respectively. When synthesized from Verilog RTL
design by using TSMC 0.35- m 1P4M CMOS technology, the
design can run at 90 MHz.

Index Terms—Context-based arithmetic encoding, MPEG-4,
shape coding.

I. INTRODUCTION

M PEG-4’s object-based scene description allows the
transmission of arbitrarily shaped video objects [1],

[2]. The purpose of using shape is to promote better subjective
picture quality, higher coding efficiency, as well as more user
interaction. These advantages make this standard best suited
for the needs of mobile applications or browsing multimedia
databases on the Internet. Therefore, shape coding can be
widely utilized in various consumer electronics devices, such
as video telephony, personal digital assistants, set-top box, and
video surveillance.

Manuscript received November 24, 2002; revised July 4, 2003. This paper
was recommended by Associate Editor J.-U. Hwang. This work was supported
by the National Science Council of the Republic of China under Contract
NSC-91-2215-E-009-033.

The authors are with the Department of Electronics Engineering,
National Chiao Tung University, Hsinchu, Taiwan 30010, R.O.C.
(e-mail: kblee@twins.ee.nctu.edu.tw; jinlin@twins.ee.nctu.edu.tw;
cwjen@twins.ee.nctu.edu.tw).

Digital Object Identifier 10.1109/TCSVT.2004.841724

Fig. 1. Video object plane. (a) Texture. (b) Binary alpha component of the
video object. (c) The 16� 16 BAB.

The MPEG-4 international standard [1], [2] treats moving
pictures as an organized collection of visual objects and pro-
vides several advanced techniques to access and represent the
moving arbitrarily shaped natural and synthetic objects in video
scenes. As shown in Fig. 1, a video object plane (VOP), which
is the instance of a video object at a given time, is composed
of an alpha component to define the object’s shape [Fig. 1(b)]
and three color components (YCbCr) to render the object’s tex-
ture [Fig. 1(a)]. MPEG-4 video encoding is based on the VOP
encoder shown in Fig. 2. Basically, the VOP is defined as a min-
imum rectangle that can cover the whole object. The size of a
VOP at a given time for a video object depends on the shape
of the video object at that time. That is, the size of the VOP
for a video object is time-variant. For coding of the shape of a
VOP, a bounding rectangle is first created and extended to multi-
ples of 16 16 blocks with extended alpha samples set to zero.
Shape coding is then initiated on a 16 16 block basis; these
blocks are also called binary alpha blocks (BABs), as shown in
Fig. 1(c). The alpha component of a VOP is encoded using a
binary shape encoder while the color components are encoded
using motion estimation and compensation (ME/MC) followed
by DCT-based texture coding.

In an MPEG-4 binary shape encoder, a BAB may be en-
coded in many different ways. If all of the pixels in a BAB
are opaque or transparent, only the coding mode is encoded by
means of a variable-length coder (VLC). In interframe coding,
a BAB can be coded with reference to a suitable prediction
BAB from the previous coded frame. This procedure is called
binary motion estimation (BME). In this case, shape encoder
encodes shape mode and motion vector by using VLC. Apart
from those cases mentioned above, it is generally necessary to
employ context-based arithmetic encoding (CAE) to the pixels
within a BAB. There are two CAE operation modes: one is the
INTRA mode and the other is the INTER mode. INTRA mode
CAE exploits the spatial redundancy by estimating the proba-
bility of the current pixel from its neighboring pixels. As for
INTER mode, temporal redundancy is exploited by estimating

1051-8215/$20.00 © 2005 IEEE

284 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

Fig. 2. General structure of an MPEG-4 VOP encoder.

the probability of the current pixel from its neighboring pixels
and from motion-compensated neighboring pixels of the pre-
vious coded frame.

In intraframe coding, only INTRA mode CAE is performed.
In interframe coding, both INTRA and INTER mode CAE are
performed. In both modes, CAE operation is performed pixel by
pixel in both horizontal and vertical raster scan order. Therefore,
there are total four different coding processes: CAE ,
CAE , CAE , and CAE . At each pixel,
a template is formed. From the template, a context number
is extracted and then used to access a probability table (the
probability that the pixel is zero). The accessed probability
and the value of the pixel are then used to drive an arithmetic
encoder. In intraframe coding, the minimum size of the encoded
bitstream between CAE and CAE is chosen.
Similarly, the minimum size of the encoded bitstream among
CAE , CAE , CAE , and CAE
is chosen in interframe coding. In addition, the shape encoder
may decide to encode subsampled versions (i.e., lossy coding)
of BABs to save encoded bits. If this is the case, then the
subsampling factor is also encoded into the bitstream. The
BAB (subsampled or not) then undergoes CAE. Note that CAE
itself introduces no additional loss. In summary, the MPEG-4
CAE algorithm requires a complex processing procedure and
high-computation multiplicative operation while suffering
severe data dependency.

Similar to MPEG-4’s predecessor, i.e., MPEG-2, ME/MC
and texture coding are usually implemented by using dedicated
hardware accelerators. Dedicated shape coding hardware is also
recommended for higher MPEG-4 profiles and levels due to
its high computing property [3], [4]. On the one hand, it is
shown in [3] that shape encoding for test sequence weather
with 10 frames per second (fps) QCIF (176 144) format re-
quires 201.87 MIPS on an Ultra Sparc 2 workstation. On the
other hand, [4] showed that CAE ranks the second place in and
takes 19.61% of the total computation complexity of shape en-
coding in a typical case of MPEG-4 application, i.e., 30 fps CIF
(352 288) video sequences. Thus, we can roughly estimate
that CAE for test sequence weather with 10 fps QCIF would re-
quire 39.59 MIPS on an Ultra Sparc 2 workstation. Therefore,
a software CAE implementation for 10-fps QCIF format could
be feasible in principle on RISC or DSP platforms. However,
the implementation of higher MPEG-4 profiles and levels on
general purpose processors might not be feasible. For example,

CAE takes, respectively, 475.08 MIPS and 3263.40 MIPS for
30 fps CIF and 1920 1088 (main profile at level 4) video se-
quences, respectively. In addition, the characteristics of bit-level
operation and the strong data dependency of CAE also make it
hard to be optimized in software implementation. Therefore, to
fully utilize the compelling features of MPEG-4 brought about
by shape coding, a dedicated hardware design for CAE is im-
perative.

Several VLSI architectures for the whole MPEG-4 shape
coding have also been presented [4]–[6]. For example, the
whole shape encoder in [6] is set by a main processor through
AMBA AHB bus and synchronized with the processor through
interrupt. As for the hardware shape encoder design in [5],
CAE takes more cycles (1,144 cycles) than full-search BME
(1,072 cycles) in interframe coding. Furthermore, BME is not
performed in intraframe coding. Therefore, CAE takes a major
portion of the execution time in a hardware implementation.
The reason why CAE dominates the performance of hardware
shape encoder is that, although BME dominates the computing
power of the shape encoder, it inherits the good parallelism
property from motion estimation, and this property has already
been well exploited for hardware design. In contrast, the com-
plicated coding procedure and the strong data dependency of
the CAE algorithm make it hard to exploit the pipeline and
parallel facilities of CAE hardware design. Since MPEG-4 will
be used in a variety of consumer electronics devices, such as
video telephony, PDA, and cable boxes, there is a clear need
of a cost-effective CAE VLSI architecture to encode shape
information in real time.

The aforementioned compelling advantages of MPEG-4
shape coding and the awareness of the critical issues in de-
signing high-performance and lost-cost shape encoder motivate
us to explore a cost-effective hardware architecture for CAE.
The contribution of this paper is the innovation of a cost-ef-
fective, high-speed, multisymbol CAE architecture that can
support MPEG-4 main profile at levels 3 and 4 under extreme
and typical conditions, respectively. The designs for important
implementation issues, including data preparation for contexts
of multiple symbols, multiple probabilities lookup for these
contexts, and the calculation of multiple multiplications for
multiplicative arithmetic coding, are also presented.

The rest of this paper is organized as follows. Section II
briefly reviews the related works on the design of arithmetic
encoding. Section III presents a general introduction to the

LEE et al.: A MULTISYMBOL CONTEXT-BASED ARITHMETIC CODING ARCHITECTURE FOR MPEG-4 SHAPE CODING 285

MPEG-4 context-based arithmetic encoding. Section IV ex-
plains the inherent characteristics of BAB and the numerical
properties of the values of probabilities indexed by the contexts.
The design space of multisymbol CAE is also explored in this
section. Based on the information described in Section IV, a
general multiple-symbol CAE architecture is explained first,
and the experiment result of a particular two-symbol CAE
implementation is shown in Section V. Finally, concluding
remarks are given in Section VI.

II. RELATED WORKS

To improve the performance of the arithmetic coding, some
designs focus on the improvement of clock rate of the multipli-
cation-free arithmetic coding [7]–[9], while other designs focus
on parallel-processing multiple symbols within one clock cycle
[11]–[14]. Most parallel designs focus on the improvement of
the multiplication-free arithmetic coder, the Q-Coder [10]. In
the original Q-coder proposed in [10], either a single more prob-
able symbol (MPS) or less probable symbol (LPS) is processed
in one iteration. In [11], Feygin modified Q-coder architecture
by employing loop unrolling and speculative execution of the
inner loop of the arithmetic coding algorithm to achieve either
a single LPS or multiple MPSs coding in one iteration. In [12],
Jiang incorporated multiplication into the Q-coder coding oper-
ation to achieve parallel arithmetic coding. Jiang’s architecture
has a tree-structure processing element (PE) array, and each PE
has its own renormalization operation. Furthermore, Jiang pro-
posed a similar tree-structure parallel design for bilevel images
to encode a group of input symbols within each cycle [13]. For
input symbols with even number , their design requires
PEs with a latency of cycles. In [14], Andra
proposed a modification of the Q-coder by: 1) considering a
two-symbol nonoverlapping window and not coding the second
symbol if both of them are MPSs and 2) moving the majority
of computations to the LPS path. This modification leaded to
a 60%–70% reduction of the additions/subtractions with a loss
of compression ratio about 1%–3% as compared to the original
Q-coder. Andra’s design requires a state machine with 58 states
while the Q-coder requires a state machine with only 30 states.
In addition, the decoder has to make the corresponding changes
to correctly extract the coded information.

In MPEG-4, it is necessary to initialize the arithmetic encoder
prior to encoding the first pixel of each BAB and to flush/termi-
nate it after encoding the last pixel of the BAB. Because these
frequent initializations and terminations of the arithmetic en-
coder are a source of inefficiency, a multiplicative arithmetic
codec was chosen in preference to the less efficient shift-sub-
tract type [15]. As for MPEG-4 CAE hardware design, Chang
[5] proposed the delay line model to improve the context gen-
eration of the design in [16], which employed barrel shifters to
support the coding of subsampled BABs.

The aforementioned multisymbol designs for multiplicative
arithmetic codecs either cause a significant hardware penalty
resulting from employing straightforward loop unrolling and
speculative execution of the inner loop of arithmetic coding al-
gorithm or result in a loss of compression performance and the
corresponding changes being made for the decoder arising from

Fig. 3. (a) Current bordered BAB. (b) Bordered MC BAB.

Fig. 4. Templates for defining context. (a) INTRA template. (b) INTER
template.

invoking the changes in the algorithm. In addition, all of the
above designs do not discuss how to prepare the multiple sym-
bols and contexts for parallel processing. As the number of sym-
bols grows, it becomes increasingly difficult to get input
symbols, to extract contexts, to decide whether or not these
symbols are suitable for parallel processing, and to process them
in parallel with reasonable hardware cost and latency. In this
paper, the above-mentioned challenges of hardware design will
be efficiently resolved without the sacrifice of compression per-
formance. In addition, the theoretical performance analyses of
multisymbol CAE and the effects of renormalization are also re-
vealed.

III. CONTEXT-BASED ARITHMETIC CODING

This section gives a general introduction to the MPEG-4 con-
text-based arithmetic encoding. The procedure for encoding a
given pixel is as follows.

1) A context number is generated based on a template.
2) The probability of the symbol is indexed from a proba-

bility table using the context number.
3) The accessed probability and the value of the symbol are

used to drive an arithmetic encoder.
To compute the context, the neighboring pixels of the symbol

to be coded are used. Therefore, BABs and motion compen-
sation (MC) BABs need to be padded with borders, as shown
in Fig. 3, and the padding procedure can refer to the MPEG-4
Video Verification Model [17]. Fig. 4 shows the templates for
INTRA and INTER CAE mode. The notation of “?” indicates
the symbol to be encoded and is aligned with notation “c6” in
INTER template. A 10-b context is generated
for INTRA CAE mode while a 9-b context is generated in the
same way for INTER CAE mode. The probability table contains
the probabilities for a symbol being equal to zero. All probabil-
ities are normalized to the range [1, 65 525]. Several registers,
symbols, and constants are defined in Table I to further describe
MPEG-4 CAE algorithm.

286 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

Fig. 5. Range update operation.

TABLE I
VARIABLES FOR THE CAE ALGORITHM

Once the indexed probability is derived, it is used to drive an
arithmetic encoder, which consists of range update and renor-
malization stages. The range update stage updates the range ()
and the lower bound () of the interval. The renormalization
stage renormalizes when is smaller than QUARTER. This
stage could also output the encoded bits of the arithmetic coder.
Fig. 5 shows the detailed operations performed in the range up-
date stage. If the input symbol is an LPS, would be updated to
rLPS and would be updated to a new position with an offset
of the range of MPS (rMPS) from . If the input symbol is an
MPS, would be updated to rMPS and would not need to be
updated. According to the MPEG-4 standard, rLPS is computed
as the product of the MSB 16 b of and cLPS. Thus, rMPS is
calculated as R-rLPS.

Fig. 6 shows the operations performed in the renormaliza-
tion stage that renormalization is handled in three situations. In
situation 1, where the interval [,) is within [HALF,
1), the arithmetic encoder needs to update and output one
bit of 1 along with bits-to-follow. In situation 2, where the in-
terval [,) is within [0, HALF), the arithmetic encoder
needs to output one bit of 0 along with bits-to-follow. Other-
wise, renormalization is handled in situation 3 where is up-
dated and the count of bits-to-follow is increased. After the sit-
uation is determined and the corresponding operation is per-
formed, the lower bound and the range need to be enlarged by
two times to complete the renormalization operation. Before en-
coding the next symbol, the renormalization operation is per-
formed iteratively until is no longer less than QUARTER.
The CAE bitstream is generated according to the output bit and

Fig. 6. Renormalization operation.

the value of bits-to-follow, which is the number of the consec-
utive occurrences of situation 3. Then the bitstream contains
bits-to-follow+1 bits that the value of the first bit is the same
as that of the output bit, whereas the value of each remaining
bit is opposite to that of the output bit. For example, when the
output bit is 1 and the value of bits-to-follow is 4, then the output
bitstream would be a 5-b binary code 10 000.

IV. ANALYSIS AND DESIGN SPACE EXPLORATION

To understand the characteristics of BABs and CAE opera-
tions, 11 test sequences listed in Table II are used for the sub-
sequent statistics and analyses. Except for Dancer and Singer,
these test sequences are from the MPEG-4 Video Verification
Model [17]. All test sequences are generated for the core profile
at level two with size conversion disabled and a shape refresh
rate of 1:3. In MPEG-4 Video Verification Model, 8-b data are
used to represent the alpha component of each pixel to indicate
either 0 (opaque) or 255 (transparent). For a hardware design,
the bi-level alpha data can be represented as 1-bit 0 or 1.

A. Multisymbol Context-Based Binary Arithmetic Encoding

Because the performance bottleneck of CAE is its sequen-
tial processing nature, we explore both parallelism and hard-
ware cost to gain an efficient design of multisymbol CAE. As
mentioned in Section II, a multiplicative arithmetic encoding
was chosen in preference to the less efficient shift-subtract type.

LEE et al.: A MULTISYMBOL CONTEXT-BASED ARITHMETIC CODING ARCHITECTURE FOR MPEG-4 SHAPE CODING 287

TABLE II
INFORMATION OF TEST SEQUENCES

Fig. 7. Examples of counting So(n) in INTRA mode.

To minimize the hardware cost and the critical path delay of
the multiplicative operations to achieve the encoding of mul-
tiple symbols within a clock cycle, the design of constant mul-
tipliers is preferred. Therefore, only symbols with a particular
set of context are chosen to be simultaneously encoded. We
denote as a symbol whose context has either all-zero or
all-one bits, as the occurrence of successive with
the same context, and as the total symbol count of ,
i.e., . In addition, represents a
group of successive with the same context and can be
processed simultaneously within the same clock cycle in our
multiple-symbol CAE. Note that and also record
the occurrence and the number of symbols that do not belong to

. Fig. 7 illustrates examples for counting in INTRA
mode. There are nine successive symbols whose contexts have
all-zero bits, thus is increased by one. In the right-hand
side of Fig. 7, there are three successive symbols whose context
has all-one bits and therefore is increased by one. Be-
cause each video object is a rigid body, the neighboring pixels
around the coded symbol tend to be all zero or all one, i.e.,
should tend to appear in clusters, and this kind of situation would
happen to the successive coded symbols. The following statis-
tics also show this point.

Fig. 8 shows the distributions of and for those
test sequences listed in Table II. Although dominates the
occurrence count, has a proportion of 27% only. On the
other hand, the total symbol count of has a proportion
of 73%; this implies that tends to appear in clusters. For a
rough estimation and comparison of CAE performance without

Fig. 8. Distributions of Sc(n) and So(n).

TABLE III
CLPS VALUES FOR S .

considering the renormalization effects and implementation is-
sues, we assume that a baseline CAE can handle one symbol per
clock cycle. Then the distribution of in Fig. 8 implies that
the upper bound performance of a CAE that can handle
per clock cycle is approximately 0.635
cycles/symbol or 1.575 symbols/cycle, compared with a true
two-symbol CAE that has a performance of two symbols/cycle.
As for a CAE that can handle with arbitrary within
one clock cycle, the speedup is about 2.95.

288 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

Fig. 9. Differences of So(n) and Sc(n).

Table III shows the cLPS values for in INTER and
INTRA CAE modes. Binary representation of cLPS is replaced
by signed-digit (SD) code when the cLPS in SD form has fewer
nonzero digits. The mixed representation of cLPS can reduce
the cost of the hardwired constant multipliers. Note that the
values of cLPSs listed in Table III are quite small compared to
those of other cLPSs.

B. Renormalization

As mentioned in Section III, renormalization operations start
when is smaller than QUARTER and must be completed
before the next symbol is encoded. In addition, renormalization
operations for one symbol can be completed within either
one or more clock cycles according to the implementation.
From the statistics of the 11 test sequences, about 6.18% of
coded symbols need to perform renormalizations, and about
0.76% of coded symbols that need to perform renormalizations
belong to . This implies that the renormalization
operations, and thus the renormalization strategies, affect
the performance of proposed multiple-symbol CAE design
quite little. This is reasonable because the values of cLPSs
for are small and thus arithmetic encoder changes
slightly when encoding ’s. Therefore, the renormaliza-
tion occurs rarely when encoding ’s. Assuming that one
iteration of renormalization operation takes one extra clock
cycle to complete the encoding of a symbol and that the total
CAE operation cycles of a BAB is the summation of the total
symbol count and , which is the total cycle counts
for renormalization, then the proportion of , defined
as , is about
10.34% of the total CAE operation cycles.

The differences of and shown in Fig. 9 are com-
puted as

difference of proportion of

proportion of

difference of proportion of

proportion of

where and represent respectively
and with renormalization effect. The negative difference
of implies that has less proportion than .
Since renormalizations occurring at will break one

with into several ’s, the total amount
of ’s with increases. This results in a reduced
proportion of . As illustrated before, renormalizations
seldom occur at , and, even if renormalizations do

occur at , renormalizations break with large
into ’s with smaller ’s most of the time. Therefore,

the renormalization operations have very little effect on the
performance of proposed multiple-symbol CAE design.

C. Design Space Exploration for CAE Coding

To design an efficient multisymbol CAE, three challenges
must be conquered:

• extract multiple contexts of symbols and derive the prob-
abilities of these contexts;

• have the critical path in range update operation;
• achieve intersymbol dependency.

If we handle symbols with all kinds of contexts, we would re-
quire multiple probability generators, e.g., either multiple prob-
ability tables or a multiport probability table, and multiple mul-
tipliers. From the fact that tends to appear in clusters, and
this kind of situation would happen to successive symbols, we
design a multisymbol CAE that can encode , a single

, or a singe non- within one clock cycle. The proposed
architecture significantly improves the performance and reduces
the cost of both multiple probabilities generation and multiple-
symbol range update unit.

Fig. 10 shows the proposed pipelined multisymbol CAE ar-
chitecture. Both bordered current BAB and bordered MC BAB
are stored in the Bordered BAB Buffer, and they can be read out
one row or one column for horizontal or vertical scan, respec-
tively. Context Generator contains two three-line buffers and can
shift the data in the line buffers one or multiple positions to form
the INTRA or INTER templates within one clock cycle. After
completing the coding of one line of symbols, Context Gener-
ator shifts out one line of symbols and reads in another line of
symbols from Bordered BAB Buffer. A single context is fed into
the probability lookup table (PLT) while multiple contexts are
fed into a multiple symbol range update control (MSRUC) unit,
to decide whether these symbols belong to . If there
are symbols belonging to , Context Generator will
shift the data positions, and these symbols will be handled
in multiple-symbol range update (MSRU) unit. Otherwise, the
Context Generator only shifts data one position and only one
symbol will be handled in the range update (RU) unit. In both
cases, when the updated is smaller than QUARTER, renor-
malization operations start in the renormalization (RN) unit.
The major differences between the coding paths of
and non- , i.e., a single or a singe non- , are the
PLT/RU and MSRUC/MSRU.

As shown in Fig. 5, the critical path of updating the range
includes the 16 16 multiplication, one 32-b subtraction, and
one 32-b addition. This is not the case when it happens to en-
code . Since the cLPSs for are small, hardware
implementation for these multiplications is compact. Due to the
small values of these cLPSs and the fact that domi-
nates the total symbol count, it is possible to design a cost-ef-
fective MSRU unit that can encode within one clock
cycle without sacrificing the clock rate.

Before designing a particular MSRU unit, the potential
speedup of different capabilities of the -MSRU unit that han-
dles within one clock cycle is analyzed. In Fig. 11,

LEE et al.: A MULTISYMBOL CONTEXT-BASED ARITHMETIC CODING ARCHITECTURE FOR MPEG-4 SHAPE CODING 289

Fig. 10. Proposed multisymbol CAE architecture.

Fig. 11. Speedup of the multisymbol CAE that handles different numbers of
symbols.

denotes the number of processed by the
-MSRU unit in one clock cycle, and Speedup is defined as

, where and represent,
respectively, the operation clock cycles of the CAE with the RU
unit only and the CAE with both the RU and -MSRU units.
Both and include cycles for renormaliza-
tion operations.

Recall that cLPSs for of INTER CAE are much smaller
than those of INTRA CAE. This implies that the -MSRU unit
would have a simpler architecture for INTER CAE part. There-
fore, it is possible to design an MSRU unit that can handle

for INTER CAE operation and for INTRA
CAE operation to achieve a better performance/cost tradeoff.
As mentioned in Section I, INTRA CAE operation is applied
twice to BABs of intraframe (INTRA BABs) for vertical and
horizontal scans; similarly, INTRA CAE and INTER CAE op-
eration are both applied twice to BABs of interframe (INTER
BABs). Thus, we can estimate the distribution of CAE opera-
tion as follows:

The simulation result of the 11 test sequences shows that the
count of INTER CAE operation has a proportion of about 34%.
Fig. 11 shows the graph of speedup versus the number of sym-
bols an MSRU unit can handle. The curve of INTER represents
the speedup calculated for INTER CAE operation only. Simi-
larly, the curve of INTRA represents the speedup calculated for
INTRA CAE operation only. The curve of TOTAL indicates the
statistics of combined INTER and INTRA CAE operation. Note
that INTER CAE has better speedup than INTRA CAE.

In practical hardware designs, hardware cost and achievable
clock rate are important considerations. Since cLPSs of are
much smaller compared to cLPSs of other symbols, under the
above considerations, it is feasible to add a range update accel-
erator that deals with several within one clock cycle
to the CAE design.

V. DESIGN OF MULTISYMBOL CAE

In this section, we focus on the detailed design of the major
stages of the proposed multisymbol CAE architecture shown in
Fig. 10. The major stages of this pipelined architecture are con-
text generator, PLT/MSRUC, RU/RU2, and RN. The detail of
this part is shown in Fig. 12. For simplicity, we focus on the
explanation of the design of the two-symbol CAE architecture.
However, the architecture can be easily extended to general mul-
tisymbol CAE architecture for MPEG-4 shape coding. Note that
RU2 control and RU2 shown in Fig. 12 correspond to MSRUC
and MSRU shown in Fig. 10, respectively.

In Fig. 12, data in both bab buffer and mcbab buffer can
be read out row by row or column by column for horizontal
or vertical scan, respectively. In the Context Generator stage,
line buffers, bab_lines and mcbab_lines, are used to generate
INTRA and INTER templates. The counter register is used to in-
dicate the position of these templates and to control how the data
in line buffers are shifted. For a two-symbol CAE, this counter
register is updated by one or two to indicate that one or two
symbols have been processed. The bab_end flag is used by the
bitstream generator to indicate the end of a vertical or horizontal
scan of a BAB. In the stage of probability table lookup and RU2
control, proper context is selected according to the CAE mode.
The selected context is then either fed to 1 K entries 16 b prob-
ability table for INTRA mode or to a 512 entries 16 b proba-
bility table for INTER mode. To handle within a clock
cycle, extra pixels context_r are used to decide whether the two
successive symbols, current symbol symbol_c and look-ahead
symbol symbol_r, belong to . Flag cLPS_sel is used to
indicate that all bits of contexts are all zero or all one. There are
three major blocks in the range update stage: RU is the normal
range update unit that handles one symbol at a time, RU2 is the
range update unit that handles two symbols at a time, and RN
deals with renormalization and bits output. All three blocks will

290 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

Fig. 12. Major stages of the proposed pipelined multisymbol CAE architecture.

decide the requirement of renormalization after they complete
the computation of the range. The whole pipelined stages are
stalled when renormalization operation is processing. In the rest
of this section, we will discuss the stall conditions and present
the detailed design for context generation and range update unit.
Although when renormalization occurs, when renormalization
buffer is full, or when the BAB line buffers are not ready, the
CAE kernel pipeline will be stalled, we will discuss the stalled
conditions only caused by renormalization operations.

A. Pipeline Operation

Fig. 13 illustrates the situation when no renormalization oc-
curs among the input symbols. The symbol pairs {S1, S2}, {S3,
S4}, {S5, S6} and {S7, S8} all belong to . The single-
symbol architecture requires 10 cycles to encode these eight
symbols, whereas the two-symbol architecture requires only six
cycles. In this situation, the two-symbol architecture can save
four cycles since there are four occurrences of two successive
symbols belonging to . Fig. 14 shows the pipeline op-
erations under different situations when the renormalizations are
induced by different symbols. In these three situations, only S1
and S2 belong to . In case 2, the renormalization is
induced by S0. In this situation, both single-symbol and two-
symbol architecture take one extra cycle for renormalization.

However, one cycle is saved in the two-symbol architecture due
to the occurrence of S1 and S2.

In case 3, the renormalization is induced by S1. Therefore,
S1 and S2 cannot be encoded within a single cycle even though
both S1 and S2 belong to . In such a situation, the
two-symbol architecture does not have the advantage over the
single-symbol architecture. Note that since the data in the line
buffers would be shifted for two symbols when the RU2 control
block detects two successive symbols belonging to ,
there must be registers to store the symbol and the cLPS of
S2 for the second RU operation on S2. In case 4, S2 induces
the renormalization. Both single- and two-symbol architecture
require one more cycle for the renormalization. However, one
cycle is saved in the two-symbol architecture due to the occur-
rence of S1 and S2.

As evidenced by the statistics illustrated in the previous sec-
tion, renormalization seldom happens to , and its effect
on the performance only causes a little degradation. Together
with the pipeline behavior just mentioned, the two-symbol CAE
architecture can improve the performance most of the time when
encoding two successive symbols that belong to .

B. Context Generation

As mentioned before, one of the challenges to design an ef-
ficient multisymbol CAE is extracting the multiple contexts of

LEE et al.: A MULTISYMBOL CONTEXT-BASED ARITHMETIC CODING ARCHITECTURE FOR MPEG-4 SHAPE CODING 291

Fig. 13. Pipeline operation without renormalization.

the coded symbols. Fig. 15(a) shows the required pixels to gen-
erate two INTRA contexts for symbol and within a clock
cycle. Virtually, this template will be shifted right by one or two
positions respectively through the three line buffers shown in
Fig. 15(b) when one or two symbols are encoded or it will be
kept at the same position when the CAE is stalled or stopped.
These line buffers (LB1, LB2, and LB3) are physically com-
posed of four register chains for the movement of data. The
first three register chains, rc1, rc2, and rc3, are used for border
region, and their connection and control are almost indepen-
dent of the number of symbols to be processed at a time. These
three register chains are simple shift registers with control steps
shown in Table V. Register is somewhat different because it
may receive data from either of rc1 or of rc4. The rest of
registers in these line buffers are mapped as

, , and
to form register chain rc4. Data in rc4 can be shifted either one
or two positions. The control steps of generating contexts for
symbol and are shown in Table IV. At the beginning of
processing a BAB, three top rows of the BAB are loaded into
these line buffers in parallel. After the end of encoding one row
of the BAB, LB1 is loaded with new data again while data in
LB2 and LB3 are already in the right positions. All of these load
and shift controls can be easily implemented using a counter. To
support 4 4 and 8 8 BAB sizes, the roles of , , , and

are replaced by , , , , and , , , and , respec-
tively. Though registers do not contribute much to
the context generation and can be eliminated, we keep them to

TABLE IV
CONTROL STEP FOR THE INTRA TEMPLATE

simplify the transpose design of reading data in either the hori-
zontal or vertical direction from the Bordered BAB Buffer. The
context generation of INTER CAE mode is similar to that of
INTRA CAE mode.

C. Range Update Unit

As shown in Fig. 12, the range update stage includes three
major function units: RU, RU2, and RN. RU shown in Fig. 16(a)
is implemented in a manner quite like the range update operation
introduced in the previous section, except that some stall con-
trols are added. Since RU2 only deals with , it requires
only four different types of constant multiplications with coeffi-
cients shown in Table III. These multiplications are individually
implemented in intra1 CU, intra0 CU, inter0 CU, and inter1 CU
shown in Fig. 16(b), and the complete functionalities of these
CUs are illustrated in Table VI. Since the RU2 deals with two
symbols within one clock cycle, there are two CUs for each CU

292 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

Fig. 14. Pipeline operation with renormalization.

Fig. 15. Context generation for INTRA template.

TABLE V
CONTROL STEP FOR DATA MOVEMENT OF THE BORDER REGION

type. These CUs are implemented in carry-save adder architec-
ture to save area and improve performance. Fig. 17 shows the
implementation of RN. RN determines whether to output a one
bit of 1 (out1) or 0 (out0) and it counts the bits_to_follow ac-
cording to the range and lower bound when renormalizing them.

D. Experiment Result

The whole CAE design contains Bordered BAB Buffer,
Context Generator, probability table and RU2 control block,
range update unit, renormalization buffer, bitstream generator,
bitstream buffer, and registers for control and status of the
whole CAE design. We synthesize the whole CAE design from
20 to 90 MHz with Synopsys using TSMC 0.35- m 1P4M
CMOS technology, the critical path is dominated by RU, and
RU2 takes 9.17%–14.26% of the total area of CAE design. The
renormalization buffer has a gate count of 982 for a size of 9

b 8 entries, 1 b for “code bit” and 8 b for bits_to_follow. In
our current design, instead of using ROM and RAM, all of the
tables are synthesized using combinational circuitry and all of
the buffers are synthesized using registers. The design of these
tables and buffers will be refined in the future.

Table VII shows the average clock cycles of CAE operation
for different architectures. The average cycle is the time required
for one CAE coding process. As mentioned before, two and four
CAE coding processes are required for each BAB in intraframe
and interframe coding, respectively. The bitstream with the min-
imum size of the encoded bitstream of these coding processes
is selected as the final output. The speedup is estimated by di-
viding the average cycles of each type of architecture by that
of proposed architecture with the two-symbol processing fea-
ture. The results of the proposed architecture are derived from
the Verilog simulation with the test sequence of Bream. Note
that the purpose of the proposed architecture with single-symbol

LEE et al.: A MULTISYMBOL CONTEXT-BASED ARITHMETIC CODING ARCHITECTURE FOR MPEG-4 SHAPE CODING 293

Fig. 16. (a) RU implementation. (b) RU2 implementation.

Fig. 17. RN implementation.

processing capability is to demonstrate that the proposed archi-
tecture can run at a higher clock rate than the designs in [5],
[18], [19], while the purpose of the proposed architecture with
two-symbol processing feature is to show that the proposed ar-
chitecture has higher performance in terms of clock cycle count.

Chou’s architecture [18] features its renormalization acceler-
ation by using a lookup table to handle several renormalization
operations within one clock cycle. Chang’s architecture [19],
[5] features its elimination of redundant operations by stopping
CAE operation when the size of the current bitstream of the
vertical scan is larger than that of the horizontal scan. These
features can also be applied to our architecture to achieve fur-
ther improvement. The idea of redundant operation elimination
is to terminate a current coding process when the bitstream size
of the current coding process is larger than that of previous
coding processes. Applying redundant operation elimination
to our two-symbol architecture improves the average clock
cycle count for each coding process from 194.65 to 180.33,
i.e., a 7.83% improvement. The implementation of redundant
operation elimination is simple. This mechanism requires one
comparator for the bitsream size and the control circuit for
terminating the current coding process and enabling the next
coding process. The renomalization acceleration proposed

TABLE VI
FUNCTIONALITIES OF DIFFERENT TYPES OF CU

in [18] is to handle consecutive renormalization processes
within one clock cycle. We have illustrated that the ideal case
of this improvement is 10.34% for single-symbol architec-
ture, discussed in Section IV-B. As for Chou’s architecture,
renomalization acceleration has 4.72% improvement [18].
The implementation of renomalization acceleration is much
more complex than that of redundant operation elimination.
Furthermore, the authors of [18] did not clearly illustrate how
to implement this improvement.

The gate count listed in Table VII contains the CAE major
parts, i.e., context generation, probability lookup, and range up-
date unit. All of these design are synthesized with the same tech-
nology library, i.e., TSMC 0.35- m 1P4M CMOS. Note that the
major parts of the proposed two-symbol architecture require a
12 447 gate count when synthesized at 40 MHz. The maximum
clock rate of Chou’s, Wang’s, and our design are 72.5, 40, and
90 MHz, respectively. The layout and specification of the proto-
typing chip for the whole CAE design are shown in Fig. 18 and
Table VIII, respectively.

VI. CONCLUSION

In this paper, we have presented an efficient architecture
design of multisymbol context-based arithmetic coding for
MPEG-4 shape encoding. The important implementation
issues, including data preparation for contexts of multiple
symbols, multiple probabilities lookup for these contexts, and
the calculation of multiple multiplications for multiplicative
arithmetic coding, were all efficiently resolved in the proposed

294 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

TABLE VII
COMPARISONS AMONG DIFFERENT CAE ARCHITECTURES

Fig. 18. Specification of the prototyping chip.

TABLE VIII
SPECIFICATIONS OF THE PROTOTYPING CHIP

design. The key idea of our design is to exploit the inherent
characteristics of BABs and the numerical properties of the
probabilities indexed by the contexts. Data preparation of
contexts for multiple symbols is efficiently solved by using four
register chains. The design decision that CAE only encodes
multiple symbols with the same context settles the issue of
the generation of multiple probabilities of multiple symbols
at a time and significantly reduces the cost of the probability
table. Furthermore, the choice to encode multiple symbols with
particular contexts greatly reduces the hardware cost and the
required computation time for performing multiple multiplica-
tion operations within each clock cycle.

An example VLSI implementation of the proposed architec-
ture that encodes two symbols within each clock cycle without
sacrificing the clock rate can achieve a speedup of 1.47 in com-
parison with traditional CAE architectures. Under the extreme

condition of encoding each boundary BAB in four coding pro-
cesses (CPs), this two-symbol architecture can support Main
Profile at Level 3 when running at 37.91 MHz (48 600 MB/s

4 CP/MB 195 cycles/CP 37.91 10 cycles/s). To sup-
port Main Profile at Level 4 under similar conditions, the de-
sign has to be able to run at 190.94 MHz. On the other hand, the
simulation statistics over the 11 test sequences listed in Table II
show that 13.9% and 10.2% BABs require two and four coding
processes, respectively. To support MPEG-4 Main Profile at
Level 4 shape encoding based on this criterion, the proposed
two-symbol design has to be able to run at least 65.49 MHz
(489 600 MB/s (2 13.9% 4 10.2%) CP/MB 195
cycles/CP 65.49 10 cycles/s) for real-time MPEG-4 en-
coding. The exact frequency at which the proposed design has
to be able to run depends on the system overhead, such as data
transfer of BABs and synchronization among functional units
for the overall MPEG-4 encoding and other system function-
ality.

The major parts of our design requires a 12 447 gate count
when synthesized at 40 MHz, which is about 108.84% of the
design proposed in [5], [19] and 72.94% of the design proposed
in [18]. That is, the proposed two-symbol architecture has small
area overhead. Note that the proposed architecture also has a
higher maximum clock rate. The aforementioned hardware cost
does not include the buffers. As shown in Fig. 9, the input buffer
of CAE, called the BAB buffer, requires a 10 626 gate count,
while the output buffer, called the bitstream buffer, requires a
6122 gate count. Unlike the major parts of CAE, the area of
these buffers is less sensitive to the operating clock frequency.
That is, the buffers could dominate the hardware cost of CAE.
To have two simpler CAE encoders with single-symbol archi-
tecture, the size of these buffers would be probably two times of
that of the proposed two-symbol architecture. In addition, two

LEE et al.: A MULTISYMBOL CONTEXT-BASED ARITHMETIC CODING ARCHITECTURE FOR MPEG-4 SHAPE CODING 295

simpler single-symbol CAE encoders also require almost two
times the area for the major parts of CAE. Therefore, the pro-
posed design is a cost-effective solution for MPEG-4 Main Pro-
file at Levels 3 and 4.

REFERENCES

[1] “Information Technology — Coding of Audio-Visual Objects,”,
Switzerland, ISO/IEC 14 496–2, 2nd ed., 2001.

[2] N. Brady, “MPEG-4 standardized methods for the compression of arbi-
trarily shaped video objects,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 9, no. 6, pp. 1170–1189, Dec. 1999.

[3] P. M. Kuhn and W. Stechele, “Complexity analysis of the emerging
MPEG-4 standard as a basis for VLSI implementation,” in Proc. SPIE
Vis. Commun. Image Process. (VCIP’98), Jan 1998, pp. 498–509.

[4] D. Gong and Y. He, “Computation complexity analysis and VLSI archi-
tectures of shape coding for MPEG-4,” in Proc. SPIE VCIP’2000, vol.
4067, Jun. 2000, pp. 1459–1470.

[5] H.-C. Chang, Y.-C. Chang, Y.-C. Wang, W.-M. Chao, and L.-G. Chen,
“VLSI architecture design of MPEG-4 shape coding,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 12, no. 9, pp. 741–751, Sep. 2002.

[6] K.-B. Lee, N. Y.-C. Chang, H.-Y. Chin, H.-C. Hsu, and C.-W. Jen,
“Optimal frame memory and data transfer scheme for MPEG-4 shape
coding,” in Proc. IEEE Int. Conf. Consumer Electronics (ICCE), Jun.
17–19, 2003, pp. 164–165.

[7] M. Tarui, M. Oshita, T. Onoye, and I. Shirakawa, “High-speed imple-
mentation of JBLG arithmetic coder,” in Proc. IEEE TENCON, vol. 2,
1999, pp. 1291–1294.

[8] Y.-T. Hsiao, H.-D. Lin, K.-B. Lee, and C.-W. Jen, “High-speed memory-
saving architecture for the embedded block coding in JPEG2000,” in
Proc. Int. Symp. Circuits Syst. (ISCAS’02), vol. 5, Phoenix, AZ, May
2002, pp. 133–136.

[9] K.-K. Ong, W.-H. Chang, Y.-C. Tseng, Y.-S. Lee, and C.-Y. Lee, “A
high throughput low cost context-based adaptive arithmetic codec for
multiple standards,” in Proc. Int. Conf. Image Process., vol. 1, 2002, pp.
872–875.

[10] J. L. Mitchell and W. B. Pennebaker, “Optimal hardware and software
arithmetic coding procedures for the Q-coder,” IBM J. Res. Dev., vol. 32,
no. 6, pp. 727–736, Nov. 1988.

[11] G. Feygin, P. G. Gulak, and P. Chow, “Architectural advances in the
VLSI implementation of arithmetic coding for binary image compres-
sion,” in Proc. Data Compression Conf. (DCC ’94), 1994, pp. 254–263.

[12] J. Jiang and S. Jones, “Parallel design of arithmetic coding,” Proc. Inst.
Elec.t Eng., pt. E, vol. 141, pp. 327–333, Nov. 1994.

[13] J. Jiang, “Parallel design of Q-coders for bilevel image compression,” in
Proc. Int. Conf. Parallel Distributed Syst., 1994, pp. 230–235.

[14] K. Andra, T. Acharya, and C. Chakrabarti, “A multi-bit binary arithmetic
coding technique,” in Proc. Int. Conf. Image Process., vol. 1, Vancouver,
BC, Canada, Sep. 2000, pp. 928–931.

[15] N. Brady, F. Bossen, and N. Murphy, “Context-based arithmetic en-
coding of 2D shape sequences,” in Proc. Int. Conf. Image Process., vol.
I, Santa Barbara, CA, Oct. 1997, pp. 29–32.

[16] D. Gong and Y. He, “An efficient architecture for real-time con-
tent-based arithmetic coding,” in Proc. Int. Symp. Circuits Syst. (ISCAS
2000), vol. 3, Geneva, Switzerland, 2000, pp. 515–518.

[17] “MPEG-4 Video Verification Model Version 18.0,”, ISO/IEC
JTC1/SC29/WG11 N3908, 2001.

[18] H.-L. Chou, “The design and implementation of MPEG-4 shape en-
coding core,” M.S. thesis, National Chiao Tung Univ., Dept. Electron.
Eng., Hsinchu, Taiwan, 2001.

[19] Y.-C. Wang, “Architecture design and implementation of MPEG-4 shape
coding,” M.S. thesis, National Taiwan Univ., Dept. Elect. Eng., Taipei,
Taiwan, 2001.

Kun-Bin Lee (S’02–M’05) received the B.S. degree
in electrical engineering from National Sun Yat-Sen
University, Kaohsiung, Taiwan, in 1996 and the M.S.
degree in electronics engineering from National
Chiao-Tung University, Hsinchu, Taiwan, in 1998,
where he is currently working toward the Ph.D.
degree in electronics engineering.

His current research interests include processor ar-
chitecture, digital signal processing, and system-level
exploration with focus on data transfer optimization
and memory management for image and video appli-

cations.
Mr. Lee is a member of Phi Tau Phi.

Jih-Yiing Lin received the B.S. degree in electrical
engineering and the M.S. degree in electronics
engineering from National Chiao-Tung University,
Hsinchu, Taiwan, in 2000 and 2002, respectively.

She is currently with Sunplus Technology,
Hsinchu. Her research interests include video signal
processing, VLSI design, computer architecture, and
system-level design methodology.

Ms. Lin is a member of Phi Tau Phi.

Chein-Wei Jen (S’78–M’84) received the B.S. de-
gree from National Chiao-Tung University, Hsinchu,
Taiwan, in 1970, the M.S. degree from Stanford Uni-
versity, Stanford, CA, in 1977, and the Ph.D. degree
from National Chaio-Tung University in 1983.

He is currently with the Department of Elec-
tronics Engineering and Institute of Electronics,
National Chiao Tung University, Hsinchu, Taiwan,
as a Professor. During 1985–1986, he was with the
University of Southern California, Los Angeles, as
a Visiting Researcher. His current research interests

include VLSI design, digital signal processing, processor architecture, and
design automation.

Dr. Jen is a member of Phi Tau Phi.

	toc
	A Multisymbol Context-Based Arithmetic Coding Architecture for M
	Kun-Bin Lee, Member, IEEE, Jih-Yiing Lin, and Chein-Wei Jen, Mem
	I. I NTRODUCTION

	Fig.€1. Video object plane. (a) Texture. (b) Binary alpha compon
	Fig.€2. General structure of an MPEG-4 VOP encoder.
	II. R ELATED W ORKS

	Fig.€3. (a) Current bordered BAB. (b) Bordered MC BAB.
	Fig.€4. Templates for defining context. (a) INTRA template. (b)
	III. C ONTEXT -B ASED A RITHMETIC C ODING

	Fig.€5. Range update operation.
	TABLE I V ARIABLES FOR the CAE A LGORITHM
	Fig.€6. Renormalization operation.
	IV. A NALYSIS AND D ESIGN S PACE E XPLORATION
	A. Multisymbol Context-Based Binary Arithmetic Encoding

	TABLE II I NFORMATION OF T EST S EQUENCES
	Fig.€7. Examples of counting $So(n)$ in INTRA mode.
	Fig.€8. Distributions of $Sc(n)$ and $So(n)$.
	TABLE III C LPS V ALUES FOR S_{T0} .
	Fig.€9. Differences of $So(n)$ and $Sc(n)$.
	B. Renormalization
	C. Design Space Exploration for CAE Coding

	Fig.€10. Proposed multisymbol CAE architecture.
	Fig.€11. Speedup of the multisymbol CAE that handles different n
	V. D ESIGN OF M ULTIsYMBOL CAE

	Fig.€12. Major stages of the proposed pipelined multisymbol CAE
	A. Pipeline Operation
	B. Context Generation

	Fig.€13. Pipeline operation without renormalization.
	TABLE IV C ONTROL S TEP FOR THE INTRA T EMPLATE
	C. Range Update Unit

	Fig.€14. Pipeline operation with renormalization.
	Fig.€15. Context generation for INTRA template.
	TABLE V C ONTROL S TEP FOR D ATA M OVEMENT OF THE B ORDER R EGIO
	D. Experiment Result

	Fig.€16. (a) RU implementation. (b) RU2 implementation.
	Fig.€17. RN implementation.
	TABLE VI F UNCTIONALITIES OF D IFFERENT T YPES OF CU
	VI. C ONCLUSION

	TABLE VII C OMPARISONS A MONG D IFFERENT CAE A RCHITECTURES
	Fig.€18. Specification of the prototyping chip.
	TABLE VIII S PECIFICATIONs OF THE P ROTOTYPING C HIP
	Information Technology Coding of Audio-Visual Objects,, Switzerl
	N. Brady, MPEG-4 standardized methods for the compression of arb
	P. M. Kuhn and W. Stechele, Complexity analysis of the emerging
	D. Gong and Y. He, Computation complexity analysis and VLSI arch
	H.-C. Chang, Y.-C. Chang, Y.-C. Wang, W.-M. Chao, and L.-G. Chen
	K.-B. Lee, N. Y.-C. Chang, H.-Y. Chin, H.-C. Hsu, and C.-W. Jen,
	M. Tarui, M. Oshita, T. Onoye, and I. Shirakawa, High-speed impl
	Y.-T. Hsiao, H.-D. Lin, K.-B. Lee, and C.-W. Jen, High-speed mem
	K.-K. Ong, W.-H. Chang, Y.-C. Tseng, Y.-S. Lee, and C.-Y. Lee, A
	J. L. Mitchell and W. B. Pennebaker, Optimal hardware and softwa
	G. Feygin, P. G. Gulak, and P. Chow, Architectural advances in t
	J. Jiang and S. Jones, Parallel design of arithmetic coding, Pro
	J. Jiang, Parallel design of Q-coders for bilevel image compress
	K. Andra, T. Acharya, and C. Chakrabarti, A multi-bit binary ari
	N. Brady, F. Bossen, and N. Murphy, Context-based arithmetic enc
	D. Gong and Y. He, An efficient architecture for real-time conte

	MPEG-4 Video Verification Model Version 18.0,, ISO/IEC JTC1/SC29
	H.-L. Chou, The design and implementation of MPEG-4 shape encodi
	Y.-C. Wang, Architecture design and implementation of MPEG-4 sha

