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Abstract. Until now, decomposition of abundance-sensitive gamma (regional) phylogenetic 

diversity measures into alpha and beta (within- and between-group) components has been based 

on an additive partitioning of phylogenetic generalized entropies, especially Rao’s quadratic 

entropy. This additive approach led to a phylogenetic measure of differentiation between 

assemblages, (gamma−alpha)/gamma. We show both empirically and theoretically that this 

approach inherits all of the problems recently identified in the additive partitioning of non-

phylogenetic generalized entropies. When within-assemblage (alpha) quadratic entropy is high, 

the additive beta and the differentiation measure (gamma−alpha)/gamma always tend to zero 

(implying no differentiation) regardless of phylogenetic structures and differences in species 

abundances across assemblages. Likewise the differentiation measure based on the phylogenetic 

generalization of Shannon entropy always approaches zero whenever gamma phylogenetic 

entropy is high. Such critical flaws, inherited from their non-phylogenetic parent measures (Gini-

Simpson index and Shannon entropy respectively), have caused interpretational problems. These 

flaws arise because phylogenetic generalized entropies do not obey the Replication Principle, 

which ensures the diversity measures are linear with respect to species addition or group pooling. 

Furthermore, their complete partitioning into independent components is not additive (except for 

phylogenetic entropy). Just as in the non-phylogenetic case, these interpretational problems are 

resolved by using phylogenetic Hill numbers that obey the Replication Principle. Here we show 

how to partition the phylogenetic gamma diversity based on Hill numbers into independent alpha 

and beta components, which turn out to be multiplicative. The resulting phylogenetic beta 

diversity (ratio of gamma to alpha) measures the effective number of completely 

phylogenetically distinct assemblages. This beta component measures pure differentiation among 

assemblages and thus can be used to construct several classes of similarity or differentiation 
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measures normalized onto the range [0, 1]. We also propose a normalization to fix the traditional 

additive phylogenetic similarity and differentiation measures, and show that this yields the same 

similarity and differentiation measures we derived from multiplicative phylogenetic diversity 

partitioning. We thus can achieve a consensus on phylogenetic similarity and differentiation 

measures, including N-assemblage phylogenetic generalizations of the classic Jaccard, Sørensen, 

Horn and Morisita-Horn measures. Hypothetical and real examples are used for illustration.  

Key words: beta diversity; differentiation; Hill numbers; phylogenetic entropy; phylogenetic 

diversity; quadratic entropy; replication principle; similarity. 

 

INTRODUCTION  

Measures of beta diversity, similarity, and differentiation are basic tools of ecological 

analyses (Magurran 2004, Magurran and McGill 2011). Most of these measures assume that all 

species are equally distinct, ignoring phylogenetic and functional differences between them. 

These measures hide the evolutionary dimension of assemblages. For example, these measures 

would show a maximal level of differentiation between the primate assemblages of Amazonia 

and Pacific South America, because these assemblages share no species. These measures would 

show the same high level of differentiation between the Amazonian and Madagascaran primate 

assemblages, since these also share no species. Yet the first pair of assemblages share most 

genera and all subfamilies, and are derived from a relatively recent common ancestor, while the 

Amazonian/Madascaran pair of assemblages share no genera or subfamilies, and have been on 

separate evolutionary paths for a much longer time. The phylogenetic depth of the differentiation 

between assemblages is obviously important for ecology, conservation biology, evolutionary 

theories of community assembly, and genetics. McPeek and Miller (1996), Webb (2000), Ricotta 
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(2005a), Webb et al. (2006), Lozupone et al. (2007), Barcaro et al. (2007), Ferrier et al. (2007), 

Hardy and Senterre (2007), Bryant et al. (2008), Graham and Fine (2008), Faith et al. (2009), 

Pavoine et al. (2009), de Bello et al. (2010), Mouchet and Mouillot (2011), Weiher (2011) and 

Cavender-Bares et al. (2012) among others, have recognized the need for measures of 

phylogenetic differentiation which capture this depth of separation between groups, to answer 

evolutionary and ecological questions and to guide conservation policy. Such measures would be 

especially useful now that differences between species can be objectively quantified in the form 

of well-supported phylogenetic trees (Faith 1992, Warwick and Clarke 1995, Crozier 1997, 

Webb 2000, Pavoine et al. 2010, Ives and Helmus 2010 among others) or functional trees 

(Tillman 2001, Petchey and Gaston 2002, Weiher 2011 among others). Three special issues in 

Ecology featured a series of papers on integrating ecology and phylogenetics; see  McPeek and 

Miller (1996), Webb et al. (2006), and Cavender-Bares et al. (2012) and papers in each issue.  

Most previous phylogenetic similarity and differentiation measures were based on 

phylogenetic diversity indices such as Faith’s widely used total branch length measure  (Faith 

1992), phylogenetic entropy (Allen et al. 2009), and Rao’s quadratic entropy (Rao 1982), unified 

by Pavoine et al (2009) into a family of phylogenetic generalized entropies. These are 

generalizations of their non-phylogenetic counterparts, species richness, Shannon entropy, Gini-

Simpson index, and generalized entropies respectively. Phylogenetic differentiation measures 

were obtained from these phylogenetic generalized entropies by additively partitioning them into 

within- and between-group (alpha and beta) components (Ricotta 2005b, Hardy and Senterre 

2007, Pavoine et al. 2009, Mouchet and Mouillot 2011), following the traditional additive 

approach that had been applied to their non-phylogenetic counterparts (Lande 1996, Veech et al. 

2002).  The mean within-group or alpha value was subtracted from the regional or gamma value 
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(the value for the pooled groups), and the resulting “beta” value, or its complement, was 

normalized by dividing by the gamma value. This was supposed to produce a normalized 

measure of differentiation or similarity. 

Recently, however, researchers have discovered serious interpretational problems with this  

traditional additive partitioning approach when diversity is equated with Shannon entropy, the 

Gini-Simpson index, or most other generalized entropies (Jost 2006, 2007, Jost et al. 2010, 

Ellison 2010 and the Forum that follows it). The main measure of similarity in the additive 

approach, alpha/gamma, does not actually quantify the compositional similarity of the 

assemblages under study. This ratio can be arbitrarily close to unity (supposedly indicating high 

similarity) even when the assemblages being compared have no species in common. This 

problem arises because Shannon entropy, the Gini-Simpson index, and other generalized 

entropies do not satisfy the Replication Principle (Jost 2007) which we discuss in Hill numbers 

obey the Replication Principle. The phylogenetic generalizations of these measures likewise do 

not obey the Replication Principle, so they inherit this fundamental problem with the 

interpretation of the ratio alpha/gamma. The widely-used Rao’s quadratic entropy suffers from 

another problem: just like the Gini-Simpson index, Rao’s quadratic entropy is non-additive (it 

cannot be decomposed into the sum of independent within- and between-group components), so 

imposing an additive framework on it will produce a measure of “beta” that is confounded with 

within-group diversity (equivalently, with total diversity). As diversity increases, all these 

traditional abundance-sensitive differentiation measures approach fixed values independent of 

tree structure or differences in species abundances between assemblages, so they cease to be 

biologically informative. We prove all these points below, and illustrate them with examples.  
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The solution, just as in the non-phylogenetic case, is to convert the phylogenetic generalized 

entropies into phylogenetic Hill numbers, which do obey the Replication Principle. This has been 

done recently by Chao et al. (2010), Leinster and Cobbold (2012), and Scheiner (2012). We 

concentrate on Chao et al’s mean phylogenetic diversity (described in the next section) because 

this measure can be directly applied to diversity decomposition. Many previous measures of 

phylogenetic diversity (e.g. Rao 1982, Faith 1992, Allen et al. 2009, Pavoine et al. 2009, Ricotta 

and Szeidl 2009, de Bello et al. 2010) turn out to be special cases or simple transformations of 

this mean phylogenetic diversity. Jost (2007) derived a partitioning method to decompose Hill 

numbers into independent components. Here we modify his approach to a more general 

framework and derive a new alpha formula. We use this more general framework to obtain 

phylogenetic generalizations of alpha and beta diversity, and new phylogenetic generalizations of 

existing non-phylogenetic similarity and differentiation measures, such as the Jaccard, Sørensen, 

Horn and Morisita-Horn similarity indices (Morisita 1959, Horn 1966) and CqN overlap measures 

(Chao et al. 2008, 2012). We also show that some of the previous phylogenetic differentiation 

measures can be corrected by normalization to remove their dependency on the alpha value (or 

gamma value), and these normalized measures turn out to be identical to the phylogenetic 

generalizations of the overlap measures that we derive from partitioning phylogenetic Hill 

numbers. Thus a consensus can be reached about measures of beta diversity, similarity, and 

differentiation which incorporates the information contained in a phylogenetic tree.  

PHYLOGENETIC GENERALIZATIONS OF ENTROPIES AND HILL NUMBERS 

Generalized entropy 

In order to understand the problems of previous phylogenetic diversity and differentiation 

measures, it is helpful to first understand the corresponding problems of non-phylogenetic 
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generalized entropy measures. There are many families of generalized entropies. The generalized 

entropy most often used in ecology is the so-called Tsallis entropy:  
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where S ≥ 1 is the number of species in the assemblage and pi  is the relative abundance of the ith 

species, with i = 1, 2, …, S (Havrda and Charvat 1967, Daróczy 1970, Tsallis 1988, Keylock 

2005). When q = 0, qH becomes S−1; When q tends to 1, qH tends to Shannon entropy 

∑ =−= S
i ii ppH 1

1 log . When q = 2, qH  reduces to the Gini-Simpson index ∑ =−= S
i ipH 1

22 1 . The 

parameter q controls the sensitivity to species abundances. The measure with q > 1 is 

disproportionately sensitive to the abundant species, the measure with 0 ≤ q < 1 is 

disproportionately sensitive to the rare species, and the measure with q = 1 weighs all species by 

their frequency, without favoring either common or rare species. This interpretation of the order 

q is applicable to all families of measures discussed in this paper.  

Jost (2006, 2007, 2010) and Jost et al. (2010) show that these measures have caused 

interpretational problems when equated with diversity. The changes in their magnitudes (for q > 

0) are not linear with respect to species addition. Also, as mentioned in Introduction, the ratio of 

alpha to gamma generalized entropies does not measure compositional similarity of the 

assemblages, and their partitioning is not additive (except when q=1).  

Phylogenetic generalized entropy 

Pielou (1975) was the first to notice that the concept of diversity could be broadened to 

consider differences among species. The earliest taxonomic diversity measure is the cladistic 

diversity (CD), which is defined as the total number of nodes in a taxonomic tree that 

encompasses all of the species in the assemblage (Vane-Wright et al. 1991). A more informative 
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measure is Faith’s PD (Faith 1992) which measures total branch length arising from the root 

node. In both CD and PD, species abundances are not considered.  

Rao’s quadratic entropy was the first diversity measure that accounted for both phylogeny 

and species abundances (Rao 1982): 

                                                            
∑=

ji
jiij ppdQ

,
, (2a) 

where dij denotes the phylogenetic distance (in years since divergence, number of DNA base 

changes, or other metric) between species i and j. It is an extension of the Gini-Simpson index, 

and reduces to it in the special case of no phylogenetic structure (all species are equally related to 

one another), dii = 0 and dij = 1 (i ≠ j). The phylogenetic entropy Hp extends Shannon entropy to 

incorporate phylogenetic distances among species (Allen et al. 2009): 

 ∑−=
i

iiiP aaLH log , (2b) 

where the summation is over all branches of a rooted phylogenetic tree, Li is the length of Branch 

i, and ai denotes the summed relative abundance of all species descended from Branch i.  

For ultrametric trees, Pavoine et al. (2009) showed that Faith’s PD, Allen et al.’s Hp, and 

Rao’s Q can be united into a single parametric family of phylogenetic generalized entropies: 

qI(T) = (T − ∑∈ Ti
q
ii aLB )/ (q −1). (2c) 

Here, BT is the set of all branches in the time interval [−T, 0], Li and ai are defined in Eq. 2b. 

Pavoine et al (2009) only considered T equal to the age of the root of the phylogenetic tree. For 

notational consistency with Hill numbers and for comparison with our phylogenetic measure 

described below, which allow arbitrary values of T, we use the notation qI(T) instead of the 

original notation Iq used in Pavoine et al. (2009). 
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This phylogenetic generalized entropy has a simple interpretation in terms of ordinary non-

phylogenetic generalized entropies qH (Eq. 1). We can slice an ultrametric phylogenetic tree at 

any time t (see Chao et al. 2010, their Fig. 1 for details), and from this perspective at time t, we 

can look at how the individuals in the assemblage are grouped into taxa. From the perspective of 

time t, the number of distinct taxa in the present assemblage is the number of branch cuts at time 

t, and the relative importance of each of these virtual taxa in the present-day assemblage is the 

sum of the relative abundances of the branch’s descendants in the present-day assemblage. The 

ordinary non-phylogenetic generalized entropy qH can be calculated for each slice, using these 

relative importance values as the relative abundances pi. These ordinary generalized entropies 

can be integrated over time, from the base of the tree (time = −T, not necessarily the root) to its 

tips (the present time). Since the generalized entropies are constant in any interval of time that 

contains no nodes, it will be easy to integrate if we divide the tree into M intervals, with each 

node defining an interval boundary, so that intervals have no internal nodes. The interval 

boundaries, which are the node ages, are labelled {t0, ..., tk, ..., tM}, starting at the most basal 

interval (so that t0 = −T, and tM = 0); see Appendix A for an example. Then the integral simplifies 

to a simple sum of the ordinary generalized entropies ( k
qH , k = 1, 2, .., M) in the M intervals, 

weighted by the duration of that interval. This sum is:  
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which is equivalent to Eq. 2c. In order to be consistent with our own measures and the graphs in 

our examples, we reverse the ordering of the intervals used by Pavoine et al. (2009), who 

indexed the intervals from tips to root.  If T is chosen as the age of the root node of the tree, then 

0I(T) = Faith’s PD minus the tree height; 1I(T) is identical to Allen et al.’s entropy Hp; and 2I(T) 

is identical to Rao’s quadratic entropy Q. In the special case of M = 1 (all lineages are 
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completely distinct, i.e., there are no internal nodes) and T = 1, the phylogenetic generalized 

entropy reduces to the classical generalized entropy defined in Eq. 1 with species relative 

abundances {p1, p2, …, pS} as the tip-node relative abundances.  

Hill numbers obey the Replication Principle 

Hill (1973) proposed a class of diversity measures called “Hill numbers”, or “effective 

number of species”, defined for q ≠ 1 as 

                                                    
)1(/1
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The parameter q determines the sensitivity of the measure to the species abundances. When q = 

0, the abundances of individual species do not contribute; only presences are counted, so that 0D 

is simply species richness. Equation 3 is undefined for q = 1, but its limit as q tends to 1 is the 

exponential of Shannon entropy, i.e., )exp(11 HD = . 1D weighs species in proportion to their 

frequency. When q = 2, 2D is the inverse Simpson concentration and places more weight on the 

frequencies of abundant species and discounts rare species. Investigators should at least report 

the diversity for all species (q = 0), the typical species (q =1), and the dominant species (q = 2).  

All Hill numbers are in units of “species”. It is thus possible to plot them on a single graph 

as a continuous function of the parameter q. A complete characterization of the species diversity 

of an assemblage with S species and relative abundances ),...,,( 21 Sppp is conveyed by a 

diversity profile – a plot of Dq  versus q – from q = 0 to q = 4 or 5 (beyond this it changes little); 

see Tóthmérész (1995). An example of a diversity profile is shown in Appendix B. Although Hill 

numbers for q < 0 can be calculated, they are dominated by the frequencies of rare species and 

have poor statistical sampling properties. We thus restrict ourselves to the case q ≥ 0 throughout 

the paper.  
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Hill numbers differ fundamentally from generalized entropies in that they are linear with 

respect to species addition or group pooling. That is, they obey the Replication Principle: when N 

completely distinct assemblages with identical diversities of order q are pooled in equal 

proportions, the diversity of the pooled assemblage is N times the diversity of any single 

assemblage. The N completely distinct assemblages may have different relative abundances (and, 

for q > 0, they can even have different numbers of species). See Appendix B for proof. This 

property is the strong Replication Principle (a weaker one was proven by Hill 1973). Because 

Hill numbers obey this Replication Principle, changes in their magnitude have simple 

interpretations, and the ratio of alpha diversity to gamma diversity accurately reflects the 

similarity of the assemblages.  

Phylogenetic Hill numbers 

Since generalized entropies do not obey the Replication Principle, neither do their 

phylogenetic generalizations. This can be solved by transforming them into Hill numbers, which 

obey the replication principle. Chao et al. (2010) generalized Hill numbers to take phylogenies 

into account for all values of q. Define BT, Li and ai as in Eqs. 2b and 2c, Chao et al. (2010) 

derived the mean phylogenetic diversity for the interval [−T, 0] (or mean diversity over T years) 

as 
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It is interpreted as the effective number of completely distinct lineages (no shared lineages) 

during the time interval from T years ago to the present. 
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This mean diversity is invariant to the units used to measure branch lengths. There is a 

simple relationship between our measures and Rao’s quadratic entropy Q: )/1/(1)(
2

TQTD −= , 

and likewise between our measure and Allen’s phylogenetic entropy Hp : )/exp()(
1

THTD p= . 

See Chao et al. (2010) for a proof. When lineages are completely distinct over the time interval 

[−T, 0] (so that all branch lengths are equal to T and thus all lineages are equally distinct), the 

mean diversity )(TDq  reduces to the non-phylogenetic Hill numbers qD ∑ −= i
qq

ia )1/(1)( . This 

includes the special case when T tends to zero, which means that we ignore phylogeny and only 

consider the present-day assemblage.  

The branch or phylogenetic diversity  qPD(T) of order q during the time interval from T 

years ago to the present is defined as the product of )(TD
q

 and T . That is, qPD(T) = T × )(TDq , 

which quantifies the amount of evolutionary “work” done on the system over the interval [−T, 0], 

or the effective number of lineage-years (or other tree units) contained in the tree on the interval 

[−T, 0]. If q = 0, 0PD(T) reduces to Faith’s phylogenetic diversity, regardless of abundances. 

Two types of profiles completely characterize phylogenetic diversity. (1) A diversity profile is 

obtained by plotting qPD(T) or )(TD
q

 as functions of T for q = 0, 1, and 2; see Fig. B2 

(Appendix B) or Chao et al. (2010, their Fig. 3) for examples. (2) The other type of diversity 

profile is obtained by plotting qPD(T) or )(TD
q

 as a function of order q, for a selected value of 

temporal perspective T. See Fig. B3 (Appendix B) for examples.  

In many applications, the measure of evolutionary work is based on the number of 

nucleotide base changes at a selected locus, or the amount of functional or morphological 

differentiation from a common ancestor. In these cases, the lengths from tips to the root of the 

phylogenetic tree are not necessarily all equally long, so the tree is not ultrametric. In these cases 
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the time parameter T should be replaced by T , the weighted arithmetic mean of the distances 

from the tree base to each of the terminal branch tips (i.e., the mean evolutionary change per 

species over the interval of interest): ∑ ∈=
Ti ii aLT B . In other words, T is the mean tree height. 

Here TB  denotes the set of branches connecting the chosen tree base to all the branch tips 

(species) in the assemblage. See Fig. 1 in Chao et al. (2010) for an illustrative example. As 

shown by Chao et al. (2010), the mean phylogenetic diversity and branch diversity for a non-

ultrametric assemblage have the same form as those for an ultrametric tree, except that T must be 

replaced by the mean tree height  T  (if abundance data are available so that it can be obtained). 

Therefore, if the diversity of a non-ultrametric assemblage is z, then its diversity is the same as 

the diversity of an ultrametric assemblage consisting of z equally abundant and completely 

distinct lineages all with branch length T . Although our derivation and presentation for the rest 

of the paper are focused on ultrametric trees, all results and conclusions for our proposed 

measures are also valid for non-ultrametric trees if  T  is substituted for T . 

Unlike previous phylogenetic diversity measures developed in the literature, the mean 

diversity and the amount of evolutionary work done on the assemblage depend explicitly on T, 

the temporal perspective of the investigator. However the time T does not need to be the age of 

the oldest node; it may be less (though this would throw away phylogenetic information and 

would rarely be done) or it may be greater than the age of the root node. Often, the most 

appropriate and least arbitrary choice is the divergence time between the group under study and 

its nearest outgroup; the sampling protocol (for example, the decision to keep orchids but not 

other families) uniquely determines this number. This contrasts with the traditional approach 

using the root node as the reference point. In that approach, the age of the root node can depend 

on the vagaries of sampling success, so the traditional phylogenetic measures will often change 
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with sampling effort, and cannot be directly compared between studies. Diversities of different 

assemblages should generally be compared using the same T for all of them. It is easy to convert 

results to different T values; see Discussion.   

Phylogenetic Hill numbers obey the Replication Principle 

The Replication Principle for Hill numbers can be generalized to phylogenetic diversity in 

the following sense: when we combine N equally weighted, completely phylogenetically distinct 

assemblages (no lineages shared among assemblages in the interval [−T , 0]; see Fig. 1), each 

with the same mean diversity )(TD
q

= X in the time interval [−T, 0], the pooled assemblages 

must have mean diversity )(TD
q

 = N × X.  Also, the amount of evolutionary work qPD(T) done 

on the pooled assemblages is N times the amount of evolutionary work done on a single 

assemblage. The same temporal perspective T (or for non-ultrametric trees, the same mean 

quantity T ) must be used for all N assemblages, but they may have different numbers of species 

and totally different tree structures. Most previous phylogenetic diversity measures do not obey 

the Replication Principle, but the phylogenetic Hill numbers proposed here do obey it. See 

Appendix B or Chao et al. (2010) for proofs. This intuitive property sets our phylogenetic 

diversity measures apart from the phylogenetic generalized entropy measures.  

(Figure 1 is about here) 

PARTITIONING HILL NUMBERS AND THEIR PHYLOGENETIC GENERALIZATIONS 

INTO ALPHA AND BETA COMPONENTS 

Partitioning Hill numbers into alpha and beta components 

The formulas for alpha, beta, and gamma depend on the question under investigation. We 

consider a fixed set of N assemblages. The total diversity of the pooled assemblage (gamma 

diversity) can be decomposed multiplicatively into independent alpha and beta components. 
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Assume that there are S species in the pooled assemblages. Let yij ≥ 0 denote any measure of 

species importance of the ith species in the jth assemblage, i = 1, 2, …, S, j = 1, 2, …, N. 

Throughout the paper, we will refer to yij as measures of “abundance”. They can be absolute 

abundances, relative abundances, incidence, or any other importance measure (e.g., biomass, 

coverage of plants or corals, basal area of plants). Any transformation of the above measures can 

also be used for yij; see Lengendre and Legendre (2012) for various transformations. Our goal is 

to quantify the species-by-species resemblance or differentiation of the N sets of abundances, 

),,...,,( 21 Sjjj yyy j = 1, 2, …, N. 

Let ∑ ∑= =++ = S
i

N
j ijyy 1 1  be the total abundance in the region, and let ∑ =+ = S

i ijj yy 1 be the 

assemblage size of the jth assemblage. In order to link to our approach to previous work in the 

literature, we first re-express the value yij as  
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where jijij yyp += /  is the relative abundance of the ith species in the jth assemblage, 

+++= yyw jj /  (relative assemblage size or the weight of the jth assemblage), with ∑ = =N
j jw1 1 . 

Thus comparing the N sets of vectors ,,...,2,1),,...,,( 21 Njyyy Sjjj =  is equivalent to comparing 

the N sets of vectors Njpwpwpw Sjjjjjj ,...,2,1),,...,,( 21 = . If our goal is to compare the N sets 

of relative abundance vectors Njppp Sjjj ,...,2,1),,...,,( 21 = , we can simply define yij to be the 

species relative abundance in the jth assemblage. In this special case, Nyy j == +++ ,1 , then 

assemblage weight naturally becomes 1/N, an equal-weight case. 

For the gamma diversity, we simply pool species abundances over assemblages, and let 

ij
N
ji yy ∑ =+ = 1  ∑ =++= N

j ijj pwy 1  be the total value of the ith species in the region. The gamma 
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diversity of order q is the Hill number based on the relative abundance ∑ =+++ == N
j ijjii pwyyp 1/  

in the pooled assemblage (Routledge 1979, Jost 2006, 2007):  
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When q tends to 1, we have 
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In Appendix C, we derive the following new formula for alpha diversity, which is 

interpreted as “the effective number of species per assemblage”:  
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The formula when q tends to 1 is 
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For any arbitrary weights, our gamma is always greater than or equal to the alpha for all orders q 

≥ 0. The beta component is αγβ DDD qqq /= , which is always between unity (when all 

assemblages are identical in species absolute abundances) and N (when the N assemblages have 

no species in common); see Appendix C for proofs. The beta diversity can be interpreted as the 

effective number of completely distinct assemblages in the region (i.e., assemblage diversity).  
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Routledge (1979) and Jost (2007) each derived a mathematical formula for alpha diversity. 

For equal-weight case, all the three alpha formulas are identical. They differ, however, when 

assemblage weights are not equal due to different assumptions used in deriving each alpha 

formula. These three alpha formulas will be compared elsewhere. Previous approaches on alpha 

diversity led to a beta that can only be used to produce differentiation measures to compare 

species relative abundances, but not absolute abundances. Our approach expand the conventional 

concept of alpha so that beta can quantify the differentiation among N sets of vectors 

),,...,,( 21 Sjjj yyy  j = 1, 2, …, N for any measure of species importance yij, including absolute 

abundances. See Appendix C for the mathematical properties of our proposed new alpha and 

beta diversities.  

Our alpha component is independent of beta and contains only the within-group information, 

and the beta component contains only the between-group information. Neither component, taken 

by itself, imposes any mathematical constraints on the other component; if we know only the 

value of one component, we cannot infer anything about the other component. This ensures that 

beta is not confounded with alpha, an essential prerequisite for much biological reasoning about 

diversity and differentiation. The precise meaning of independence for alpha and beta 

components has been the subject of debate and misunderstanding (e.g., Ellison 2010 and papers 

following it, Veech and Crist 2010, Baselga 2010, Ricotta 2010, Jost 2010); see Chao et al. 

(2012) for a detailed resolution.  

Partitioning mean phylogenetic diversity into alpha and beta components 

The mean phylogenetic diversity )(TD
q

 (Eqs. 4a, 4b) can be decomposed into independent 

phylogenetic alpha and beta diversities. Here we take into account the phylogenetic distances 

among species in comparing assemblages. We need to introduce some additional notation 
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conventions for phylogenetic trees. See Fig. 2 for an example. An ultrametric tree is first 

constructed for the regional assemblage. For this pooled assemblage in the time interval [−T, 0], 

define BT as the set of all branches and Li be the length of Branch i, Ti B∈ . The tip nodes 

represent those species in the present-day assemblage. For the jth assemblage, j = 1, 2, …, N, let 

zij denote the total abundances descended from Branch i, Ti B∈ , although zij can be any 

quantitative measure of species importance as discussed in the preceding section. (Here the index 

i can correspond to both tip-node and internal node; if i is a tip-node, then zij represents data of 

the current assemblage and is analogous to yij in Partitioning Hill numbers into alpha and beta 

components). As shown in Fig. 2, the diversity for each individual assemblage can be easily 

computed from the pooled tree structure. Only the node abundances vary with assemblages.  

Our goal here is to quantify the node-by-node resemblance (or differentiation) among the N 

abundance sets };{ Tij iz B∈ , j = 1, 2, …, N. Let aij  = zij /z+j (here the “+” sign in z+j denotes a sum 

over the tip nodes only) be the corresponding relative abundances descended from Branch i in 

the jth assemblage,  and ∑ = +++ = N
j jzz 1 . For the pooled assemblage, it follows from Eq. 5a that 

we have a similar expression zij = ijjawz ++ , where +++= zzw jj /  (relative assemblage size) is the 

weight for the jth assemblage. In the pooled assemblage, the node abundance for Branch i 

becomes ∑ =+++ = N
j ijji awzz 1 and the corresponding relative abundance is 

++++ = zza ii / ∑ == N
j ijjaw1 .      

(Figure 2 is about here) 

The phylogenetic gamma diversity of order q can be calculated from Eq. 4a as  
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,  q ≥ 0 and q ≠ 1. (7a)   
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The limit when q approaches unity exists and is equal to 
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The gamma diversity is the effective number of completely distinct lineages over the interval 

[−T, 0] in the pooled assemblage. In Appendix C, we derive the following phylogenetic alpha 

diversity for q ≥ 0 and q ≠ 1:  
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For q =1, we have  
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The alpha diversity is interpreted as the effective number of completely distinct lineages over the 

interval [−T, 0] for an individual assemblage.  

Gamma diversity should not be smaller than alpha diversity. As in the case of our non-

phylogenetic decomposition of Hill numbers, our phylogenetic gamma (Eqs. 7a and 7b) and 

alpha (Eqs. 8a and 8b) components satisfy this property for all q ≥ 0 and any arbitrary weights 

(see Appendix C). The complete partitioning of phylogenetic gamma diversity into independent 

within- and between-group (alpha and beta) diversities is multiplicative. The phylogenetic beta 

diversity is the ratio of gamma diversity to alpha diversity: 

)(TDβ
q =

)(
)(

TD
TD

α
q

γ
q

,   q ≥ 0.     (9) 

This is equivalent to the ratio of gamma branch diversity to alpha branch diversity, i.e., 

)(/)()( TPDTPDTDβ
q

αγ= . When the N assemblages are identical in species identities and 
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species abundances, then )(TDβ
q  = 1 for any T. When the N assemblages are completely 

phylogenetically distinct (no shared lineages), then )(TDβ
q  = N, no matter what the diversities or 

tree shapes of the assemblages. The phylogenetic beta diversity )(TDβ
q  quantifies assemblage 

diversity and is the effective number of completely phylogenetically distinct assemblages in the 

interval [−T, 0]. See Fig. 1 for examples of completely phylogenetically distinct assemblages. 

This interpretation is conceptually the same as the beta diversity for ordinary Hill numbers, but 

incorporates the relatedness of species. When all lineages in the pooled assemblage are 

completely distinct in the interval [−T, 0], the phylogenetic alpha, beta and gamma diversities 

reduce to those based on ordinary Hill numbers. This includes the limiting case that T tends to 

zero, so that phylogeny is ignored. If our goal is to quantify the node-by-node resemblance 

among the N relative abundance sets };{ Tij ia B∈ , j = 1, 2, …, N , then we just redefine zij  to be 

aij, implying that assemblage weights become equal (wj = 1/N) in Eqs. 7a, 7b, 8a, 8b and 9.  

When q = 0, we have )(0 TDβ  = )(/)( TLTL αγ , where )(TLγ  denotes the total branch length 

of the pooled tree and )(TLα  denotes the average length of an individual tree. When q = 1, the 

phylogenetic beta diversity of order 1 is 

]loglog/)exp[()( 1,,
1 ∑ = ++−= N

j jjPPβ NwwTHHTD αγ  ,  (10a) 

where γ,PH  and α,PH  denote respectively the gamma and alpha phylogenetic entropy. When 

assemblage weights are equal, this implies an additive decomposition for phylogenetic entropy 

HP (Pavoine et al. 2009; Mouchet and Mouillot 2011), as for ordinary Shannon entropy (Jost 

2007). When q = 2 and assemblages are equally weighted, the phylogenetic beta diversity of 

order 2 is: (see Appendix C for proof) 

112 )/1/()/1()( −− −−= TQTQTDβ αγ ,  (10b) 
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where γQ  and αQ  denote respectively the gamma and alpha quadratic entropy.  

Since our alpha and gamma phylogenetic diversities both obey the Replication Principle, 

the beta diversity formed by taking their ratio is replication-invariant (see Appendix C for proof). 

That is, when assemblages are replicated, the beta diversity does not change. This property is 

related to the condition that alpha and beta must be independent. A consequence is that beta can 

be easily converted into normalized similarity and differentiation measures by transformations 

that do not depend on alpha or gamma diversity. We make use of this property in the following 

section. Another consequence is consistency when pooling equally-distinct sub-trees, such as 

pooling equally-ancient subfamilies. If all subfamilies show the same beta diversity, the beta 

diversity is unchanged by pooling the subfamilies.  

As with ordinary Hill numbers, the lineage excess )()( TDTD qq
αγ −  can be interpreted as 

the effective number of regional lineages not contained in a typical local assemblage, or the 

absolute number of lineages gained in going from the local to the regional scale. The lineage 

excess and the phylogenetic beta together contain the same information as phylogenetic alpha 

and gamma diversities. The measure [ )()( TDTD qq
αγ − ]/(N−1) quantifies the lineage turnover 

rate per assemblage (i.e., the effective number of lineages unique to a typical local assemblage). 

The relative lineage turnover rate per assemblage can be measured by 

[ ))]()(1/[()]()( TDNTDTD qqq
ααγ −−  )1/(]1)([ −−= NTDq

β . This is one class of measures 

proposed in the next section. 

NORMALIZED SIMILARITY/DIFFERENTIATION MEASURES AND THEIR 

PHYLOGENETIC GENERALIZATIONS 

Normalized similarity/differentiation measures based on Hill numbers 
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Based on the gamma diversity (Eqs. 5b and 5c) and the new alpha formula (Eq. 6a and 6b), 

our beta diversity as a ratio of gamma and alpha is independent of alpha and always lies in the 

range [1, N] for any arbitrary weights and all orders q ≥ 0 (Appendix C). Since the range depends 

on N, the beta diversity cannot be used to compare species differentiation across multiple regions 

with different numbers of assemblages. To remove the dependence on N, we follow Jost (2006, 

2007) and Chao et al. (2008, 2012) who proposed several transformations to measure local 

overlap, regional overlap, homogeneity and turnover. A summary of these non-phylogenetic 

measures and their relationship with previous measures is shown in Table 1. See Appendix D for 

details.  

This framework reveals that many of the most popular measures in an ecologist’s toolbox, 

including the Jaccard, Sørensen, Horn, and Morisita-Horn measures of similarity for two 

assemblages (Morisita 1959, Horn 1966), were transformations of multiplicative beta diversity. 

The multiplicative beta diversity can be calculated for any number of assemblages, so the beta-

transformation viewpoint led to multiple-assemblage generalizations of the classic measures 

(Jost 2006, 2007, Chao et al. 2008). Nearly all of the previous similarity measures in the 

literature based on Hill numbers can only be used for comparing relative abundances. For all q ≥ 

0, our new beta diversity using the new alpha formula (Eq. 6a) is valid for any weights, so the 

beta-transformation viewpoint also leads to one kind of weighted generalizations of the classic 

measures. This enables us to compare absolute abundance sets (by using relative sizes as 

assemblage weights), in addition to relative abundance sets (by using equal weights). As Clarke 

and Warwick (2001) concluded that a suitable similarity (or differentiation) measure should have 

the flexibility to reflect resemblance (or difference) in absolute abundances, not just relative 

abundances; see also Magurran (2004, p. 174). Anderson et al.  (2006, p. 692) also indicated 
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“…differences in absolute abundances can also be important ecologically, as they may 

correspond to differences in an ecosystem’s productivity or responses to a pollutant or other 

impact.”   

Phylogenetic generalizations of normalized similarity/differentiation measures 

Since our phylogenetic beta diversity has the same mathematical properties as the 

multiplicative beta diversity based on ordinary Hill numbers, we can now generalize all of those 

non-phylogenetic similarity measures in Table 1 to include phylogenetic similarities between 

assemblages.  All of the transformation formulas are still valid, with the ordinary multiplicative 

beta diversity replaced by our phylogenetic beta diversity (which is a function of T, the temporal 

perspective of the investigator). Of course all these measures are also mathematically 

independent of alpha diversity, a property which most existing phylogenetic similarity measures 

lack.  

Table 2 summarizes the four classes of phylogenetic similarity measures derived from our 

approach. The corresponding differentiation measures are the one-complements of the similarity 

measures. The formulas for the special cases for q = 0, 1 and 2 are also displayed there. All 

derivation details are provided in Appendix D, and a brief description is given below. 

(Tables 1 and 2 about here) 

(1)  A class of lineage overlap measures from a local perspective:  

1
)]([

)( 1

11

−
−

= −

−−

q

qqq

qN N
TDN

TC β . (11a) 

It gives the effective average proportion of shared lineages in an individual assemblage. This 

class of similarity measures extends the CqN overlap measure derived in Chao et al. (2008) to 

phylogenetic and weighted versions. If N assemblages each has S equally common and 

completely distinct lineages in the interval [−T, 0], with exactly A lineages shared by all of them, 
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and the remaining lineages of each assemblage not shared by any other assemblages, then 

)(TCqN  gives the lineage overlap A/S for all orders of q. The differentiation measure )(1 TCqN−  

thus quantifies the effective average proportion of unique lineages in an assemblage.  

For q = 0, this similarity measure is referred to as the “phylo-Sørensen” N-assemblage 

overlap measure because for N = 2, it reduces to the measure PhyloSor (phylo-Sørensen) 

developed by Bryant et al. (2008) and Ferrier et al. (2007). For q = 1, this measure )(1 TC N  is 

called the “phylo-Horn” N-assemblage overlap measure because it extends Horn (1966) two-

assemblage measure to incorporate phylogenies and weights for N assemblages. For q = 2, 

)(2 TC N  is called the “phylo-Morisita-Horn” N-assemblage similarity measure because it extends 

Morisita-Horn measure (Morisita 1959) to incorporate phylogenies and weights for N 

assemblages. The differentiation measure  )(1 2 TC N−  for equal-weight case reduces to the 

measure proposed by de Bello et al. (2010).  Their measure is valid only for ultrametric trees (p. 

7 of de Bello et al. 2010). For q = 2, Eq. 11a as applied to equally weighted non-ultrametric trees 

reduces to (see Table 2) 
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where γQ  and αQ  are respectively gamma and alpha quadratic entropy, and T  is the mean base 

change. This is the phylogenetic generalization of Jost’s (2008) genetic differentiation measure 

D. See Discussion for more information about its application to genetics. A general form taking 

into account assemblage weights (so that absolute abundances can be compared) is  
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This generalizes Jost’s measure D to incorporate both phylogenies and assemblage weights. The 

above expression shows that the similarity index )(2 TC N , as in all our similarity measures, is 

unity if and only if ikkijj awaw =  (i.e., absolute abundances are identical) for all node i in the 

branch set and for any two assemblages j and k. This reveals that the index compares absolute 

abundances node-by-node among the N assemblages. Therefore, when absolute abundances 

differ, there can be nonzero differentiation even if all assemblages have identical species relative 

abundances. If our target is to compare node-by-node relative abundances, we simply change our 

measure of species importance to relative abundances and thus equal weights are naturally 

obtained. Then the differentiation index is zero if and only if all assemblages have identical 

node-by-node relative abundances.   

(2)  A class of lineage overlap measures from a regional perspective:  

q

qqq

qN N
NTD

TU −

−−

−
−

= 1

11

)/1(1
)/1()](/1[

)( β . (12a) 

This class of measures quantifies the effective proportion of shared lineages in the pooled 

assemblage. Assume each of the N assemblages has only completely distinct lineages and the 

phylogenetic trees for all assemblages are identical. If there are S completely distinct, equally 

abundant lineages in the pooled assemblage, with exactly R lineages shared by all N 

assemblages, and with the remaining S−R lineages evenly distributed in N assemblages, then this 

measure equals the lineage overlap R/S in the pooled assemblage. In this case, the measure 

)(1 TUqN− = 1−R/S is a complementarity measure for all orders of q.  

For q = 0, this measure is called the “phylo-Jaccard” N-assemblage measure because for N = 

2 the measure )(1 02 TU−  reduces to the Jaccard-type UniFrac measure developed by Lozupone 

and Knight (2005) and the PD-dissimilarity measure developed by Faith et al. (2009). For q = 1, 
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this measure is identical to the “phylo-Horn” N-assemblage overlap measure )(1 TC N ; see Table 

2. For q = 2, we refer to the measure )(2 TU N  as a “phylo-regional-overlap” measure. For equally 

weighted non-ultrametric trees, we have  
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See Table 2 for a more general formula with assemblage weights.
 

(3) A class of phylogenetic homogeneity measures 
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This measure is linear in the proportion of regional diversity contained in the typical assemblage. 

For q = 0, it is the “phylo-Jaccard” N-assemblage measure )(0 TU N . For q = 2, this measure is 

identical to )(2 TC N , the “phylo-Morisita-Horn” N-assemblage similarity measure. Thus, we 

have )()( 00 TUTS NN =  and )()( 22 TCTS NN = ; see Table 2. However, for q = 1, this measure 

does not reduce to the “phylo-Horn” overlap measure.  

(4) A class of measures of the complement of “phylogenetic turnover rate”: 
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The corresponding differentiation measure )1/(]1)([ −− NTDq
β  is the relative lineage turnover 

rate per assemblage, as discussed earlier. This differentiation measure is linear in beta and 

measures the relative lineage turnover rate per assemblage. When q = 0, the measure )(0 TV N  is 

identical to the “phylo-Sørensen” N-assemblage measure. For q = 2, this measure is identical to 

)(2 TU N , the “phylo-regional-overlap” measure. That is, we have )()( 00 TCTV NN =  and 
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)()( 22 TUTV NN = ; see Table 2. However, for q = 1, this measure does not reduce to the “phylo-

Horn” overlap measure.  

All these measures are continuous as q ranges from zero to infinity, so a similarity or 

dissimilarity profile can be made for any of them. We suggest using this method for conveying 

complete information about the similarity of a set of assemblages (Jost et al. 2011). An example 

will be given in Example 3: A real phylogenetic tree for rockfish.  

Although the lineage excess )()( TDTD qq
αγ −  is a useful measure, it cannot be directly 

applied to compare the similarity or differentiation across multiple regions because it depends on 

the number of assemblages, and also on the mean phylogenetic alpha (equivalently, gamma) 

diversity. Following Chao et al. (2012), we can easily eliminate these dependences by using an 

appropriate normalization. In Appendix D, we show that after proper normalizations, the 

phylogenetic beta diversity and the lineage excess both lead to the same four classes of 

normalized similarity and differentiation measures as those in Table 2.  

Fixing the additive “beta” of phylogenetic generalized entropies 

As discussed earlier, the traditional approach to partitioning quadratic entropy Q (in Eq. 2a), 

phylogenetic entropy Hp (in Eq. 2b), and phylogenetic generalized entropy qI (T) (in Eq. 2c) has 

been additive. Here we demonstrate the mathematical flaws of the additive approach based on 

qI(T), for q = 2 (quadratic entropy) and q = 1 (phylogenetic entropy). Since the “beta” quadratic 

entropy is related to our measure only in the equal-weight case (Table 2), we focus on the equal-

weight case and show how to fix and connect the additive approach to our measures.  

In the traditional approach, the additive “beta” is defined as the phylogenetic generalized 

entropy excess (gamma minus alpha entropies), )()()( TITITI qqq
αγβ −= . This excess is usually 

converted into a normalized “differentiation” measure as  



 - 28 - 

)()/()( TITITJ qq
qN γβ= )()/(1 TITI qq

γα−= ,  (13a) 

or a “similarity” measure is constructed as )()/()(1 TITITJ qq
qN γα=− . (Here we put the order q 

as a subscript for the two measures JqN (T) and 1−JqN (T) in order to compare it with our 

phylogenetic similarity measures )(TCqN  and  )(TU qN ).  

However, gamma generalized entropy cannot be additively partitioned into independent 

within- and between-group components for q ≠ 1 (Jost 2007), and this non-additivity also applies 

to phylogenetic generalized entropies. Additive “beta” phylogenetic generalized entropy is 

constrained by alpha phylogenetic generalized entropy through the inequality  
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For q = 1, the corresponding inequality is  
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See Appendix E for proofs. When all species are completely distinct and T = 1, the measure qI (T) 

reduces to the generalized entropy (in Eq. 1), so Eq. 13b reduce to its non-phylogenetic version 

(Jost et al. 2010). These inequalities show why the traditional phylogenetic similarity and 

differentiation measures produce counter-intuitive results, and also how to fix them. We discuss 

the three most commonly used special cases (q = 0, 1, 2).  

(1) q = 2 Case  

Eq. 13b shows that the “beta” quadratic entropy βQ  is confounded with alpha quadratic entropy 

αQ  through the constraint ≤βQ ))(/11( αQTN −− . A high alpha quadratic entropy means that 

αQ → T, so that additive “beta” is necessarily to be small, even if the assemblages share no 

lineages whatsoever. This implies that, when αQ is high (close to T), the “differentiation” 
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measure J2N(T)  is necessarily close to 0, and the “similarity” measure 1− J2N(T)  is close to its 

maximum value of unity, for any set of assemblages, even assemblages that share no species or 

lineages. So the additive “beta” does not measure pure differentiation among assemblages, and 

the “similarity” and “differentiation” measures also do not really measure phylogenetic similarity 

and differentiation. The low values do not reflect reality but are inescapable mathematical 

consequences of Eq. 13b. In Examples we demonstrate this by means of hypothetical and real 

examples, and compare the measure J2N(T) with our proposed measures. See Hardy and Senterre 

(2007) for another real example; in this case the authors later recognized the problem and 

rectified their interpretation (Hardy and Jost 2008). To fix this problem, the upper bound in Eq. 

13b can be used to construct a normalized measure in the range [0, 1]. As shown in Table 2 and 

Eq. 11b, the normalized measure βQ / )])(/11[( αQTN −− is exactly our differentiation measure 

)(1 2 TC N− .  

(2) q =1 Case  

It follows from the inequality Eq. 13c that additive “beta” phylogenetic entropy is bounded by T 

log N, if N and T are both fixed. Thus, additive “beta” is not constrained by alpha, and additive 

“beta” and alpha are independent (not confounded), as in the non-phylogenetic case. This can be 

also seen from Eq. 10a for equal-weight case. However, since additive “beta” is bounded by T 

logN, it follows that the differentiation measure J1N(T) (“beta”/gamma) is always close to 0 if the 

denominator gamma tends to be large, regardless of the true differentiation. In this case, the 

similarity measure 1− J1N (T) (i.e., alpha/gamma) is always close to unity. Thus, even though for 

q = 1, additive decomposition based on phylogenetic entropy is justified, (as in the non-

phylogenetic Shannon entropy), the normalized measure J1N (T) still cannot quantify 

differentiation, and its complement still does not reflect similarity. This happens because 
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Shannon entropy does not obey the Replication Principle. The upper bound in Eq. 13c reveals 

that phylogenetic entropy additive “beta” should be normalized not by gamma, but by T log N 

instead. This is clearly seen from Table 2 (for q = 1), and when this “beta” is normalized by this 

constant, our differentiation measure )(1 1 TC N−  is obtained.  

(3) q = 0 Case 

It follows from the inequality Eq. 13b that additive “beta” based on Faith’s total branch lengths 

L(T) is bounded by )]()[1( 0 TITN α+−  )()1( TLN α−= , so that the additive “beta” is positively 

constrained by alpha. Then the normalized differentiation measure using (lineage excess)/gamma 

is  )(/)]()([ TLTLTL γαγ − = )/11( N− ))(1( 0 TU N− , where )(0 TU N  is the “phylo-Jaccard” 

similarity measure (Table 2). The resulting measure is a legitimate differentiation measure, but it 

ranges from 0 (when all assemblages are identical) to 1−1/N (when all assemblages have no 

shared lineages). We propose dividing the additive “beta” by its maximum value to obtain a 

normalized measure )]()1/[()]()([ TLNTLTL ααγ −− , which is identical to our differentiation 

measure )(1 0 TC N−  with range [0, 1].  

As shown in Eq. 13b, the traditional “beta” phylogenetic generalized entropy for q > 1 is 

negatively constrained by the value of alpha, and for q < 1 it is positively constrained by the 

value of alpha. Thus the anomalous behavior described above is also present for all other values 

of q. These anomalous behaviors can be easily fixed by using proper normalizations. For all 

orders q ≠ 1, the dependence of the phylogenetic “beta” on its alpha can be removed by dividing 

the additive “beta” )(TIq
β  by its maximum possible value in Eq. 13b. In Appendix E, we prove 

for all T that this “beta” )(TIq
β , when properly normalized so as to remove its dependence on 

alpha, yields the same normalized differentiation measure )(1 TCqN−  (and normalized similarity 
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measure )(TCqN ) as the multiplicative partitioning scheme applied to mean phylogenetic 

diversity.  

The dependence relationship in Eq. 13b is equivalent to the following constraint which 

shows how the additive “beta” phylogenetic generalized entropy )(TIq
β  depends on gamma 

phylogenetic generalized entropy:   

)(0 TIq
β≤

1
)]}()[1(){1/1( 1

−
−−−

≤
−

q
TIqTN qq

γ ,   q ≠ 1. (13d) 

For q = 1, a similar upper bound T logN is also obtained as in Eq. 13c. Similar conclusions and 

implications as those for Eq. 13b can be obtained. We omit the details. For all orders q ≠ 1, if we 

normalize the “beta” phylogenetic generalized entropy )(TIq
β  by its maximum in Eq. 13d, then 

the normalized measure yields the normalized differentiation measure )(1 TUqN− , a “true 

complementarity” measure from a regional view. The extension of Eqs. 13b, 13c, and 13d to the 

general non-ultrametric cases is provided in Appendix E.   

The three measures (phylogenetic beta diversity, lineage excess and phylogenetic 

generalized entropies) all lead to the two classes of normalized phylogenetic similarity measures 

)(TCqN (a true local lineage overlap) and )(TUqN  (a true regional lineage overlap) as well as 

their corresponding differentiation measures. Thus, we finally achieve a consensus on the issue 

of normalized phylogenetic similarity and differentiation measures; see Table 2. We suggest 

using two types of profiles to characterize the proposed differentiation measures )(1 TCqN−  and 

)(1 TUqN− . (1) For a fixed order q (including at least 0, 1 and 2), the first type of profile is 

obtained by plotting our differentiation measures as a function of time perspective T. (2) For any 

fixed time perspective T (including at least T = 0 and T = the age of the root of the pooled tree), 
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the second type of profile is obtained by plotting our differentiation measures with respect to the 

order q. See Examples for illustrative plots and Discussion for the choices of T and q.  

EXAMPLES 

In all examples, we consider three phylogenetic measures: )(/)(1)( TITITJ qq
qN γα−=  

(based on phylogenetic generalized entropy, Eq.13a),  )(1 TCqN−  and  )(1 TU qN−  (both are 

based on our mean phylogenetic diversity) to quantify the differentiation between two 

assemblages. For comparisons, we also consider the non-phylogenetic versions of these 

measures: *
qNJ  (based on generalized entropy), 1−CqN  and 1−UqN  (based on Hill numbers); see 

Table 1 for all measures.  

Example 1: A simple hypothetical tree with completely distinct lineages 

To decide whether our proposed similarity and differentiation measures are more 

appropriate than the “similarity” and “differentiation” measures based on traditional additive 

partitioning of quadratic entropy and phylogenetic entropy, we will first apply all measures to 

very simple trees for which unequivocal answers exist. If a phylogenetic similarity or 

differentiation measures cannot yield logical and sensible results for simple trees, we would not 

expect it to work for complicated real trees.  

Consider two assemblages of landlocked organisms that originated on a super-continent 

which broke into two parts. For simplicity suppose all species in each assemblage began to 

diverge from their common ancestor very soon after separation of the continents T years ago, and 

suppose each species is equally common so that the two assemblages are equally weighted. 

(Nothing important hinges on this latter assumption, which simplifies calculation.) The 

assemblages evolved in isolation for approximately T years. See Appendix F for an illustrative 

figure and derivation details.  
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For this example (N = 2), our proposed normalized phylogenetic differentiation measures 

1− )(TCqN  and )(1 TUqN−  are always 1 for any q, any richnesses S, and any values of T; see 

Table 3. This value of unity correctly indicates that we have two maximally distinct assemblages 

over this time interval. In contrast, the traditional differentiation measure JqN (T) (based on 

phylogenetic generalized entropies, Eq. 13a) depends on the richnesses S of the assemblages. 

Table 3 shows the JqN(T) measures for the special case of S = 10. As derived in Appendix F, the 

general formula is J2N(T) = 1/(2S−1), while  J1N(T) = (log2)/log (2S), and J0N(T) = S/(2S −1). This 

means that when the alpha diversity is large (equivalently S is large for this example), both J2N 

and J1N always approach zero, wrongly indicating that there is almost no differentiation. The 

measure J0N approaches 1/2, indicating a normalization is needed. For this example, the correct 

answer is unequivocal: the two completely phylogenetically distinct assemblages should attain 

the maximum differentiation of unity. The traditional measures cannot measure differentiation 

properly even for a simple tree, so they cannot do it for a more complicated tree either. 

Example 2: A more complex hypothetical tree 

We now consider a more complicated hypothetical tree in order to examine the performance 

of differentiation measures as a function of evolutionary time. Consider a homogeneous super-

continent that splits into two continents or assemblages. Figure 3 shows the time-calibrated 

phylogenetic tree of the fauna of these continents. We assume that the age of the basal node is 

240 My ago. The continental split occurs at 200 My ago (i.e., t = 40 My after the first node). 

While the continents are still joined, their faunas are identical with 5 taxa. Suppose the taxa vary 

in their dispersal abilities. Then after separation some taxa radiate independently on each of the 

new continents, while others continue to cross the gap and are shared between continents. 

Assume that in the two present-day assemblages, there are 23 species in Assemblage 1 and 19 
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species in Assemblage 2, with 5 of these shared between assemblages (Fig. 3). We focus on the 

differentiation measure with equal weights in order to compare our measures with the additive 

approach. In each assemblage, all species are assumed to be equally abundant at the present time, 

and the actual relative abundances of the ancestral species in the past are the sums of the relative 

abundances of their descendants in the present-day assemblages. If an approach fails in this 

simplest case, it cannot be a mathematically valid approach for more realistic cases.     

(Figure 3 is about here) 

Table 3 compares the non-phylogenetic and phylogenetic differentiation measures when the 

temporal perspective T is chosen to be the age of the basal node, 240 My ago. The phylogenetic 

measure )(TJ qN  hardly differs from its non-phylogenetic counterpart *
qNJ . In contrast, the 

difference between our new phylogenetic measures and their non-phylogenetic counterparts 

depends on q. The difference is limited for q = 0, but the difference for q > 0 can be substantial.  

(Table 3 is about here) 

Now imagine that we have been monitoring these assemblages since T = −240 My, and we 

watch how the assemblages diverge over time. If we are using sensible measures of evolutionary 

differentiation, we should witness the divergence increasing monotonically with time. We test 

this by plotting the temporal evolution of various differentiation measures beginning at the first 

node, as a function of time t after the first node. That is, we graph the differentiation measure 

between the two assemblages for the interval [−T, −T + t], as a function of t, with t ranging from 

zero (the basal node) to 240 My. A measure of normalized phylogenetic differentiation should be 

low (and zero for q = 0) when applied to the assemblages for t < 40 My, because this is the 

period when the species are all shared by the two assemblages prior to the continental break-up. 

Phylogenetic differentiation should increase monotonically beginning immediately after the 
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break-up at t = 40 My, since the assemblages evolve independently after this time, diverging due 

to genetic drift and the action of different selective forces. After a very long time, the normalized 

differentiation should eventually approach unity.  

In this example, all measures are computed for the interval [−T, −T + t] as a function of t 

instead of the time perspective T, so we drop the variable T in all notations of measures. The 

graphs in Fig. 4 demonstrate the behavior of the traditional differentiation measure qNJ  and our 

two phylogenetic differentiation measure qNC−1  and qNU−1  for q = 0, 1, 2.  When q = 1, the 

two measures NC11−  and NU11−  are identical; for q = 0, the measure NU 01−  is higher than 

NC01−  while the ordering is reversed for q = 2. From Fig. 4, it is clear that our phylogenetic 

differentiation measures behave as expected and generally exhibit a consistent trend. They are  

both are low (and zero for q = 0) prior to the break-up of the continents, and increase 

monotonically afterwards. The asymptotic value of our two normalized differentiation measures 

approaches unity, although for q = 2, the rates of increase are slow.  

For q = 0, the measure J0N displays a pattern similar to that of our measures; after the split, 

it steadily increases to a stable value, but it stabilizes at a different value than our measures. In 

sharp contrast, the traditional differentiation measures based on phylogenetic entropy (q = 1) and 

quadratic entropy (q = 2) in Fig. 4 begin to decrease after an initial rise following the continental 

break-up. For both, the asymptotic value is very low rather than unity. These measures will 

therefore mis-rank assemblages according to their phylogenetic differentiation. For example, the 

assemblages 200 My after the split are unambiguously more differentiated than the assemblages 

just 20 My after the split, but the traditional differentiation measures for q = 1 and q = 2 give the 

opposite ranking. These misbehaviors are consequences of their dependence on alpha, as 

predicted by our Eqs. 13b, 13c and 13d. All these behaviors are analogous to the corresponding 
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behaviors of non-phylogenetic “similarity” and “differentiation” measures based on classical 

indices like Shannon entropy and the Gini-Simpson index, as shown in Figs. 1 and 2 of Jost et al. 

(2010).   

In the above discussion, all the differentiation measures are computed for the interval [−T, 

−T + t], where T is fixed value of 240 My (the age of the root). This is because the plot as a 

function of t (time after the age of the root) unequivocally should exhibit a non-decreasing trend 

so that we can examine whether a measure behaves as expected. As discussed, we recommend in 

most applications to present two types of profiles to see how our proposed differentiation 

measures )(1 TCqN−  and )(1 TUqN−  behave when the temporal perspective T varies (for a fixed q) 

or when order q varies (for a fixed T). These two types of profiles for the hypothetical tree are 

shown in Appendix G. These two types of profiles are illustrated for a real phylogenetic tree in 

Example 3 with discussion.  

                                            (Figure 4 about here) 

Example 3: A real phylogenetic tree for rockfish 

We now apply our methods to a real example discussed by Pavoine et al. (2009). The full 

data set contains a total of 52 rockfish species of the genus Sebastes collected over 20 years 

(1980-1986, 1993-1994, 1996, 1998-2007) from the Southern California Bight. Love et al. (1998) 

found that the species richness declined at a constant rate due to heavy fishing in recent decades. 

Considering phylogeny, Magnuson-Ford et al. (2009) concluded that the large, evolutionarily 

isolated and morphologically distinctive species generally are more vulnerable to overfishing. 

Pavoine et al. (2009) applied their phylogenetic generalized entropy, given in our Eq. 2c, to 

examine whether the decline in species richness was associated with the change in the 

phylogenetic structure of the assemblage.  
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For illustrative purposes, we focus on measuring the phylogenetic differentiation between 

two contrasting assemblages. (Some additional analyses are provided in Appendix G.) The 1981 

and 2003 assemblages are referred to as Assemblage 1 and 2 respectively. The phylogenetic tree 

of the 52 species (from Hyde and Vetter 2007) and the species relative abundances for these two 

assemblages, taken from Pavoine et al. (2009), are shown in Fig. 5a. Our purpose is to quantify 

the phylogenetic differentiation among the two sets of relative abundances, the weights for the 

two assemblages are thus equal in our analysis. A sub-tree containing only the three most 

abundant species in each assemblage is shown in Fig. 5b.  

 (Figure 5 about here) 

Consider a fixed time perspective at T =7.9 My, the age of the root of the pooled tree. All 

the phylogenetic and non-phylogenetic differentiation measures for the interval [−7.9, 0] are 

presented in Table 3. As we found for Example 2, the traditional abundance-sensitive 

differentiation measures )(TJ qN  (q > 0) are very low and close to their non-phylogenetic value 

*
qNJ . Both our phylogenetic differentiation measures, )(1 TCqN−  and )(1 TUqN− , are greater than 

or equal to the additive measure for all orders of q, especially for q = 2. These relations will be 

explained below. 

As we did with the hypothetical tree of Fig. 4, we compute the traditional measure qNJ  and 

the two differentiation measure qNC−1  and qNU−1 for the interval [−T, −T + t]. In Fig. 6, we plot 

the three differentiation measures as a function of time t (time after the root). The plots in Fig. 6 

(analogous to the plots in Fig. 4 for the hypothetical tree) show that for q = 0 the three measures 

all exhibit similar pattern and stabilize, but for q = 1 and 2 the patterns of our measures are very 

different from that of qNJ , as we also saw in Fig. 4. For q = 1 and 2, the three measures all start 
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to rise sharply at 1.6 My after the root, roughly the time that the most abundant species S. 

miniatus in Assemblage 2 diverged from the lineage of the three most abundant species in 

Assemblage 1 (S. paucispinis, S. goodei, S. mystinus); see Fig. 5b. After 1.6 My, our measures 

qNC−1  and qNU−1  steadily increase with time to a relatively high value, while the traditional 

measure qNJ  decreases (especially for quadratic entropy) to a relatively low value. Once again 

we are seeing the effect of the inequality given in Eqs. 13b, 13c and 13d; these traditional 

“differentiation” measures will always tend to zero whenever gamma is high for q = 1, and 

whenever alpha is high for q = 2; they cease to reflect either tree structure or differences in 

species abundances. 

These discrepancies are similar to our findings for the hypothetical tree in Fig. 4, where it is 

clear that the more reasonable answer is given by our measure. In this real example, the 

increasing trend and high differentiation shown by our measures should also be the more 

intuitive and sensible answer after 1.6 My. Consider first the non-phylogenetic differentiation 

measure for q = 2. The two measures 1−C2N  and  1−U2N both are dominated by the relatively 

common species shown in Fig. 5b.  The most common species in Assemblage 1 correspond to a 

very rare species in Assemblage 2, and vice versa; see Fig. 5b. Therefore, when phylogeny is not 

considered, the differentiation should be relatively high, as reflected by the high value of 1− C2N 

= 80% and 1−U2N  = 67% at the tips (present-day) in Table 3. The former is the effective average 

percentage of dominant species that are unique to each assemblage (and thus shared species 

constitute only about 20% of the dominant species in each assemblage). The latter is the effective 

percentage of dominant species that are unique to the pooled assemblage (and thus shared 

species constitute about 33% of the dominant species in the pooled assemblage).  
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Our phylogenetic differentiation measures NC21−  and NU21−  are dominated by the “very 

important lineages” (those with high node abundances) and “evolutionarily deep” species (long 

branch lengths). The most dominant species of Assemblage 2 (S. miniatus) diverged from the 

lineage of the three dominant species in Assemblage 1 around 1.6 My after the root; see Fig. 5b. 

The divergence time for the three most dominant species of Assemblage 1 occurred between 1.6 

My and 2.2 My after the root. Around 2.2 My after the root, all five dominant species in Fig. 5b 

are in isolated lineages, and the sharp importance difference between the dominant ancestral 

lineages remains since then. Thus, the phylogenetic differentiation between these two 

assemblages should begin increasing at 1.6 My after the root and should continue to increase 

with time t.  

Our phylogenetic differentiation measure NC21−  increases to 33% by the present time 

(Table 3 and the right panel of Fig. 6 as t approaches 7.9 My). Similarly, the measure NU21−  

increases to 20%. These are substantially lower than their corresponding non-phylogenetic 

differentiation measure because the node abundances near roots (where the differentiation values 

are near zero) are relatively high and dominant in the whole tree. But these values are much 

higher than the traditional additive phylogenetic “differentiation” values; our value for q = 2 is 

triple the value of 10% based on Rao’s quadratic entropy. In the past 7.9 My, if we focus on the 

abundant lineages (as appropriate for q = 2) the average percentage of non-shared lineages per 

assemblage is about 33% (and 20% in the pooled assemblage), showing that the values of our 

measures (33% and 20%) reflect reality while the traditional additive measure may 

underestimate the phylogenetic effects of overfishing. Similarly for q = 1, the differentiation for 

our measure ( NC11− = NU11− ) increases from zero to 36% whereas the corresponding curve for 
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phylogenetic entropy rises briefly and then counter-intuitively drops to a low value of around 

15% (Table 3 and Fig. 6).  

To see how our differentiation measures vary with the time perspective T and with the order 

q, we suggest making two types of profiles for our proposed differentiation measures. The first 

type of profile plots the differentiation measure as a function of the temporal perspective T, with 

q fixed. The second type plots the same measure as a function of q, with T fixed. To illustrate the 

first type of profile, we evaluate the two proposed differentiation measures, )(1 TCqN− and 

)(1 TUqN− , over the interval [−T, 0]  with 0 < T < 10, for q fixed; in Fig. 7a we choose to plot 

the profiles for q = 0, 1 and 2. For comparison, we also plot the profiles of the traditional 

measure JqN(T) for the same fixed values of q. In Fig. 7b, we show the other type of profiles, 

which plot the three measures as a function of q, 0 ≤ q ≤ 5, separately for T = 0 (non-

phylogenetic case) and T = 7.9 My.  

The profiles in Fig. 7a show that the additive differentiation measure JqN (T) hardly varies 

with T, and all values for q =1 and q = 2 are very low, as predicted by our theory for the case of 

high alpha (and thus high gamma) phylogenetic entropies. In such cases, the measure JqN(T) is 

nearly insensitive to the phylogenetic structure. This can also be seen by comparing the two 

profiles in Fig. 7b for the specific values of T = 0 (non-phylogenetic cases) and T = 7.9 My for 0 

≤ q ≤ 5. All values of the measure JqN(T) for T = 7.9 My are close to their corresponding non-

phylogenetic  values for T = 0 (i.e., the measure *
qNJ ); see also Table 3. The two measures JqN(T) 

and *
qNJ vary slowly with the order q as shown in Fig. 7b, but their values are very low (for q ≥ 1) 

as predicted by our theory. Therefore, the two types of profiles in Figs. 7a and 7b confirm by 

example our theoretical proof that the measure JqN(T)  often will not reflect either tree structure or 

differences in species abundances. 
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We next examine the behavior of our two proposed differentiation measures. Since the 

dominant species in the two assemblages began to diverge from each other between 1.6 My and 

2.2 My after the root (i.e., between 5.7 My ago and 6.3 My ago; see Fig. 5b), those dominant 

species were in the same lineage 6.3 My ago or anytime earlier. As a result, the two proposed 

abundance-sensitive measures (q = 1 and 2) in Fig. 7a remain at relatively high levels when T < 

6.3 My and start to decline around T = 6.3 My. Generally, as T becomes larger, more dominant 

shared lineages are added to the two assemblages, implying the abundance-sensitive 

differentiation measures should generally exhibit a non-increasing trend. The profiles of our 

differentiation measures for q = 1 and 2 clearly show the expected decreasing trend when T is 

increased, and the decline rates differ for the two different orders of q. Also, comparing the two 

figures (T = 0 and T = 7.9 My) in Fig. 7b, we see that all values of the phylogenetic 

differentiation measure )(1 TCqN−  are much lower than the corresponding non-phylogenetic 

measure. Similar behavior is also found for the measure )(1 TUqN− . The two types of profiles (in 

Fig. 7a and Fig. 7b) show that our measures can incorporate the differences in both tree structure 

and lineage abundances. 

The above hypothetical and real examples have confirmed empirically our theoretical 

findings in earlier sections. If our goal is to provide measures to quantify the similarity or 

differentiation, and compare the measures across regions with different alpha or gamma 

diversities, the traditional additive “differentiation” measures based on (1−alpha/gamma) for 

phylogenetic entropy and quadratic entropy may lead to counter-intuitive results, and for q> 0 

they are insensitive to tree structure when alpha diversity is high. For all orders of q, these 

traditional measures can be fixed by normalizing them, again yielding our differentiation 

measures  qNC−1  and qNU−1 , whose ranges are always the interval [0, 1] regardless of alpha or 
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gamma diversity. Our measures behave as expected and conform to intuition, as shown by all 

examples.  

(Figures 6 and 7 about here) 

DISCUSSION 

In the past, a traditional additive approach has been applied to partitioning phylogenetic 

measures such as Rao’s quadratic entropy Q, phylogenetic entropy HP, and phylogenetic 

generalized entropy. The difference between gamma and alpha phylogenetic generalized 

entropies (which include quadratic entropy and phylogenetic entropy as special cases) was then 

divided by gamma to obtain measures of phylogenetic differentiation. While these measures do 

have valid interpretations (Hardy and Jost 2008), their magnitudes do not reflect the degree of 

phylogenetic differentiation between assemblages. Our examples and mathematical analyses 

show that when within-group diversity is high, these abundance-sensitive differentiation 

measures approach a fixed value (zero) that has no relation to the phylogenies of the species or to 

the differences in their abundances across assemblages. Measures which become completely 

insensitive to the properties they are supposed to measure are not useful tools for biologists, and 

they will inevitably mislead in typical conservation and applications.  

This behavior, caused by the measures’ dependence on alpha diversity, has other disturbing 

consequences. The additive differentiation measure based on Rao’s quadratic entropy can show 

that every single subfamily of plants exhibits very high differentiation (no shared lineages) 

between two assemblages, but when the same measure is applied to the pooled subfamilies, it 

would show that differentiation between the two assemblages was near zero. This can happen 

even if all subfamilies shared the same root node and had the same tree structure and same 

abundance distributions. The mere act of pooling necessarily lowers this differentiation measure, 
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because pooling equally-diverse subfamilies makes alpha increase, and this measure is 

confounded with alpha. These problems have clear mathematical causes. First, the additive 

framework was imposed on measures that are not additive (except when q = 1), resulting in a 

between-group component that is confounded with the within-group component. Second, the 

measures do not obey the Replication Principle, so their alpha/gamma ratio does not reflect 

similarity between groups. 

     These are familiar problems that also arise when the additive framework is applied to non-

phylogenetic generalized entropies. In the non-phylogenetic case, these problems were resolved 

by partitioning Hill numbers, which obey the Replication Principle (Jost 2007). In this paper we 

show how to extend this solution to the phylogenetic case, by partitioning the phylogenetic Hill 

numbers of Chao et al. (2010). Phylogenetic Hill numbers are multiplicatively partitioned into 

independent within- and between-group components, which are the phylogenetic alpha and beta 

diversities. The between-group or beta component is normalized in various ways to make 

phylogenetic similarity and differentiation measures. The normalizations yield weighted and 

phylogenetic generalizations of the Jaccard, Sørensen, Horn, and Morisita-Horn similarity 

measures. The proposed normalized similarity measures have the flexibility to reflect the 

resemblance or difference not only in relative abundances but also in absolute abundances.  

As in the non-phylogenetic case, the lineage excess (gamma−alpha phylogenetic Hill 

numbers) and the phylogenetic generalized entropy excess (gamma−alpha phylogenetic 

generalized entropies), when normalized properly, lead to some of these same similarity 

measures. The convergence of all these approaches demonstrates the underlying unity of this 

field and highlights the special character of our similarity measures )(TCqN  and )(TU qN ; see 

Table 2. The similarity measure )(TCqN  quantifies the effective average proportion of shared 
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lineages per assemblage. The differentiation measure )(1 TCqN−  thus quantifies the effective 

average proportion of non-shared lineages per assemblage. The measure )(TCqN satisfies a 

phylogenetic generalization of the concept of a “true local overlap” measure (Wolda 1981, 1983). 

This quality “calibrates” the similarity measure in terms of an easily-visualizable set of reference 

assemblages. A similar interpretation can be made for the regional-overlap similarity measure 

)(TU qN , which refers to the effective percentage of shared lineages in the pooled assemblage. 

All similarity and differentiation measures which are monotonic transformations of our 

phylogenetic beta diversity (see Table 2) are replication invariant. For non-phylogenetic 

measures, this principle states that if N assemblages each consist of K identical subsets of 

abundances, and no species are shared between subsets within an assemblage, then the N 

assemblages as a whole should have the same degree of similarity or differentiation as the 

individual subsets. Jost et al. (2011) showed that this property is a necessary property for 

classical non-phylogenetic similarity and differentiation measures. Our proposed phylogenetic 

beta, similarity, and differentiation measures all satisfy this property of replication invariance; 

see Appendix C for a proof. This means our measures, unlike previous ones, are self-consistent 

when disjoint sub-trees are pooled.  

Choice of temporal perspective T and order q 

A conspicuous change from previous treatments of phylogenetic differentiation measures is 

our introduction of an explicit parameter T for the temporal perspective of the investigator. We 

introduced this in Chao et al. (2010) but it is even more important here. The broader our 

temporal perspective, the greater is the proportion of shared ancestry relative in the assemblages. 

Measures of normalized phylogenetic similarity have always concealed an implicit temporal 

perspective, most often the age of the root node of the tree under consideration. However, this 
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choice is not always the most appropriate one for the question under investigation. One problem 

with this choice is that it is sample-dependent, because the root will be determined by the species 

actually observed. Since nearly every study will use a different root, it will be difficult to 

compare results across studies. By making the perspective explicit, we give the investigator the 

freedom to think about this choice and, if necessary, to change it. The most natural and least 

arbitrary choice of temporal perspective T for many purposes will be the divergence time 

between the group of interest and its nearest outgroup. This is independent of the composition of 

the actual sample and depends only on the sampling protocol (the decision to sample members of 

one taxonomic group, birds for example, and reject others such as moths or bats). Another 

natural choice would be T near the time of the most recent common ancestor of all taxa alive 

today. Other choices may be useful depending on the purpose of an investigation. Because 

different investigations will require different temporal perspectives, we recommend reporting 

results in a form that facilitates changes of this perspective. Reporting )( r
q TD , with Tr  equal to 

the age of the root node for the organisms under study, allows easy transformation to any time 

interval larger than Tr.  If T is the new temporal perspective, then 
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This formula can be used to translate both phylogenetic alpha and gamma diversity to the new 

temporal perspective. The new alpha and gamma diversities can then be used to calculate beta 

and our similarity (or differentiation) measures for the new T. See Fig. G1 (in Appendix G) and 

Fig. 7a for examples of profiles for our proposed phylogenetic differentiation between two 

assemblages as a function of the time perspective T.  
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Our measures also contain the free parameter q, which determines the sensitivity to present-

day species abundances. When trying to identify past episodes of differentiation, q = 0 is 

recommended, since abundance information is not necessarily relevant to this question. In 

ecological studies such as those examining the phylogenetic relationships of the dominant 

species in a set of assemblages, or those examining functional diversity, we recommend 

reporting the results in the form of a similarity or differentiation profile, a graph of the chosen 

measure(s) as q varies from 0 to about 4 or 5 (beyond which there is usually little change). This 

gives complete information about the system for the chosen time perspective T, just as in the 

non-phylogenetic case; see Jost et al. (2011) for a non-phylogenetic similarity profile, and Fig. 

G1 (in Appendix G) and Fig. 7b for phylogenetic differentiation profiles of our proposed 

measures, as functions of q.  

Functional beta diversity 

Functional diversity (FD) has been defined by Tilman (2001) as “the value and range of 

those species and organismal traits that influence ecosystem functioning”. Many measures have 

been proposed to assess FD of an assemblage. Among them, the dendrogram constructed from a 

trait-based distance matrix using a clustering scheme (Petchey and Gaston 2002) is widely used. 

Chao et al. (2010) suggested that the phylogenetic mean diversity approach given in Eqs. 4a and 

4b can be applied to quantify functional diversity and interpreted as “the effective mean number 

of functional groups”. The approach proposed in the present paper can be used to quantify 

functional beta diversity among assemblages, and to generate intuitive and well-behaved 

measures of functional similarity and differentiation among assemblages. The partitioning 

method can also provide a unified framework for genetic, species and ecosystem diversity 

partitioning.  A critical requirement in our approach is that a tree structure can be constructed. 
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We are currently developing Hill-number types of functional diversity based on distance matrix 

directly.   

Applications to other disciplines 

The concept of diversity and its partitioning are useful in many disciplines. Our proposed 

decomposition can be applied in these disciplines, especially genetics. For example, a widely 

used genetic “differentiation” measure is Nei’s GST based on heterozygosity, the Gini-Simpson 

index of ecologists (Nei 1973, Jost 2008). It is often used to measure the differentiation of allele 

frequencies among sub-populations. Jost (2008) showed that GST and their relatives do not 

actually measure differentiation and proposed a new differentiation measure D, which is our 

1−C2N measure (Table 1). Our new phylogenetic differentiation measure )(1 2 TC N−  (Eqs. 11b, 

11c) for generalizes Jost’s D to take into account genetic distances and assemblage weights. For 

this purpose, geneticists have often used the differentiation measure NST  (Nei and Li 1979) which 

is based on nucleotide diversity (the average number of nucleotide differences between any two 

DNA sequences chosen randomly from a population). The nucleotide diversity is equivalent to 

Rao’s quadratic entropy, and NST is identical to the traditional differentiation measure J2N (T). We 

have shown here by hypothetical and real examples that the measure J2N (T) based on additive 

partitioning of Rao’s quadratic entropy does not measure differentiation. Thus NST suffers the 

same drawback as GST and the measure J2N (T). However, like additive beta quadratic entropy, it 

can be easily corrected, and the corrected measure is exactly our proposed phylogenetic 

differentiation measure )(1 2 TC N− , the phylogenetic generalization of Jost’s D measure; see Eq. 

11b. This generalized measure is valid for both ultrametric and non-ultrametric trees. Hence it 

also extends de Bello et al. (2010) to the general non-ultrametric weighted case. This provides a 

unified and rigorous framework for quantifying pure phylogenetic differentiation in both ecology 
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and genetics, without confounding differentiation with within-group phylogenetic diversity. The 

new differentiation measure )(1 2 TU N−  merits investigation of its applications to genetics.  

Leinster and Cobbold (2012) wrote “Non-specialists are amazed to learn that a community 

of six dramatically different species is said to be no more diverse than a community of six 

species of barnacle.” Now that phylogenetic versions of the full range of diversity, similarity, 

and differentiation measures are available, it makes sense to incorporate phylogeny in all future 

diversity analyses. We hope that these new tools will encourage ecologists, geneticists, and 

conservation biologists to ask and answer new kinds of questions about the evolutionary forces 

that cause divergence of species assemblages or gene pools. 
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 Table 1: Four classes of non-phylogenetic similarity measures and their special cases, based on 

the beta diversity from partitioning Hill numbers. The corresponding differentiation measures are 

the one-complements of the similarity measures. 
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Note: To quantify the resemblance of absolute abundance sets, use relative assemblage sizes as 

weights; to quantify the resemblance of relative abundance sets, use equal weight. 
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pij: the relative abundance of the ith species in the jth assemblage, wj: relative assemblage size, 

and ∑ == N
j ijji pwp 1 ; see Eqs. 5b, 5c, 6a and 6b for details. S : alpha species richness (average 

species richness per assemblage). γH  and αH : gamma and alpha Shannon entropy. γ,GSH  and 

α,GSH : gamma and alpha Gini-Simpson index.  
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Table 2: Four classes of phylogenetic similarity measures and their special cases, based on the 

phylogenetic beta diversity from partitioning mean phylogenetic diversity. The corresponding 

differentiation measures are the one-complements of the similarity measures. When all lineages 

are completely distinct (this includes 0→T , ignoring phylogeny), the phylogenetic measures 

reduces to the corresponding non-phylogenetic versions in Table 1. (All measures can also be 

applied to non-ultrametric trees if T is substituted for T.) 
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Note: To quantify the resemblance of absolute abundance, use relative assemblage sizes as 

weights; to quantify the resemblance of relative abundance, use equal weight. 

)(TDβ
q = )()/( TDTD qq

αγ , )(TDq
γ = )1/(1

1 })/(){/1( q
i

q
ij

N
j jiT

TawLT −
∈ =∑ ∑B   , 

)(TDq
α = )1/(1

1 })/()]{/(1[ q
i

q
ij

N
j jiT

TawLTN −
∈ =∑ ∑B ,  BT: the set of all branches in the time interval 

[−T, 0], Li: length of Branch i, aij: the total relative abundance descended from Branch i  in the jth 

assemblage, wj: relative assemblage size, and ai+ ∑ == N
j ijjaw1 ; see Eqs. 7a, 7b, 8a and 8b for 

details. )(TLγ  and )(TLα : gamma and alpha Faith’s PD (total lineage length). γ,pH  and α,pH : 

gamma and alpha phylogenetic entropy. γQ  and αQ : gamma and alpha quadratic entropy. 
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Table 3: Non-phylogenetic and phylogenetic differentiation measures between two assemblages 

for three examples, T = age of the root node. See Tables 1, 2 and Eq. 13a for formulas. Note the 

little difference between the classical phylogenetic measure JqN(T) and its corresponding non-

phylogenetic measure  
*
qNJ  for all cases. These two additive “beta”/gamma measures cease to 

reflect either tree structure or differences in species abundances, so they should not be used. For 

Example 1, phylogenetic and its corresponding non-phylogenetic measures are identical because 

species are equally distinct. 

Order  

q 

Differentiation measures between two assemblages 

Non-phylogenetic   Phylogenetic 

qNC−1  
qNU−1  *

qNJ   )(1 TCqN−  )(1 TU qN−  )(TJ qN
 

Example 1 (Completely distinct lineages, 10 species in each assemblage, no shared species) 

q = 0 1 1 0.53 1 1 0.53 

q = 1 1 1 0.23 1 1 0.23 

q = 2 1 1 0.05 1 1 0.05 

Example 2 (23 species in Assemblage 1, 19 species in Assemblage 2; 5 shared species) 

q = 0 0.76 0.86 0.44 0.66 0.79 0.41 

q = 1 0.76 0.76 0.15 0.63 0.63 0.16 

q = 2 0.76 0.62 0.02 0.49 0.33 0.04 

Example 3 (Rockfish data, 38 species in Assemblage 1, 24 species in Assemblage 2; 23 

shared species) 

q = 0 0.26 0.41 0.21 0.27 0.42 0.22 

q = 1 0.52 0.52 0.14 0.36 0.36 0.15 
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q = 2 0.80 0.67 0.08 0.33 0.20 0.10 
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FIGURE LEGENDS 

Fig. 1. Replication Principle for two completely phylogenetically distinct assemblages with totally 

different structures. Left panel: Assemblage 1 (black) includes three species with species 

relative abundances {p11, p21, p31} for the three tips. Assemblage 2 (grey) includes four species 

with species relative abundances {p12, p22, p32, p42} for the four tips. The diversity of the pooled 

tree is double of that of each tree as long as the two assemblages are completely 

phylogenetically distinct as shown (no lineages shared between assemblages, though lineages 

within an assemblage may be shared) and have identical mean diversities. Right panel: The 

same is valid for two completely phylogenetically distinct non-ultrametric assemblages. 

Fig. 2. (a) Phylogenetic tree for Assemblage 1 (grey) with species (1, 2) and tip-node abundance 

(z11, z21). (b) Phylogenetic tree for Assemblage 2 (black) with species (2, 3, 4) and tip-node 

abundance (z22, z32, z42). The variable zij can be species absolute abundance, species relative 

abundance in the jth assemblage, any other quantitative variables, or any transformation of the 

above measures. (c) Pooled tree for four species (1, 2, 3, 4) with four tip-node abundance (z1+, 

z2+, z3+, z4+) and the corresponding branch lengths (L1, L2, L3, L4), and two internal-node 

abundance (z5+, z6+) with branch lengths  (L5, L6). Suppose the weights (the relative sizes of 

assemblages) for Assemblage 1 and 2 are w1 and w2 respectively. The whole pooled phylogenetic 

tree in the time interval [−T, 0] includes six nodes and their corresponding branch lengths. Based 

on the branch set and branch lengths in the pooled tree, the diversity of the pooled assemblage is 

calculated by using the node abundance set (z1+, z2+, z3+, z4+, z5+, z6+) = (z11, z21+z22, z32,  z42,  

z21+z22+z32,  z11+z21+z22+ z32) with the corresponding branch lengths (L1, L2, L3, L4, L5, L6). The 

diversity of Assemblage 1 can be calculated by using the pooled tree with the node abundance 

set (z11, z21, 0, 0, z21, z11+ z21). The diversity of Assemblage 2 can be calculated by using the 
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pooled tree with tip-node abundance set   (0, z22, z32, z42, z22+z32, z22+z32). The similarity between 

the two assemblages measures the node-by-node resemblance between the two node abundance 

sets (z11, z21, 0, 0, z21, z11+ z21) and (0, z22, z32, z42, z22+z32, z22+z32). The non-phylogenetic 

similarity measures the species-by-species resemblance between the two tip-node abundance sets 

(z11, z21, 0, 0) and (0, z22, z32, z42).  

Fig. 3. A hypothetical time-calibrated tree with the age of the first node T = 240 My. The split 

occurs at age of 200 My ago (i.e., 40 My after the first node). At the present-day assemblage, 

there are 23 species in Assemblage 1 (grey), and 19 species in Assemblage 2 (black), and there 

are 5 shared species. In each assemblage, all species are assumed to be equally abundant at the 

present time for illustrative purposes. When a differentiation measure is computed for the 

interval [−T, −T + t] as a function of t, the variable t denotes the time after the age of the root, 0 ≤ 

t ≤ 240. The spilt time corresponds to a specific value of t = 40.  

Fig. 4. Plot of differentiation for the traditional additive phylogenetic differentiation measure JqN 

(based on phylogenetic generalized entropies) and our proposed phylogenetic differentiation 

measures qNC−1  and qNU−1  (both are based on our mean phylogenetic diversity). All measures 

are computed for the interval [−T, −T + t] and plotted as a function of time t after the root for q = 

0 (left panel), 1 (middle panel) and 2 (right panel). Here T is fixed to be 240 My, the age of the 

first node. The vertical dotted line in all figures refers to the split time (t = 40 My after the first 

node). See Appendix G for the profiles of the three differentiation measures as a function of the 

time perspective T when all measures are computed for the interval for the interval [−T, 0].  

 
Fig. 5. (a) (Left panel) The phylogenetic tree of 52 rockfish species of the genus Sebastes (Hyde 

and Vetter, 2007) and the relative abundances for 1981 and 2003 (Pavoine et al. 2009). The age 

of the root is T = 7.9 My. (b) (Right panel) A sub-tree contains only the three most abundant 
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species in each assemblage (those with relative abundance > 8%). The phylogenetic tree for the 

three most abundant species in Assemblage 1 is in black, and the phylogenetic tree for the three  

most abundant species in Assemblage 2 is in grey. 

Fig. 6. Plot of differentiation between two rockfish assemblages for the traditional additive 

phylogenetic differentiation measure JqN (based on phylogenetic generalized entropies) and our 

proposed phylogenetic differentiation measures qNC−1  and qNU−1  (both are based on our mean 

phylogenetic diversity). All measures are computed for the interval [−T, −T + t] and plotted as a 

function of time t after the root for q = 0 (left panel), 1 (middle panel) and 2 (right panel).  

Fig. 7. Profiles of differentiation measures. (a) Profiles of the two proposed phylogenetic 

differentiation measures, )(1 TCqN− , )(1 TUqN−  and the traditional measure JqN(T), as a function 

of the time perspective T  for q = 0 (left panel), q = 1 (middle panel), and q = 2 (right panel), 0 ≤ 

T ≤ 10. All measures are computed for the interval for the interval [−T, 0], where T varies from 0 

to 10. (b) (Right panel) Profiles of the three phylogenetic differentiation measures, )(1 TCqN− , 

)(1 TUqN−  and JqN(T) as a function of order q, 0 ≤ q ≤ 5, for the specific time perspective T = 7.9 

My, the age of the root of the pooled phylogenetic tree.  (Left panel) Profiles of the 

corresponding non-phylogenetic differentiation measures (i.e., T = 0), qNC−1 , qNU−1  and *
qNJ , 

as a function of order q, 0 ≤ q ≤ 5.  
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