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Abstract This study proposes a deterministic model to solve the two-dimensional
cutting stock problem (2DCSP) using a much smaller number of binary variables and
thereby reducing the complexity of 2DCSP. Expressing a 2DCSP with m stocks and n
cutting rectangles requires 2n2 + n(m + 1) binary variables in the traditional model.
In contrast, the proposed model uses n2 + n�log2 m� binary variables to express the
2DCSP. Experimental results showed that the proposed model is more efficient than
the existing model.
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1 Introduction

This study considers the two-dimensional cutting stock problems (2DCSPs) in real-
world applications, such as cutting steel tubes, paper tubes, carpet, and glass. The
2DCSP seeks optimal cutting patterns to minimize the total number of stocks required
to fulfill orders and reduce the total amount of scrap for each stock in a schedule.
For example, in paper mills, paper tubes (i.e., raw materials) are cut into different
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products with different sizes [6,13] according to customer requirements, and the trim
loss of the tubes needs to be minimized. Examples of the cutting stock problems in
other fields include placing all devices into a system-on-a-chip circuit [24], container
loading and shipping problems in the transport industry [28], and cutting Thin Film
Transistor-Liquid Crystal Display (TFT-LCD) plates from glass substrate [31]. An
optimal production scheme minimizes the number of stock sheets required to com-
plete customer orders, thereby reducing manufacturing costs and increasing company
competitiveness.

Research on optimal solutions for trim-loss problems dates back to several decades,
as shown by the classic papers of Gilmore and Gomory [11], Chambers and Dyson [3],
and Hinxman [14]. Their methods attempted to minimize the stock wastage subject
to customer demands, setup costs, processing times, and characteristics of cutting
patterns. More recently, Holthaus [15] has proposed an integer decomposition method
using different types of patterns of standard length, whereas Umetani et al. [32] utilized
meta-heuristics and adaptive pattern generation techniques to minimize the number of
patterns. Gradisar and Trkman [12] developed a mixed hybrid approach that combined
sequential heuristic procedures to improve the performance of the branch-and-bound
algorithm. In some works, the trim-loss problem is called the “(strip) packing problem”
or the “loading problem” [8,9,17,26,27,30].

The 2DCSP concept was first proposed by Brooks et al. [2]. Since then, various
methods based on different algorithms have been developed. Generally, these algo-
rithms can be divided into two classes.

(i) Deterministic algorithms: deterministic algorithms are based on mathematical
programs, which utilize the branch-and-bound algorithm to derive an optimal
solution. For example, Chen et al. [4] proposed a mixed integer programming
model for a class of assortment problems, and their model minimized trim-loss
in only one rectangular area. Li and Chang [20] and Li et al. [21,22] reformu-
lated the mathematical model to improve the approximate solution and speed up
the computation time. However, the above models were not suitable for treating
2DCSP. If the Li’s original model for solving the 2DCSP is directly extended, a
large number of binary variables may be required, resulting in high computational
complexity [10].

(ii) Heuristic algorithms: numerous heuristic approaches are available in the liter-
atures, and their main advantage lies in the ease in solving 2DCSP within an
acceptable time. For example, Jakobs [17] developed an application of genetic
algorithms to solve the two-dimensional packing problems. Leung et al. [18,19]
also proposed a mixed simulated annealing-genetic algorithm for the two-
dimensional packing problems, and Lin [25] designed a genetic algorithm that
incorporated a novel random packing process and an encoding scheme to solve
a special 2DCSP within one stock. In real-world cases, minimum trim loss in
the 2DCSP is an important issue within an acceptable solving time, such as cut-
ting rectangular steel bars in manufacturing, and guillotine-cutting problem in
paper industry [1,12,27,29]. Column generation algorithms are also widely used
to solve the 2DCSPs [5,33]. Cui et al. [7] developed a recursive version of the
branch-and-bound algorithm to obtain an approximate solution, whereas Tsai
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et al. [31] proposed a cutting stock algorithm for the TFT-LCD industry. The
latter algorithm sought a feasible fixed-size cutting pattern for raw materials to
minimize the number of stocks required to satisfy customer requirements. All the
above algorithms can find easily feasible solutions; however, the solution quality
cannot be guaranteed.

Based on comparisons of the above works, we propose a novel deterministic model to
solve the 2DCSP. The advantages of the proposed model are as follows:

(i) It solves 2DCSPs effectively using a much smaller number of binary variables.
(ii) It guarantees that an optimal solution is achievable.

The rest of this paper is organized as follows. In Sect. 2, we discuss existing reference
models for solving 2DCSPs, and in Sect. 3, we introduce the proposed model, which
uses a much smaller number of 0–1 variables. The results of the numerical tests
on practical examples are presented in Sect. 4. Section 5 presents some concluding
remarks.

2 Reference model

The parameters and decision variables used in this paper are listed below [4,20]:

Parameters

m The number of the stock sheets.
S The set of cutting rectangles, S = {1, 2, . . . , n}.
(pi , qi ) The length and width of the cutting rectangle i, i ∈ S,

(pi and qi are constants).
(Width, Length) The length and width of the stock sheet.

Decision variables

(X, Y ) The top right-hand corner coordinates of the enveloping
rectangle.

(xi , yi ) The bottom-left coordinates of the cutting rectangle i, i ∈ S(xi

and yi are variables).
si An orientation indicator for the given cutting rectangle

i, i ∈ S. si = 1 if pi is parallel to the x-axis; otherwise,
si = 0 if pi is parallel to the y-axis (si denotes a binary
variable).

(ai, j , bi, j , ci, j , di, j ) The non-overlapping condition for a pair of cutting rectangles (i, j).

Chen et al. [4] proposed mixed-integer program as a basic model for 2DCSP using
only one stock sheet, aimed at minimizing the size of the stock sheet, also called an
assortment problem. The concept of the basic model proposed by Chen et al. [4] is
introduced as follows:
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P1 (basic model)

Min XY

s.t. (i) all the rectangles are non-overlapping,

(i i) all the rectangles are within the range of X and Y.

Li and Chang [20] proposed a method that employed a much smaller number of
binary variables to reformulate the non-overlapping constraints, and Li et al. [21]
tried to linearize approximately the cross term (i.e., XY ) in the objective function by
using a piecewise linearization technique. The accuracy of the approximative solution
depends on the number of break points in piecewise linearization [23]. As the cross
term is a nonlinear programming problem that is difficult to solve when searching for
an optimal solution and the original model is only suitable for assortment problem,
reformulating P1 (basic model) is necessary to solve 2DCSP. We modify the objective
function in P1 as Min Y , fix the width of the stock sheets as a given value, and give
the number of stocks as m. P1 can be extended to another model for general 2DCSPs.
The specific 2DCSP linear program is reformulated as follows:

P2 (modified 2DCSP model)

Min Y

s.t. (xi − x j ) + M(1 − ai, j ) ≥ p j s j + q j (1 − s j ), i, j ∈ S, i < j, (1)

(x j − xi ) + M(1 − bi, j ) ≥ pi si + qi (1 − si ), i, j ∈ S, i < j, (2)

(yi − y j ) + M(1 − ci, j ) ≥ q j s j + p j (1 − s j ), i, j ∈ S, i < j, (3)

(y j − yi ) + M(1 − di, j ) ≥ qi si + pi (1 − si ), i, j ∈ S, i < j, (4)

ai, j + bi, j + ci, j + di, j = 1, i, j ∈ S, i < j, (5)

xi + pi si + qi (1 − si ) ≤ Width, i ∈ S, (6)

yi + qi si + pi (1 − si ) ≤ Length ·
m∑

k=1

(Qi,k · k), i ∈ S, (7)

yi ≥ Length ·
m∑

k=1

(Qi,k · (k − 1)), i ∈ S, (8)

Y ≥ yi + qi si + pi (1 − si ), i ∈ S, (9)

where ai, j , bi, j , ci, j , di, j , Qi,k, si ∈ {0, 1}, and M is a sufficiently large constant.
Here, Constraints (1)–(5) ensure that the rectangles are non-overlapping. Constraints
(6)–(8) indicate that each rectangle is fitly packed into only one of the stock sheets.
The decision variable Y in Constraint (9) denotes the length of the accumulated stock
sheets.

Remark 1 In the P2 model, the numbers of binary variables and constraints are 2n2 +
n(m + 1) and (5n2 + 3n)/2, respectively.
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To reduce the complexity of 2DCSP (i.e., 2n2 + n(m + 1) binary variables), we
propose a novel model that uses a much smaller number of binary variables in 2DCSP
(i.e., fixed-width stocks). The model is described in detail in the next section.

3 Proposed model

We first introduce the binary vector wi = (wi,1, wi,2, . . . , wi,θ ), where i denotes a
small rectangle cut from the kth stock sheet for k = 1, . . . , m, and θ = �log2 m�. We
then have the following expressions:

k = 1 +
θ∑

r=1

2r−1wi,r , θ = �log2 m�, wi,r ∈ {0, 1}. (10)

Let S(k) ⊆ {1, . . . , θ} be a subset of indexes such that

k = 1 +
∑

r∈S(k)

2r−1. (11)

In addition, let |S(k)| be the number of elements in S(k); for example, S(1) = φ and
|S(1)| = 0, S(2) = {1} and |S(2)| = 1, S(4) = {1, 2} and |S(4)| = 2, and so on. We
then introduce the following propositions:

Proposition 1 Define m equations to represent a binary vector wi based on
(wi,1, . . . , wi,θ ) as follows:

Fk(wi ) = |S(k)| −
∑

r∈S(k)

wi,r +
∑

r /∈S(k)

wi,r for k = 1, . . . , m. (12)

Proof (i) If k = 1+∑θ
r=1 2r−1wi,r , then |S(k)| = ∑

r∈S(k) wi,r and
∑

r /∈S(k) wi,r =
0, which ensures that Fk(wi ) = 0.

(ii) If k �= 1 + ∑θ
r=1 2r−1wi,r , then |S(k)| >

∑
r∈S(k) wi,r and

∑
r /∈S(k) wi,r ≥ 0 or

|S(k)| = ∑
r∈S(k) wi,r and

∑
r /∈S(k) wi,r ≥ 1, which ensures that Fk(wi ) ≥ 1.

(iii) We then prove that Fk(wi ) = 0 if and only if k = 1+∑θ
r=1 2r−1wi,r ; otherwise,

Fk(wi ) ≥ 1. 	

Remark 2 Only �log2 m� binary variables are used in the Proposition 1.

We utilize the Proposition 1 to express m equations using only �log2 m� binary
variables. As it is straightforward to introduce Proposition 1, we can derive the Propo-
sition 2 for 2DCSP afterward.

Proposition 2 n small rectangles need to be cut from m stock sheets. Referring to
the Proposition 1, we introduce θ = �log2 m� binary variables (i.e., wi,r f or r =
1, . . . , θ) to express m functions (i.e., Fk(wi )) for each cutting rectangle i (i ∈ S) cut
exactly from one of the stock sheets as follows:
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1 +
θ∑

r=1

2r−1wi,r ≤ m, i ∈ S, (13)

yi + (k − 1) · Length · Fk(wi ) ≥ (k − 1) · Length,

i ∈ S, k = 1, . . . , m, (14)

yi + qi si + pi (1 − si ) − (m − k) · Length · Fk(wi ) ≤ k · Length,

i ∈ S, k = 1, . . . , m, (15)

where the Length means the limited length of a stock sheet and the function Fk(wi )

is the same as Eq. (12).

Proof Based on the Proposition 1, if Fk∗(wi ) = 0 (k∗ is an arbitrary integer, and k∗ ∈
{1, . . . , m}), then the other Fk(wi ) ≥ 1 (k = 1, . . . , m, and k �= k∗). Constraints
(14) and (15) will only be active if

(i) yi ≥ (k∗ − 1) · Length,
(ii) yi + qi si + pi (1 − si ) ≤ k∗ · Length.

On the other hand, Constraints (14) and (15) will be inactive, and Fk(wi ) ≥ 1. The
conditions will ensure that rectangle i is cut from the stock sheet k∗. The Proposition 2
is therefore proven. 	


The P2 model refers to Chen’s method (1994), whose model used four binary vari-
ables (ai, j , bi, j , ci, j , di, j ) to handle the non-overlapping issue of the pair of rectangular
items (i, j). By referring to Li’s model, the non-overlapping issue can be expressed
using only two binary variables (ui, j , vi, j ) to reduce the complexity of 2DCSP.

Based on Li’s model, P2 , and the Proposition 2, a novel model of 2DCSP can be
formulated using a much smaller number of binary variables as follows:

P3 (proposed 2DCSP model)

Min Y

s.t. (13)−(15),

(xi −x j )+Width(ui, j +vi, j ) ≥ p j s j +q j (1−s j ), i, j ∈ S, i < j, (16)

(x j −xi )+Width(1−ui, j +vi, j ) ≥ pi si +qi (1−si ), i, j ∈ S, i < j, (17)

(yi −y j )+m · Length · (1+ui, j −vi, j )≥q j s j + p j (1−s j ), i, j ∈ S, i < j,(18)

(y j −yi )+m · Length · (2−ui, j −vi, j )≥qi si + pi (1−si ), i, j ∈ S, i < j, (19)

xi + pi si + qi (1 − si ) ≤ Width, i ∈ S, (20)

yi + qi si + pi (1 − si ) ≤ Y, i ∈ S, (21)

xi ≥ 0, yi ≥ 0, i ∈ S, (22)

where ui, j , vi, j , wi,r , si ∈ {0, 1}.
Remark 3 P3 requires n2+n�log2 m�binary variables and 2n2+n(2m+1) constraints.

By comparing Remark 3 with Remark 1, the complexity of the proposed 2DCSP
model is much less than that of the original model. The numerical experiments
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conducted to evaluate the performance of the proposed model are discussed in the
next section.

4 Numerical experiments

Two numerical examples are presented to demonstrate the effectiveness of the pro-
posed model and to compare its performance with that of the original model. The first
example is the sound box design assembly problem, and the second is the TFT-LCD
cutting stock problem. In both cases, the objective is to minimize the number of stocks
required to satisfy customer’s requirements. The numerical examples were coded in
IBM ILOG CPLEX [16] environment, and run on a PC with an Intel Pentium(D)
2.8 GHz CPU and 2 GB RAM.

Example 1 This problem arises in the sound box design, which requires cutting of
rectangular items from a standard size piece of wood (60 cm × 110 cm), i.e., Width =
60 and Length = 110 for each stock. The parameters of the required plates are
shown in Table 1. The given number of stock sheets is m = 4. The proposed model
utilizes two binary variables, wi,1 and wi,2, to construct Fk(wi ) for each plate because
�log2 4� = 2. The problem is formulated as follows:

Min Y

s.t. (16)−(22),

1 + wi,1 + 2wi,2 ≤ 4, i = 1, . . . , 7,

yi + 440(wi,1 + wi,2) ≥ 0, i = 1, . . . , 7,

yi + qi si + pi (1 − si ) + 440(wi,1 + wi,2) ≤ 110, i = 1, . . . , 7,

yi + 440(1 − wi,1 + wi,2) ≥ 110, i = 1, . . . , 7,

yi + qi si + pi (1 − si ) + 440(1 − wi,1 + wi,2) ≤ 220, i = 1, . . . , 7,

yi + 440(1 + wi,1 − wi,2) ≥ 220, i = 1, . . . , 7,

yi + qi si + pi (1 − si ) + 440(1 + wi,1 − wi,2) ≤ 330, i = 1, . . . , 7,

yi + 440(2 − wi,1 − wi,2) ≥ 330, i = 1, . . . , 7,

yi + qi si + pi (1 − si ) + 440(2 − wi,1 − wi,2) ≤ 440, i = 1, . . . , 7.

This problem is solved using CPLEX. The maximal number of binary variables
and linear constraints required under the proposed model is 63 and 161, respectively.
Moreover, the optimal solution Y = 277 is obtained in a feasible number of iterations
and at a reasonable time (i.e., iterations = 1,066,902 and CPU time = 274.36 seconds),
corresponding to three pieces of stock. Table 2 lists the results of the original and the
proposed models, and Fig. 1 shows the solution in graphical form.

Table 1 The parameters of the required plates in Example 1

#1 (82,60) #2 (90,30) #3 (85,27) #4 (60,25) #5 (60,20)
#6 (55,29) #7 (57,30)

Plate #(pi , qi )
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Table 2 Experiment results of Example 1

Items 0–1 variables # of constraints Iterations CPU Time (s)

P2 (reference model) 196 448 n/a n/a
P3 (proposed model) 63 105 1,066,902 274.36

m = 4. The CPU time in P1 is outside the limit (time >2,000)
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Fig. 1 Graphic solution of Example 1

Example 2 In the TFT-LCD industry example [30], the dimensions of each glass
substrate (i.e., stock) are fixed at (150 cm × 180 cm), where the number of stocks
is four. Assuming that a certain production line needs 18 different-sized products, as
shown in Table 3, the problem is formulated as follows:

Min Y

s.t. (16)−(22),

1 + wi,1 + 2wi,2 ≤ 4, i = 1, . . . , 18,

yi + 720Fk(wi ) ≥ 180(k − 1), i = 1, . . . , 18, k = 1, . . . , 4,

yi + qi si + pi (1 − si ) − 720Fk(wi ) ≤ 180k, i = 1, . . . , 18, k = 1, . . . , 4.

This problem is also solved using CPLEX. The maximal number of binary variables
and linear constraints required under the proposed model is 360 and 810, respectively.
Moreover, the optimal solution Y = 525 is obtained in a feasible number of iterations
and at a reasonable time (i.e., approximately 24 million iterations and 2,000 s), corre-
sponding to three pieces of stocks. The result of Example 2 under P2 is not available
due to the limited solution time (i.e., insufficient memory). Table 2 lists the results of
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Table 3 Eighteen kinds of products in Example 2

#1 (130,30) #2 (130,10) #3 (120,25) #4 (100,100) #5 (95,95)
#6 (90,90) #7 (95,85) #8 (80,80) #9 (80,75) #10 (70,70)
#11 (60,60) #12 (55,50) #13 (40,40) #14 (50,40) #15 (100,30)
#16 (45,20) #17 (20,15) #18 (25,10)

Plate #(pi , qi )

Fig. 2 Graphic result of the TFT-LCD example

Table 4 Experiment results of Example 2

Items 0–1 variables # of constraints Iterations CPU time (s)

P2 (reference model) 1,296 2,736 n/a n/a
P3 (proposed model) 360 655 24,879,402 2,023.94

m = 4. The CPU time in P1 is outside the limit (time >5,000)

the original and the proposed models, and Fig. 2 shows the solution in graphical form
(Table 4).

The results of Examples 1 and 2 demonstrate that, compared with the reference
model, the proposed model requires a logarithmic number of binary variables to for-
mulate a model of 2DCSP, and the binary variables are used to ensure that each
assigned rectangles is exactly cut from one of the stocks. Thus, it is computationally
more efficient due to the reduction of the complexity of binary variables. From this
point of view, Example 2 is considered as an illustration which randomly generates
different-sized products with various numbers of 0–1 variables, and the stock size is
also fixed at (150 cm × 180 cm). After solving ten tests, we investigate the tendency
of P2 and P3 using different m and n with various 0–1 variables, as shown in Fig. 3.
Here, we mark the running time for each test. Examining the results of these tests, we
have the following observations:

(i) Both models were able to find the same optimal solution for each of the first five
tests (tests 1–5).
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Fig. 3 Trend of CPU time in the ten tests

(ii) Owing to limitation problem (CPLEX default setting) caused by the large number
of 0–1 variables and constraints, P2 failed to provide solution in 3 h in our
experiments using n ≥ 12 and m ≥ 6.

(iii) P3 successfully solved all ten tests within the default limitation of the CPLEX
software.

5 Conclusions

We have proposed a deterministic model that only requires logarithmic binary vari-
ables and additional constraints to solve 2DCSPs. Compared with the current model,
the proposed model can solve the same problem with larger scale size. On the other
hand, to obtain a feasible solution within a reasonable time, merging the column gener-
ation techniques, distributed algorithms, or heuristic methods (i.e., genetic algorithms,
simulated annealing, and tabu-search) is a sensible practice direction to enhance the
computational efficiency in future research.
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