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For one-way fixed effects ANOVA, it is well known that the conventional F test of the
equality of means is not robust to unequal variances, and numerous methods have been
proposed for dealing with heteroscedasticity. On the basis of extensive empirical
evidence of Type | error control and power performance, Welch’s procedure is
frequently recommended as the major alternative to the ANOVA F test under variance
heterogeneity. To enhance its practical usefulness, this paper considers an important
aspect of Welch’s method in determining the sample size necessary to achieve a given
power. Simulation studies are conducted to compare two approximate power functions
of Welch'’s test for their accuracy in sample size calculations over a wide variety of model
configurations with heteroscedastic structures. The numerical investigations show that
Levy’s (1978a) approach is clearly more accurate than the formula of Luh and Guo (201 I)
for the range of model specifications considered here. Accordingly, computer programs
are provided to implement the technique recommended by Levy for power calculation
and sample size determination within the context of the one-way heteroscedastic
ANOVA model.

I. Introduction

The one-way analysis of variance (ANOVA) Ftest is a procedure widely used for testing the
equality of means of independent normal distributions with homogeneous variances.
The corresponding implications, from the basic diagnostics of underlying assumptions to
the required power calculations and sample size determinations, have been extensively
addressed in the literature; see, for example, Howell (2010), Kirk (1995), Kutner,
Nachtsheim, Neter and Li (2005) and Scheffé (1959). However, the violation of the
independence, normality, and homogeneity of variance assumptions either separately or
in conjunction with one another has been the target of criticism in applications of ANOVA
(Coombs, Algina & Oltman, 1996; Glass, Peckham & Sanders, 1972; Harwell, Rubinstein,
Hayes & Olds, 1992; Keselman et al., 1998). Specifically, the F test is not robust to all
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degrees of unequal variances (Brown & Forsythe, 1974; Clinch & Keselman, 1982; De
Beuckelaer, 1996; Kohr & Games, 1974; Levy, 1978b; Wilcox, Charlin & Thompson,
1986), and the actual significance level and power can be distorted even when sample
sizes are equal (Krutchkoff, 1986; Rogan & Keselman, 1977). Accordingly, various
parametric and non-parametric alternatives to the traditional F test have been proposed to
counter the effects of heteroscedasticity (Lix, Keselman & Keselman, 1996).

Given the extensive Monte Carlo simulation studies conducted in this area, three
important aspects of these numerical evidences should be pointed out. First, the non-
parametric procedures are also substantially affected by heterogeneous variances and are
generally inferior to the parametric approaches (Keselman, Rogan & Feir-Walsh, 1977;
Tomarken & Serlin, 1986; Zimmerman, 2000). Second, the parametric tests of Alexander
and Govern (1994), Brown and Forsythe (1974), James (1951) and Welch (1951) have
been shown to provide accurate control of Type I error rate and competitive power
performance (Schneider & Penfield, 1997). However, there appears to be a lack of
consensus in the literature on which method is most appropriate. Essentially, there is no
one uniformly best alternative to the F test under heterogeneity of variance (Dijkstra &
Werter, 1981; Grissom, 2000). Third, despite the fact that no approach is ideal, it is still of
practical importance to have a reliable and simple test procedure that is sufficiently robust
to heteroscedasticity when distributions are normal. On the basis of the comprehensive
appraisals by Brown and Forsythe (1974), De Beuckelaer (1996), Grissom (2000), Harwell
et al. (1992), Levy (1978b), Tomarken and Serlin (1986) and Wilcox et al. (1986), the
approximation of Welch (1951) is the most widely recommended technique to correct for
variance heterogeneity. In short, it has distinct advantages over other competing
approaches in its overall performance, computational ease, and general availability in
statistical computer packages.

Yet another problem with the common methods for analysing the data from one-way
independent groups designs occurs when the distribution of each population is non-
normal in form. See Cribbie, Fiksenbaum, Keselman and Wilcox (2012), Lix and Keselman
(1998), Wilcox (2003) and Wilcox and Keselman (2003) for modern robust methods and
updated strategies when the standard assumptions of normality and homoscedasticity are
violated. In particular, the Welch test with robust estimators of trimmed means and
Winsorized variances has been shown to provide excellent Type I error control and power
performance when data are non-normal and heterogeneous. However, we will restrict our
attention to the appropriate procedure for testing the equality of means of independent
normal distributions with possibly unequal error variances here.

It is conceivable that a test procedure with robust Type I error control and excellent
power performance is not sufficient for the purposes of research design and statistical
inference. The corresponding power analysis and sample size computation must also be
considered before it can be adopted as a general methodology in practice. Theoretically,
the non-null distribution of a test procedure is required in order to evaluate the intrinsic
issues of power analysis and sample size assessment. But to our best knowledge, no power
function or non-null distribution has been proposed for the prescribed tests of Alexander
and Govern (1994), Brown and Forsythe (1974) and James (1951). On the other hand,
several approximations have been described for the non-null distribution of Welch’s
(1951) test in Levy (1978a), Luh and Guo (2011) and Kulinskaya, Staudte and Gao (2003).
Although these results permit power and sample size considerations for the well-known
Welch (1951) method, no research to date has compared their distinct characteristics in
terms of theoretical principles, computational requirements and empirical performance.
But in fact their formulations are markedly different and demand varying computational
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efforts. Thus it is prudent to examine their unique feature and fundamental discrepancy in
order to better understand the selection of an appropriate approach to power analysis and
sample size determination in one-factor ANOVA studies.

Instead of a non-central F distribution, Kulinskaya et al. (2003) presented a chi-square-
based power approximation to the non-null distribution of Welch’s test. They showed
that the shifted and rescaled chi-square approximation is more accurate than the standard
chi-square transformation. However, there are two obvious disadvantages of their
approximate power function. First, the chi-square-based formulation does not conform to
the entrenched F test of homoscedastic ANOVA or Welch’s test of heteroscedastic
ANOVA. Second, the complexity of their proposed expression is overwhelming. It is
worthwhile to consider a more transparent procedure with fewer computational and
theoretical hurdles. Thus the approach of Kulinskaya et al. (2003) will not be considered
further in this paper.

Recently, Luh and Guo (2011) suggested a non-central F distribution to approximate
the non-null distribution of Welch’s test. The non-centrality of their non-central F
distribution is a direct modification of the non-centrality of the usual Ftest’s exact non-null
F distribution under balanced design and homogeneity of variance. In particular, the non-
centrality derived involves a simple average of the variance and sample size ratios of each
group. The adapted formula at first sight provides a convenient approximation and is
computationally simple. Notably, Luh and Guo (2011) concluded that their technique is
suitable for obtaining the adequate sample sizes in heterogeneous ANOVA. However, a
closer inspection of their numerical results reveals that the discrepancy between the
nominal power and simulated power (or estimate of true power) is sizeable for several
cases considered in their simulation study. Hence, the accuracy of their proposed power
function in sample size estimation is questionable. Further examinations are required to
demonstrate the underlying drawbacks associated with their approximate procedure.

According to the explication of power and sample size considerations for Welch’s
procedure presented above, the approximate technique proposed in Levy (1978a) has
been given insufficient consideration, though a notable exception is Tomarken and Serlin
(1986). Due to the complexity of theoretical justification for Welch’s test procedure, no
explicit analytic form of the corresponding non-null distribution is available. However,
the approximate non-null distribution of Levy (1978a) can be obtained by replacing the
sample means and variances in Welch’s test statistic with corresponding population
parameters. It was shown in the numerical comparisons of the estimated power and
simulated power of Levy (1978a) that the suggested non-central F distribution yields an
adequate approximation to the non-null distribution of Welch’ statistic. Later, Tomarken
and Serlin (1986) also strongly recommended the non-central F approximation for
conducting power analyses of the Welch procedure. Thus the formula of Levy (1978a) is
of great potential use and should be properly recognized. But the explication of Levy’s
non-central F distribution has been confined to power examination, and no single study
has extended the investigation to sample size calculation. In view of the limitations of the
existing findings, it is essential to generalize and assess the effectiveness of Levy’s (1978a)
approximate formula in sample size determination with modern computing facilities and
accessible statistical software.

Itis important to note that the approximate power functions of Levy’s (1978a) and Luh
and Guo (2011) both rely on a non-central F distribution, with identical numerator and
denominator degrees of freedom. The only difference is in their respective specifications
of the non-centrality parameter. Because of the complex nature of the non-central
distribution and non-centrality parameter, a complete theoretical treatment and analytical
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evaluation is not feasible. However, there still remains no simultaneous comparison of the
empirical performance of the two approaches. In order to offer well-supported
recommendations on desirable sample sizes for heteroscedastic ANOVA models, this
paper appraises and compares the two approaches of Levy (1978a) and Luh and Guo
(2011) for power calculations and sample size determinations of Welch’s test procedure.
Since optimal sample size determinations for Welch’s (1938) two-group test were
presented in Jan and Shieh (2011), this paper focuses on the situations with three or more
treatment groups. Comprehensive empirical investigations were conducted to demon-
strate the potential advantages and disadvantages between the two methods under a
variety of mean structures, variance patterns, as well as equal and unequal sample sizes.
Our study reveals unique information that not only demonstrates the fundamental
deficiency of existing investigations, but also enhances the usefulness of the Welch test in
the context of ANOVA under variance heterogeneity. Moreover, corresponding SAS and R
computer codes are presented to facilitate the recommended procedure for computing
the achieved power level and required sample size in actual applications.

2. The Welch test

Consider the one-way heteroscedastic ANOVA model in which the observations X;; are
assumed to be independent and normally distributed with expected values p, and
variances o7

2

Xi]'NN(“isz‘)? (1)

where |1; and Gf are unknown parameters,7 = 1, ...,g(> 2)andj =1, ..., N; To test the
hypothesis that all treatment means are equal, the classic F test is the most widely used
statistical procedure assuming homogeneity of variance (62 = 63 = ... = Géz,). However,

it has been shown in extensive studies that the conventional F test is sensitive to the
heteroscedasticity formulation defined in (1). Of the numerous alternatives to the ANOVA
F test, we focus on the viable approach proposed in Welch (1951) in the form of

2
1+2(g-2)0/(g—-1)

where W; = N;/S7,87 = S (X _Xi)z/(zNi —1),X; = Z]}'V:HX:'J‘/NhX =>4, WiX;/U,
U=>%,W; and Q=>%_(1—-W;/U)"/(N;—1). Under the null hypothesis Ho:
U1 = Mz = ... = U, Welch (1951) suggests the approximate F distribution for W:

W&F(gila\})a

where F(g — 1,V) is the F distribution with g — 1 and v = (g* — 1)/(3Q) degrees of
freedom. Hence, H, is rejected at the significance level o if W > F,_1) g 4, Where Fg_1) 5.4
is the upper 100 ath percentile of the F distribution F(g — 1,V). Although numerical
evidence confirms the accurate Type I error control and superior power performance of
Welch'’s test, theoretical justification for the non-null distribution of W has rarely been
discussed. Especially, two non-central F approximations are considered in Levy (1978a)
and Luh and Guo (2011). Luh and Guo (2011) suggested
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where F(g — 1, v, A1) is the non-central F distribution with (¢ — 1) and v = (g2 — 1/
(3D degrees of freedom, where t1=3% (1— ;/0)* ) (N; — 1), 0, = N;/o7, and
L= Z‘;‘;l ;, and with non-centrality parameter

g 0 2
A :gzz':gl ( — ) 7
i=1 (1/ ®; )
where {1 = >°% | 1t,/g. Then the corresponding power function of Welch’s test is of the
form

n(ALG) = P{F(g - 17V7 ALG) > F(gfl),va}' (3)

On the other hand, Levy (1978a) proposed the approximate non-null distribution for W
given by

w NF(g— ].,V,/\L)7

where
£ 2
AL =" wilp — ),
i=1

and i = Y% | o;,/v. In this case, the associated power function (Ay) is expressed as
n(Ar) = P{F(g = 1,V,AL) > Fig_1)va}- (4)

Note that the non-centrality parameter A can be expressed as

_ Z‘f:l(“i - 11)2
M6 =T (1w)/g

Hence, the heteroscedastic variance property is only accommodated in the quantity

¢ (/o) /g =% ,(c7/N;)/g as a simple average of variances of group means.
Contrast this with the form of the non-centrality parameter of Levy’s (1978a) F
approximation. The variance heterogeneity directly employed to reflect the weight of
each of the group means in A; makes a great difference in power performance.

It was demonstrated in Levy (1978a) that the actual power of Welch’s test
P{wW > F(g,l)ﬁ_’a} can be well approximated by m(A;). As noted in Tomarken and Serlin
(1986), this procedure may prove useful in conducting power analysis for one-way
heteroscedastic ANOVA. Moreover, it is of great interest to extend the approach to sample
size determination, just as in the case of Luh and Guo (2011) with the approximate power
function (A ). In spite of the complexity in the denominator degrees of freedom of the F
distribution, the power approximations in equations (3) and (4) closely resemble the
power function of the ANOVA F test. But the two non-centrality parameters Ay and A
differ considerably in their expressions, and thus the resulting behaviours of the two
power functions are presumably divergent. We next perform numerical investigations to
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evaluate and compare the accuracy of the two formulas for computing sample size under
various model configurations likely to occur in practice.

3. Simulation studies

In order to enhance the applicability of sample size methodology and the fundamental
usefulness of Welch’s procedure, two Monte Carlo simulation studies were conducted to
investigate the performance of the sample size calculation with respect to the two power
functions described in Levy (1978a) and Luh and Guo (2011). With the approximate
power formulas given in equations (3) and (4), the sample sizes (Vy, ..., Ny needed to
attain the specified power 1 —  can be found by a simple iterative search for the chosen
significance level o and parameter values (y,,c7), i = 1, ..., g. Accordingly, the non-
centrality parameters A and A defined in (3) and (4) can be rewritten as

A = Nr - Mg and Ay = Ny - oy, (5)

respectively, where Ny =% Nylc =g Z;Zl(ui - ﬁ)z/{2§:1(af/qj)}, M=
¥l — D/o% i = Y (a/o7)/ S5 (@/0?) and ¢ = Ny/Npfor i = 1, ...,
g. Note that A and A; depend not on the group sizes but rather on the allocation ratio
among the groups, and serve as the effect size measures for the approximations in Luh and
Guo (2011) and Levy (1978a), respectively. As there may be several possible choices of
sample size that satisfy the chosen power level in the process of sample size calculations, it
is constructive to consider an appropriate design with a priori designated sample size
ratios that leads to a unique and optimal result. For ease of illustration, the sample size
ratios (ry, ..., 7g) are specified in advance with »;, = N/N,i =1, ..., g. Note that
qi =r1i/ Zf:l r;, where v, = N;/N; fori = 1, ..., g. Thus the task is confined to deciding
the minimum sample size Ny (with N; = Nyr,, i = 2, ..., @) required to achieve the desired
power level.

Each of the vital factors of mean pattern, variance characteristic, and sample size
structure has been shown to affect the magnitude of non-centrality and power. To provide
a systematic demonstration, four patterns of variability in the means were used to assess
power and compute sample size: (a) minimum variability (one mean at each extreme of
the range, and all other means at the midpoint); (b) intermediate variability (such as means
equally spaced through the range); (¢) maximum variability (half of the means at each
extreme of the range); and (d) extreme variability (one mean at one extreme of the range,
and all other means equal and at the other extreme). Similar mean configurations were
considered in Alexander and Govern (1994), Cohen (1988), De Beuckelaer (1996) and
Tomarken and Serlin (1986). The empirical examination consists of two studies, of which
the first re-examines the minimum variability mean patterns in Luh and Guo (2011), and
the second evaluates the other cases of intermediate, maximum and extreme variability
that were not considered in Luh and Guo (2011).

3.1. Study |

3.1.1. Design

For purposes of comparison, we reconsider the model settings with g = 4 and 6in Table 1
of Luh and Guo (2011) in which the mean values are of minimum variability with L = {1, 0,
0, —1} and {1, 0, 0, 0, 0, —1}, respectively. The corresponding two variance settings,



78  Show-Li Jan and Gwowen Shieh

representing homogeneous and heterogeneous structures, are 6> = {1, 1, 1,1} and {1, 4,
9,16},and {1,1,1,1,1, 1} and {1, 1, 4, 4, 9, 9}, respectively. Moreover, the sample size
ratio is fixed as the variance ratio »; = N;/N; = c,/c; for i =1, ..., g. With these
specifications, the required sample sizes were computed for the two approaches with the
chosen power value and significance level. Throughout this empirical investigation, the
significance level is set at o = .05. Note that the sample sizes of Luh and Guo’s method are
calculated with the algorithm presented in Luh and Guo (2011), which involves some
further modification when applying the power function m(A;g) in equation (3). In
contrast, the sample sizes for Levy’s procedure are determined with the power function ©
(Ap inequation (4).Inaddition, the actual or approximate powers are calculated with the
resulting sample sizes. The SAS/IML (SAS Institute, 2011) and R (R Development Core
Team, 2006) programs employed to perform the sample size determination and power
calculation for Levy’s (1978a) procedure are presented in Appendices A-D. The
computed sample sizes and approximate powers are listed in Tables 1-3 for power
levels .7, .8 and .9, respectively. Because of the underlying metric of integer sample sizes,
the values achieved are marginally larger than the nominal level for both procedures. The
only two exceptions occur with the variance homogeneity cases of comparatively small
sample sizes in Table 1. Then for both procedures, estimates of the true power associated
with given sample size and parameter configuration are computed via Monte Carlo
simulation of 10,000 independent data sets. For each replicate, (Vy, ..., Ng) normal
outcomes are generated with the one-way homoscedastic or heteroscedastic ANOVA
model. Next, the test statistic Wis computed and the simulated power is the proportion of
the 10,000 replicates whose test statistics W exceed the corresponding critical value
Fy 1y, 05. For the procedure examined, the adequacy for power and sample size
calculation is determined by the difference between the simulated power and approx-
imate power computed earlier. The simulated power and difference are also summarized
in Tables 1-3 for the three designated power levels.

3.1.2. Results

An inspection of the reported sample sizes in Tables 1-3 reveals that in general the
necessary sample sizes for Luh and Guo’s (2011) method are larger than those for Levy’s
(1978a) approach. There is only one case in Table 3 where the two sets of sample sizes are
identical. But even with the same sample sizes, the two power functions (A and (A )
still give different approximate power values because of the distinct non-centrality
parameter formulations. More importantly, the discrepancies between simulated powers
and approximate powers indicate that the performance of Luh and Guo’s method is
noticeably unstable and in several cases disturbing. Specifically, the resulting errors in
Tables 1-3 range from .0131 to .1060. On the other hand, the errors associated with
Levy’s approach in Tables 1-3 clearly show that the approximate power formula of
equation (4) performs extremely well because all absolute errors are less than .01 for the
12 cases examined here.

3.2. Study II

3.2.1. Design
To show a profound implication of the sample size procedures, further numerical
assessments were performed with different variability patterns in mean structure. By



Sample size determinations for Welch’s test in one-way heteroscedastic ANOVA 79

"A19A102d$21 ‘0TOT" PUE ‘€CEE™ ‘0860° “00S" 2T SUONEINSIUOD [9POW INOJ 31 JOJ Ty $971S 100]J9 Y1, "910N

(o€ ‘0¢ ‘0T (o€ ‘o¢ {66% %11} =0

0L00" — 780L° ZSIL ‘0Z ‘0T ‘01 ¥L60° 9018’ 1L A 7 A ANNA)) {fI—0‘000°1y =1
fr'rrrry =0

LZ00 — STLL TSLL (8'8'8'8'8°‘®) L9L0° 928 60SL 666666 {1—0000°1)="
916 %1} = 0

€C00 — $60L 6TIL % ‘0¢ ‘0T ‘0D zZior 0808’ 890L (8% ‘'9¢ ‘¥T ‘T f1I—-‘0o‘0‘1} =n
{r'rra) =0

9¢00" — 09LL 96LL QLLLD 0901 4554 TLEL 8‘8'8'®) {fiI—‘o‘0‘1} =1

DU Jomod Jomod saz1s o1dweg DU Jomod Jomod $2IN3dONIIS IDUBLIEA PUE UBI\

parenwig orewnxorddy

parenuwig orewnxorddy

saz1s ojdwres

AADT

14

ono pue yng

oL st amod

Jeurou uayMm (e8L61) AA97 pue (1107) ono pue ynt jo sayeoidde oy 1oy 1omod pajenuuts pue ‘Jomod arewnrxordde ozis adwes paindwo) 1 J[qe],



80  Show-Li Jan and Gwowen Shieh

"A[2AN2ds$21 ‘OTOT" PUR ‘CECCE “0860° ‘00S" 28 suonein3yguod [Ppow Jnoj 3y J0J Ty $3ZIs 1991J2 ], 210N

(9¢ ‘o¢ ‘¥T 66F%% 11} =0
0S00" — LLOS LT18 $T T1‘TD $180° LS6S CHIS (¥ ‘e¥ ‘6z ‘6z ‘ST 'S {1—000°0°T} =1
{rrrraaa =0
9900"— 09¢8’ 9TH8’ 66666 SO%0’ 1188 90¥8’ O1 ‘01 ‘0T ‘0T ‘0L ‘0D {I—‘0‘0‘0‘0‘T} =1
916 %1} = 0
6500 — 986L’ o8 (8% ‘o¢ ‘T ‘TD 9090’ SL98’ 6908’ (SS ‘T¥ ‘8T ¥ f1—o0‘ry =1
{rrra) =0
$600 — cerg 67s8 (8‘8'8‘8) €80 L66S PIEs 6666 {1I—‘0‘0‘1} =1
DUIPI Jomod Jomod saz1s ardweg DUIPI Jomod Jomod $21n30N1Ss $971s adweg JOUBLIEA PUE UBIN
paremuwig  oewrxoiddy paremuwig  oewrxoiddy
AAT ony pue yny

08’ st 3omod
[eurwou uoyMm (e8L61) 4497 pue (1 107) ono pue yny Jo saydeoidde ayy Joy omod pajenuis pue ‘Jomod aewrxordde ‘ozis ojdwes paindwo) *z [qe],



Sample size determinations for Welch’s test in one-way heteroscedastic ANOVA 81

"A12A100d$21 ‘OTOT" PUE ‘CEEE™ ‘0860° “00S" 2T SUONELINSIUOD [9POW INOJ 31 J0J Ty $97IS 100JJ2 YL, "dI0N

(¥ ‘¥ ‘o¢ (¢ ‘0s ‘¥¢ {66% %11} =0
€900 — 9006’ 6906° ‘0¢ ‘ST ‘ST e S6¢6° €C06’ PeLTLD {1—‘0‘00‘0‘T} =1
(LI rr (ILrr‘re frrrraa =0
9200 — 9¢26 7826 TTIT“TD IST0 €06 TLOG Tt {i—‘o‘0‘o‘o‘ry =1
for'6 % 1} =0
0100 — CF16 €C16° @9 ‘8% T€ 9D SSHO’ C6¥6 8¢06’ (@L %S 9¢ ‘8D tI—‘0‘0‘1y =n
{r'rray =0
1,00 — SL6S 9%06’ 6666 8610’ PHC6 9%16 1 ‘01 ‘0L ‘0D f1I—=‘0‘0‘r} =n
DUIPI Jomod Jomod $az1s adweg DUDIPI Jomod Jomod $2IN3I0N1NS JDUELIEA PUE UBI\
paremuirs Jrewrxoiddy parenuig oewrxoiddy saz1s ordweg
AAT ony pue yny

06 St amod
[eurwou uayMm (e8L61) 4497 pue (1102) ono pue yng jo soydeordde oys 10y 1omod paremuwis pue ‘Jomod orewnxordde ozis ojdwes paindwo) € Iqe],



82  Show-Li Jan and Gwowen Shieh

way of illustration, we focus on the common situation of g = 4 with heterogeneous
variance characteristic {1, 4, 9, 16}. For mean patterns, two treatment structures are
examined for each case of the intermediate, maximum, and extreme variability
configurations:

e intermediate variability, {—3, —1, 1, 3}/20"% and {5, 1, —2, —4}/46"/%;
e maximum variability, {—1, 1, —1, 1}/2 and {—1, 1, 1, —1}/2;
e extreme variability, {3, —1, —1, —1}/12"%and {—1, —1, —1, 3}/12"/2

Note that the average and the sum of the squared deviation for the mean values are 1 = 0
and 3%, (4; — ©)* = 1 for all six situations. This particular formulation is designed to
expose how the non-centrality parameter A; of Luh and Guo (2011) is not sensitive with
respect to mean variability pattern. Moreover, the mean patterns are combined with three
different sample size ratios, {1,1,1, 1}, {1, 2,3,4} and {4, 3, 2, 1}. These three settings not
only include both balanced and unbalanced designs, but also create direct and inverse
pairing with variance structures. Overall these considerations result in a total of 18
different model configurations. Thus our simulations cover a much broader range of
situations than those considered in Luh and Guo (2011). These combinations of different
variance structures, mean variability patterns, and sample size allocations were chosen to
represent as much as possible the extent of characteristics that are likely to be obtained in
actual applications. Moreover, the computed sample sizes associated with these model
configurations reveal common and reasonable magnitudes of sample sizes used in typical
research study. Similarly to the implementation of the design in Study I, the computed
sample sizes, approximate powers, simulated powers, and associated errors of the two
competing approaches are presented in Tables 4-6 and Tables 7-9 for power values .8
and .9, respectively.

3.2.2. Results

It is important to note that the sample sizes calculated with the procedure of Luh and
Guo (2011) are identical in each of Tables 4-9. In other words, their method does not
adequately reflect the actual fluctuation of mean structures in power and sample size
computation. As expected, the associated approximate powers also remain the same.
In contrast, the corresponding sample sizes of Levy’s (1978a) approach vary with
different mean variability configurations in combination with variance and sample size
structures. With regard to the accuracy of sample size determination, the differences
between simulated power and approximate power of Luh and Guo’s (2011) formula
are substantial and unsatisfactory, especially for cases of extreme variability in means,
or circumstances under inverse pairing of sample sizes and variance in Tables 6 and
9. For example, the resulting errors of the two mean patterns {3, —1, —1, —1}/12"/?
and {—1, —1, —1, 3}/12"% are (1944, —.2599), (1615, —.1574), (.1968, —.3700),
(0990, —.2290), (.0884, —.1316), and (.0983, —.3671) in Tables 4-9, respectively.
Hence, Luh and Guo’s (2011) formula is clearly problematic and their method should
not be used. In contrast, Levy’s (1978a) method provides excellent performance in
that incurred errors are all within the small range of —.0072 to .0098. In short, this
numerical evidence demonstrates that Levy’'s (1978a) approach outperforms the
procedure of Luh and Guo (2011) in power and sample size calculations under a wide
variety of heteroscedastic model configurations.
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4. Conclusions

The problem of heterogeneous error variances in one-way fixed effects ANOVA models
has received considerable attention in the literature. Numerous approaches have been
suggested to tackle the practical and complicated issue of heteroscedasticity. Notably, the
Welch (1951) procedure has proved in several empirical investigations to provide
excellent Type I error control and superior power performance. Its ease of computation
and inclusion in software packages further enhance the applicability of Welch’s (1951)
test of the equality of means. But despite the extensive discussions of the selection of
viable alternatives to the conventional ANOVA F test, the sample size computation has
received inadequate attention from researchers. This study thus evaluates the properties
of the existing approximate power functions of Welch’s test in sample size determination
since it is vital that the properties of the rival sample size formulas be clearly understood.
Detailed numerical examinations were conducted to compare the procedures of Levy
(1978a) and Luh and Guo (2011) under a wide variety of model configurations. The
combined frameworks consist of the principle factors of means, variances and sample
sizes structures. The present research extends the conditions and findings beyond those
previously studied. We conclude that the intuitive approximation in Levy (1978a)
provides a feasible and accurate solution to the sample size problem in the heteroscedastic
ANOVA model. Considering the importance of power calculation and sample size
determination in actual practice and the limited features of available computer packages,
corresponding programs are developed to facilitate the use of the suggested approach.

References

Alexander, R. A., & Govern, D. M. (1994). A new and simpler approximation for ANOVA under
variance heterogeneity. Journal of Educational Statistics, 19, 91-101.

Brown, M. B., & Forsythe, A. B. (1974). The small sample behavior of some statistics which test the
equality of several means. Technometrics, 16, 129-132.

Clinch, J. J., & Keselman, H. J. (1982). Parametric alternatives to the analysis of variance. Journal of
Educational Statistics, 7, 207-214.

Cohen, J. (1988). Statistical power analysis for the bebavioral sciences. (2nd ed.). Hillsdale, NJ:
Erlbaum.

Coombs, W. T., Algina, J., & Oltman, D. O. (1996). Univariate and multivariate omnibus hypothesis
tests selected to control type I error rates when population variances are not necessarily equal.
Review of Educational Research, 66, 137-179.

Cribbie, R. A., Fiksenbaum, L., Keselman, H. J., & Wilcox, R. R. (2012). Effect of non-normality on test
statistics for one-way independent groups designs. Britisb Journal of Mathematical and
Statistical Psychology, 65, 56-73.

De Beuckelaer, A. (1996). A closer examination on some parametric alternatives to the ANOVA
F-test. Statistical Papers, 37, 291-305.

Dijkstra, J. B., & Werter, P. S. P. J. (1981). Testing the equality of several means when the population
variances are unequal. Communications in Statistics: Simulation and Computation, 10, 557—
569.

Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions
underlying the fixed-effects analysis of variance and covariance. Review of Educational
Research, 42, 237-288.

Grissom, R. J. (2000). Heterogeneity of variance in clinical data. Journal of Consulting and Clinical
Psychology, 68, 155-165.



90  Show-Li Jan and Gwowen Shieh

Harwell, M. R., Rubinstein, E. N., Hayes, W.S., & Olds, C. C. (1992). Summarizing Monte Carlo results
in methodological research: The one and two-factor fixed effects ANOVA cases. Journal of
Educational Statistics, 17, 315-339.

Howell, D. C. (2010). Statistical methods for psychology. (7th ed.). Belmont, CA: Wadsworth.

James, G. S. (1951). The comparison of several groups of observations when the ratios of the
population variances are unknown. Biometrika, 38, 324-329.

Jan, S. L., & Shieh, G. (2011). Optimal sample sizes for Welch’s test under various allocation and cost
considerations. Bebavior Research Methods, 43, 1014-1022.

Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., ... Levin, J. R.
(1998). Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA
and ANCOVA analyses. Review of Educational Research, 68, 350-386.

Keselman, H. J., Rogan, J. C., & Feir-Walsh, B. J. (1977). An evaluation of some non-parametric and
parametric tests for location equality. British Journal of Mathematical and Statistical
Psychology, 30, 213-221.

Kirk, R. E. (1995). Experimental design: Procedures for the bebavioral sciences (3rd ed.). Pacific
Grove, CA: Brooks/Cole.

Kohr, R. L., & Games, P. A. (1974). Robustness of the analysis of variance, the Welch procedure and a
Box procedure to heterogeneous variances. Journal of Experimental Education, 43, 1-69.
Krutchkoff, R. G. (1986). One-way fixed effects analysis of variance when the error variances may be

unequal. Journal of Statistical Computation and Simulation, 30, 259-271.

Kulinskaya, E., Staudte, R. G., & Gao, H. (2003). Power approximations in testing for unequal means
in a one-way ANOVA weighted for unequal variances. Communications in Statistics: Theory
and Methods, 32, 2353-2371.

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models. (5th
ed.). New York: McGraw-Hill.

Levy, K.]J. (1978a). Some empirical power results associated with Welch’s robust analysis of variance
technique. Journal of Statistical Computation and Simulation, 8, 43—48.

Levy, K. J. (1978b). An empirical comparison of the ANOVA F-test with alternatives which are more
robust against heterogeneity of variance. Journal of Statistical Computation and Simulation,
8, 49-57.

Lix, L. M., & Keselman, H. J. (1998). To trim or not to trim: Tests of location equality under
heteroscedasticity and nonnormality. Educational and Psychological Measurement, 58, 409—
429.

Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption violations
revisited: A quantitative review of alternatives to the one-way analysis of variance F test. Review
of Educational Research, 66, 579-620.

Luh, W. M., & Guo, J. H. (2011). Developing the non-centrality parameter for calculating the group
sample of the heterogeneous one-way fixed-effect ANOVA. Journal of Experimental
Education, 79, 53-63.

R Development Core Team (2000). R: A language and environment for statistical computing
[computer software and manual]. Vienna: R Foundation for Statistical Computing. Retrieved
from http://www .r-project.org

Rogan, J. C., & Keselman, H. J. (1977). Is the ANOVA F-test robust to variance heterogeneity when
sample sizes are equal? American Educational Research Journal, 14, 493—498.

SAS Institute (2011). SAS/IML User’s Guide, Version 9.2. Cary, NC: SAS Institute.

Scheffé, H. (1959). The analysis of variance. New York: Wiley.

Schneider, R. J., & Penfield, D. A. (1997). Alexander and Govern’s approximation: Providing an
alternative to ANOVA under variance heterogeneity. Journal of Experimental Education, 65,
271-286.

Tomarken, A. J., & Serlin, R. C. (1986). Comparison of ANOVA alternatives under variance
heterogeneity and specific noncentrality structures. Psychological Bulletin, 99, 90-99.

Welch, B. L. (1938). The significance of the difference between two means when the population
variances are unequal. Biometrika, 29, 350-362.



Sample size determinations for Welch’s test in one-way heteroscedastic ANOVA 91

Welch, B. L. (1951). On the comparison of several mean values: An alternative approach.
Biometrika, 38, 330-336.

Wilcox, R. R. (2003). Applying contemporary statistical techniques. San Diego, CA: Academic
Press.

Wilcox, R. R., Charlin, V. L., & Thompson, K. L. (1986). New Monte Carlo results on the robustness of
the ANOVA F, W, and F* statistics. Communications in Statistics: Simulation and
Computation, 15, 933-943.

Wilcox, R. R., & Keselman, H. J. (2003). Modern robust data analysis methods: Measures of central
tendency. Psychological Methods, 8, 254-274.

Zimmerman, D. W. (2000). Statistical significance levels of nonparametric tests biased by
heterogeneous variances of treatment groups. Journal of General Psychology, 127, 354-3064.

Received 26 January 201 2; revised version received 28 October 2012

Appendix A: SAS IML program for calculating the required sample sizes of
Welch’s test

PROC IML;PRINT "CALCULATE REQUIRED SAMPLE SIZE OF WELCH’S TEST”;
*USER SPECIFICATIONS;
*DEGNATED POWER;POWER=0.80;
*TYPE I ERROR;ALPHA=0.05;
*GROUP MEANS;MUVEC={-3 -1 1 3}/SQRT(20);
*GROUP VARIANCES;VARVEC={1 4 9 16};
*SAMPLE SIZE RATIOS;RVEC={1 11 1};
*END OF SPECIFICATIONS;
G=NCOL(MUVECQC);
PRINT G,RVEC,MUVEC,VARVEC;
ORVEC=RVEC/VARVEC;
MUPR=SUM(ORVEC#MUVEC)/SUM(ORVEQO);
LAMR=SUM(ORVEC#(MUVEC-MUPR)##2);
DF1=G-1;CCRIT=CINV(1-ALPHA,DF1);
LAMC=CNONCT(CCRIT,DF1,1-POWER);
NC=CEIL(LAMC/LAMR);
N1=NC-1;
DO UNTIL(INPOWER>POWER);
N1=N1+1;
NVEC=N1#RVEC;
OVEC=NVEC/VARVEC;
MUP=SUM(OVEC#MUVEC)/SUM(OVECQC);
LAM=SUM(OVEC#(MUVEC-MUP)##2);
DEL=SUM(((1-OVEC/SUM(OVEQC))##2)/(NVEC-1));
DF2=(G#G-1)/(3#DEL);
FCRIT=FINV(1-ALPHA,DF1,DF2);
NPOWER=SDF(‘F’ ,FCRIT ,DF1,DF2,LAM);
END;*FOR UNTIL;
PRINT 'SAMPLE SIZES’ NVEC;
PRINT "APPROXIMATE POWER’ NPOWER[FORMAT=8.4];
QUIT;
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Appendix B: SAS IML program for computing the approximate power of
Welch’s test

PROC IML;PRINT "COMPUTE APPROXIMATE POWER OF WELCH’ TEST”;
*USER SPECIFICATIONS;
*TYPE I ERROR;ALPHA=0.05;
*GROUP MEANS;MUVEC={1 00 -1};
*GROUP VARIANCES;VARVEC={111 1};
*SAMPLE SIZES;NVEC={9 9 9 9} ;
*END OF SPECIFICATIONS;
G=NCOL(NVECQ);
PRINT G,NVEC,MUVEC,VARVEC;
OVEC=NVEC/VARVEC;
MUP=SUM(OVEC#MUVEC)/SUM(OVEQ);
LAM=SUM(OVEC#(MUVEC-MUP)##2);
DF1=G-1,
DEL=SUM(((1-OVEC/SUM(OVEC)))##2)/(NVEC-1));
DF2=(G#G-1)/(3#DEL);
FCRIT=FINV(1-ALPHA ,DF1,DF2);
NPOWER=SDF(‘F’,FCRIT,DF1,DF2 LAM);
PRINT "APPROXIMATE POWER’ NPOWER[FORMAT=8.4];
QUIT;

Appendix C: R program for calculating the required sample sizes of
Welch’s test

function O {
#REQUIRED USER SPECIFICATIONS PORTION
power<-0.90 #DESIGNATED POWER
alpha<-0.05 #TYPE I ERROR
muvec<-c(-3,-1,1,3)/sqrt(20) #GROUP MEANS
varvec<-c(1, 4, 9, 16) #GROUP VARIANCES
rvec<-c(1,1,1,1) #SAMPLE SIZE RATIOS
#END OF REQUIRED USER SPECIFICATION
g<-length(muvec)
orvec<-rvec/varvec
mupr<-sum(orvec*muvec)/sum(orvec)
lamr<-sum(orvec*(muvec-mupr)”2)
dfi<-g-1
nl<5
apower<-0
while (apower<power){
nl<nl+1
nvec<-nl*rvec
ovec<-nvec/varvec
mup<-sum(ovec*muvec)/sum(ovec)
lam<-sum(ovec*(muvec-mup)*2)
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del<-sum(((1-ovec/sum(ovec))*2)/(nvec-1))
df2<-(g*g-1)/(3*deD)
ferit<-qf(1-alpha,df1,df2)
apower<-1-pf(fcrit,df1,df2,lam)

}

print(“nvec”)

print(nvec)

print(“apower”)

print(apower,digits=4)

}

Appendix D: R program for computing the approximate power of Welch’s
test

function O {
#REQUIRED USER SPECIFICATIONS PORTION
alpha<-0.05 #TYPE I ERROR
muvec<-c(1,0,0,-1) #GROUP MEANS
varvec<-c(1,1,1,1) #GROUP VARIANCES
nvec<-c(9,9,9,9) #GROUP SAMPLE SIZES
#END OF REQUIRED USER SPECIFICATION
g < -length(muvec)
dfl < -g-1
ovec<-nvec/varvec
mup<-sum(ovec*muvec)/sum(ovec)
lam<-sum(ovec*(muvec-mup)*2)
del<-sum(((1-ovec/sum(ovec))*2)/(nvec-1))
df2<-(g*g-1)/(3*deD)
ferit<-gf(1-alpha,df1,df2)
apower<-1-pf(fcrit,df1,df2,lam)
print(“nvec”)
print(nvec)
print(“apower”)
print(apower,digits=4)

}



