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For one-way fixed effects ANOVA, it is well known that the conventional F test of the

equality of means is not robust to unequal variances, and numerous methods have been

proposed for dealing with heteroscedasticity. On the basis of extensive empirical

evidence of Type I error control and power performance, Welch’s procedure is

frequently recommended as the major alternative to the ANOVA F test under variance

heterogeneity. To enhance its practical usefulness, this paper considers an important

aspect of Welch’s method in determining the sample size necessary to achieve a given

power. Simulation studies are conducted to compare two approximate power functions

ofWelch’s test for their accuracy in sample size calculations over a wide variety of model

configurations with heteroscedastic structures. The numerical investigations show that

Levy’s (1978a) approach is clearly more accurate than the formula of Luh and Guo (2011)

for the range of model specifications considered here. Accordingly, computer programs

are provided to implement the technique recommended by Levy for power calculation

and sample size determination within the context of the one-way heteroscedastic

ANOVA model.

1. Introduction

The one-way analysis of variance (ANOVA) F test is a procedurewidely used for testing the

equality of means of independent normal distributions with homogeneous variances.

The corresponding implications, from the basic diagnostics of underlying assumptions to

the required power calculations and sample size determinations, have been extensively

addressed in the literature; see, for example, Howell (2010), Kirk (1995), Kutner,
Nachtsheim, Neter and Li (2005) and Scheff�e (1959). However, the violation of the

independence, normality, and homogeneity of variance assumptions either separately or

in conjunctionwith one another has been the target of criticism in applications of ANOVA

(Coombs, Algina & Oltman, 1996; Glass, Peckham & Sanders, 1972; Harwell, Rubinstein,

Hayes & Olds, 1992; Keselman et al., 1998). Specifically, the F test is not robust to all
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degrees of unequal variances (Brown & Forsythe, 1974; Clinch & Keselman, 1982; De

Beuckelaer, 1996; Kohr & Games, 1974; Levy, 1978b; Wilcox, Charlin & Thompson,

1986), and the actual significance level and power can be distorted even when sample

sizes are equal (Krutchkoff, 1986; Rogan & Keselman, 1977). Accordingly, various
parametric and non-parametric alternatives to the traditional F test have been proposed to

counter the effects of heteroscedasticity (Lix, Keselman & Keselman, 1996).

Given the extensive Monte Carlo simulation studies conducted in this area, three

important aspects of these numerical evidences should be pointed out. First, the non-

parametric procedures are also substantially affected by heterogeneous variances and are

generally inferior to the parametric approaches (Keselman, Rogan & Feir-Walsh, 1977;

Tomarken & Serlin, 1986; Zimmerman, 2000). Second, the parametric tests of Alexander

and Govern (1994), Brown and Forsythe (1974), James (1951) and Welch (1951) have
been shown to provide accurate control of Type I error rate and competitive power

performance (Schneider & Penfield, 1997). However, there appears to be a lack of

consensus in the literature on which method is most appropriate. Essentially, there is no

one uniformly best alternative to the F test under heterogeneity of variance (Dijkstra &

Werter, 1981; Grissom, 2000). Third, despite the fact that no approach is ideal, it is still of

practical importance to have a reliable and simple test procedure that is sufficiently robust

to heteroscedasticity when distributions are normal. On the basis of the comprehensive

appraisals by Brown and Forsythe (1974), De Beuckelaer (1996), Grissom (2000), Harwell
et al. (1992), Levy (1978b), Tomarken and Serlin (1986) and Wilcox et al. (1986), the

approximation ofWelch (1951) is themostwidely recommended technique to correct for

variance heterogeneity. In short, it has distinct advantages over other competing

approaches in its overall performance, computational ease, and general availability in

statistical computer packages.

Yet another problem with the common methods for analysing the data from one-way

independent groups designs occurs when the distribution of each population is non-

normal in form. See Cribbie, Fiksenbaum,Keselman andWilcox (2012), Lix andKeselman
(1998), Wilcox (2003) andWilcox and Keselman (2003) for modern robust methods and

updated strategies when the standard assumptions of normality and homoscedasticity are

violated. In particular, the Welch test with robust estimators of trimmed means and

Winsorized variances has been shown toprovide excellent Type I error control andpower

performancewhendata are non-normal and heterogeneous.However,wewill restrict our

attention to the appropriate procedure for testing the equality of means of independent

normal distributions with possibly unequal error variances here.

It is conceivable that a test procedure with robust Type I error control and excellent
power performance is not sufficient for the purposes of research design and statistical

inference. The corresponding power analysis and sample size computation must also be

considered before it can be adopted as a general methodology in practice. Theoretically,

the non-null distribution of a test procedure is required in order to evaluate the intrinsic

issues of power analysis and sample size assessment. But to our best knowledge, no power

function or non-null distribution has been proposed for the prescribed tests of Alexander

and Govern (1994), Brown and Forsythe (1974) and James (1951). On the other hand,

several approximations have been described for the non-null distribution of Welch’s
(1951) test in Levy (1978a), Luh and Guo (2011) and Kulinskaya, Staudte and Gao (2003).

Although these results permit power and sample size considerations for the well-known

Welch (1951) method, no research to date has compared their distinct characteristics in

terms of theoretical principles, computational requirements and empirical performance.

But in fact their formulations are markedly different and demand varying computational
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efforts. Thus it is prudent to examine their unique feature and fundamental discrepancy in

order to better understand the selection of an appropriate approach to power analysis and

sample size determination in one-factor ANOVA studies.
Instead of a non-central F distribution, Kulinskaya et al. (2003) presented a chi-square-

based power approximation to the non-null distribution of Welch’s test. They showed

that the shifted and rescaled chi-square approximation is more accurate than the standard

chi-square transformation. However, there are two obvious disadvantages of their

approximate power function. First, the chi-square-based formulation does not conform to

the entrenched F test of homoscedastic ANOVA or Welch’s test of heteroscedastic

ANOVA. Second, the complexity of their proposed expression is overwhelming. It is

worthwhile to consider a more transparent procedure with fewer computational and

theoretical hurdles. Thus the approach of Kulinskaya et al. (2003) will not be considered
further in this paper.

Recently, Luh and Guo (2011) suggested a non-central F distribution to approximate

the non-null distribution of Welch’s test. The non-centrality of their non-central F

distribution is a directmodification of the non-centrality of the usual F test’s exact non-null

F distribution under balanced design and homogeneity of variance. In particular, the non-

centrality derived involves a simple average of the variance and sample size ratios of each

group. The adapted formula at first sight provides a convenient approximation and is

computationally simple. Notably, Luh and Guo (2011) concluded that their technique is
suitable for obtaining the adequate sample sizes in heterogeneous ANOVA. However, a

closer inspection of their numerical results reveals that the discrepancy between the

nominal power and simulated power (or estimate of true power) is sizeable for several

cases considered in their simulation study. Hence, the accuracy of their proposed power

function in sample size estimation is questionable. Further examinations are required to

demonstrate the underlying drawbacks associated with their approximate procedure.

According to the explication of power and sample size considerations for Welch’s

procedure presented above, the approximate technique proposed in Levy (1978a) has
been given insufficient consideration, though a notable exception is Tomarken and Serlin

(1986). Due to the complexity of theoretical justification for Welch’s test procedure, no

explicit analytic form of the corresponding non-null distribution is available. However,

the approximate non-null distribution of Levy (1978a) can be obtained by replacing the

sample means and variances in Welch’s test statistic with corresponding population

parameters. It was shown in the numerical comparisons of the estimated power and

simulated power of Levy (1978a) that the suggested non-central F distribution yields an

adequate approximation to the non-null distribution of Welch’ statistic. Later, Tomarken
and Serlin (1986) also strongly recommended the non-central F approximation for

conducting power analyses of the Welch procedure. Thus the formula of Levy (1978a) is

of great potential use and should be properly recognized. But the explication of Levy’s

non-central F distribution has been confined to power examination, and no single study

has extended the investigation to sample size calculation. In view of the limitations of the

existing findings, it is essential to generalize and assess the effectiveness of Levy’s (1978a)

approximate formula in sample size determination with modern computing facilities and

accessible statistical software.
It is important to note that the approximate power functions of Levy’s (1978a) and Luh

and Guo (2011) both rely on a non-central F distribution, with identical numerator and

denominator degrees of freedom. The only difference is in their respective specifications

of the non-centrality parameter. Because of the complex nature of the non-central

distribution and non-centrality parameter, a complete theoretical treatment and analytical
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evaluation is not feasible. However, there still remains no simultaneous comparison of the

empirical performance of the two approaches. In order to offer well-supported

recommendations on desirable sample sizes for heteroscedastic ANOVA models, this

paper appraises and compares the two approaches of Levy (1978a) and Luh and Guo
(2011) for power calculations and sample size determinations of Welch’s test procedure.

Since optimal sample size determinations for Welch’s (1938) two-group test were

presented in Jan and Shieh (2011), this paper focuses on the situations with three ormore

treatment groups. Comprehensive empirical investigations were conducted to demon-

strate the potential advantages and disadvantages between the two methods under a

variety of mean structures, variance patterns, as well as equal and unequal sample sizes.

Our study reveals unique information that not only demonstrates the fundamental

deficiency of existing investigations, but also enhances the usefulness of theWelch test in
the context of ANOVAunder variance heterogeneity.Moreover, corresponding SAS and R

computer codes are presented to facilitate the recommended procedure for computing

the achieved power level and required sample size in actual applications.

2. TheWelch test

Consider the one-way heteroscedastic ANOVA model in which the observations Xij are

assumed to be independent and normally distributed with expected values li and

variances r2
i :

Xij �Nðli;r2
i Þ; ð1Þ

where li and r2
i are unknown parameters, i = 1,…, g(� 2) and j = 1,…, Ni To test the

hypothesis that all treatment means are equal, the classic F test is the most widely used

statistical procedure assuming homogeneity of variance (r2
1 ¼ r2

2 ¼ . . . ¼ r2
g). However,

it has been shown in extensive studies that the conventional F test is sensitive to the
heteroscedasticity formulation defined in (1). Of the numerous alternatives to the ANOVA

F test, we focus on the viable approach proposed in Welch (1951) in the form of

W ¼
Pg

i¼1 Wið �Xi � ~XÞ2=ðg� 1Þ
1þ 2ðg� 2ÞQ=ðg2 � 1Þ ; ð2Þ

where Wi ¼ Ni=S
2
i ;S

2
i ¼

PNi

j¼1ðXij � �XiÞ2=ðNi � 1Þ; �Xi ¼
PNi

j¼1Xij=Ni; ~X ¼Pg
i¼1Wi

�Xi=U ;
U ¼Pg

i¼1Wi, and Q¼Pg
i¼1ð1�Wi=UÞ2=ðNi � 1Þ. Under the null hypothesis H0:

l1 = l2 = … = lg, Welch (1951) suggests the approximate F distribution for W:

W �� Fðg� 1; m̂Þ;

where Fðg� 1; m̂Þ is the F distribution with g � 1 and m̂ ¼ ðg2 � 1Þ=ð3QÞ degrees of

freedom. Hence,H0 is rejected at the significance level a ifW > Fðg�1Þ;m̂;a, where Fðg�1Þ;m̂;a
is the upper 100 ath percentile of the F distribution Fðg� 1; m̂Þ. Although numerical

evidence confirms the accurate Type I error control and superior power performance of

Welch’s test, theoretical justification for the non-null distribution of W has rarely been
discussed. Especially, two non-central F approximations are considered in Levy (1978a)

and Luh and Guo (2011). Luh and Guo (2011) suggested
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W �� Fðg� 1; m;KLGÞ;

where F(g � 1, t, ΛLG) is the non-central F distribution with (g � 1) and t = (g2 � 1)/

(3τ) degrees of freedom, where s ¼ Pg
i¼1ð1� xi=tÞ2=ðNi � 1Þ;xi ¼ Ni=r2

i , and

t ¼ Pg
i¼1 xi, and with non-centrality parameter

KLG ¼ g

Pg
i¼1 li � �lð Þ2Pg
i¼1 1=xið Þ ;

where �l ¼ Pg
i¼1 li=g. Then the corresponding power function of Welch’s test is of the

form

pðKLGÞ ¼ PfFðg� 1; m;KLGÞ > Fðg�1Þ;m;ag: ð3Þ

On the other hand, Levy (1978a) proposed the approximate non-null distribution for W

given by

W �� Fðg� 1; m;KLÞ;

where

KL ¼
Xg

i¼1

xi li � ~lð Þ2;

and ~l ¼ Pg
i¼1 xili=t. In this case, the associated power function p(ΛL) is expressed as

pðKLÞ ¼ PfFðg� 1; m;KLÞ > Fðg�1Þ;m;ag: ð4Þ

Note that the non-centrality parameter ΛLG can be expressed as

KLG ¼
Pg

i¼1ðli � ~lÞ2Pg
i¼1ð1=xiÞ=g :

Hence, the heteroscedastic variance property is only accommodated in the quantityPg
i¼1ð1=xiÞ=g ¼ Pg

i¼1ðr2
i =NiÞ=g as a simple average of variances of group means.

Contrast this with the form of the non-centrality parameter of Levy’s (1978a) F

approximation. The variance heterogeneity directly employed to reflect the weight of

each of the group means in ΛL makes a great difference in power performance.

It was demonstrated in Levy (1978a) that the actual power of Welch’s test

PfW > Fðg�1Þm̂;ag can be well approximated by p(ΛL). As noted in Tomarken and Serlin

(1986), this procedure may prove useful in conducting power analysis for one-way

heteroscedastic ANOVA.Moreover, it is of great interest to extend the approach to sample

size determination, just as in the case of Luh and Guo (2011) with the approximate power
function p(ΛLG). In spite of the complexity in the denominator degrees of freedomof the F

distribution, the power approximations in equations (3) and (4) closely resemble the

power function of the ANOVA F test. But the two non-centrality parameters ΛL and ΛLG

differ considerably in their expressions, and thus the resulting behaviours of the two

power functions are presumably divergent. We next perform numerical investigations to
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evaluate and compare the accuracy of the two formulas for computing sample size under

various model configurations likely to occur in practice.

3. Simulation studies

In order to enhance the applicability of sample size methodology and the fundamental

usefulness of Welch’s procedure, two Monte Carlo simulation studies were conducted to

investigate the performance of the sample size calculation with respect to the two power

functions described in Levy (1978a) and Luh and Guo (2011). With the approximate

power formulas given in equations (3) and (4), the sample sizes (N1, …, Ng) needed to
attain the specified power 1 � b can be found by a simple iterative search for the chosen

significance level a and parameter values ðli;r2
i Þ, i = 1, …, g. Accordingly, the non-

centrality parameters ΛLG and ΛL defined in (3) and (4) can be rewritten as

KLG ¼ NT � kLG and KL ¼ NT � kL; ð5Þ

respectively, where NT ¼ Pg
i¼1 Ni; kLG ¼ g � Pi¼1

g ðli � �lÞ2= Pg
i¼1ðr2j =qjÞ

n o
; kL ¼Pg

i¼1 qifðli � ~lÞ=rig2, ~l ¼ Pg
i¼1ðqili=r2

i Þ=
Pg

i¼1ðqj=r2
j Þ and qi = Ni/NT for i = 1, …,

g. Note that kLG and kL depend not on the group sizes but rather on the allocation ratio

among the groups, and serve as the effect sizemeasures for the approximations in Luh and

Guo (2011) and Levy (1978a), respectively. As there may be several possible choices of

sample size that satisfy the chosenpower level in theprocess of sample size calculations, it

is constructive to consider an appropriate design with a priori designated sample size

ratios that leads to a unique and optimal result. For ease of illustration, the sample size

ratios (r1, …, rg) are specified in advance with ri = Ni/N1i = 1, …, g. Note that

qi ¼ ri=
Pg

j¼1 rj, where ri = Ni/N1 for i = 1, …, g. Thus the task is confined to deciding
the minimum sample sizeN1 (withNi = N1ri, i = 2,…, g) required to achieve the desired

power level.

Each of the vital factors of mean pattern, variance characteristic, and sample size

structure has been shown to affect themagnitude of non-centrality and power. To provide

a systematic demonstration, four patterns of variability in the means were used to assess

power and compute sample size: (a) minimum variability (one mean at each extreme of

the range, and all othermeans at themidpoint); (b) intermediate variability (such asmeans

equally spaced through the range); (c) maximum variability (half of the means at each
extreme of the range); and (d) extreme variability (one mean at one extreme of the range,

and all other means equal and at the other extreme). Similar mean configurations were

considered in Alexander and Govern (1994), Cohen (1988), De Beuckelaer (1996) and

Tomarken and Serlin (1986). The empirical examination consists of two studies, of which

the first re-examines the minimum variability mean patterns in Luh and Guo (2011), and

the second evaluates the other cases of intermediate, maximum and extreme variability

that were not considered in Luh and Guo (2011).

3.1. Study I

3.1.1. Design

For purposes of comparison,we reconsider themodel settingswith g = 4 and 6 in Table 1

of Luh andGuo (2011) inwhich themean values are ofminimumvariabilitywithl = {1, 0,
0, �1} and {1, 0, 0, 0, 0, �1}, respectively. The corresponding two variance settings,
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representing homogeneous and heterogeneous structures, arer2 = {1, 1, 1, 1} and {1, 4,
9, 16}, and {1, 1, 1, 1, 1, 1} and {1, 1, 4, 4, 9, 9}, respectively. Moreover, the sample size

ratio is fixed as the variance ratio ri = Ni/N1 = ri/r1 for i = 1, …, g. With these

specifications, the required sample sizes were computed for the two approaches with the
chosen power value and significance level. Throughout this empirical investigation, the

significance level is set at a = .05. Note that the sample sizes of Luh and Guo’s method are

calculated with the algorithm presented in Luh and Guo (2011), which involves some

further modification when applying the power function p(ΛLG) in equation (3). In

contrast, the sample sizes for Levy’s procedure are determinedwith the power function p
(ΛL) in equation (4). In addition, the actual or approximate powers are calculatedwith the

resulting sample sizes. The SAS/IML (SAS Institute, 2011) and R (R Development Core

Team, 2006) programs employed to perform the sample size determination and power
calculation for Levy’s (1978a) procedure are presented in Appendices A–D. The

computed sample sizes and approximate powers are listed in Tables 1–3 for power

levels .7, .8 and .9, respectively. Because of the underlying metric of integer sample sizes,

the values achieved are marginally larger than the nominal level for both procedures. The

only two exceptions occur with the variance homogeneity cases of comparatively small

sample sizes in Table 1. Then for both procedures, estimates of the true power associated

with given sample size and parameter configuration are computed via Monte Carlo

simulation of 10,000 independent data sets. For each replicate, (N1, …, Ng) normal
outcomes are generated with the one-way homoscedastic or heteroscedastic ANOVA

model. Next, the test statisticW is computed and the simulated power is the proportion of

the 10,000 replicates whose test statistics W exceed the corresponding critical value

Fg�1;m̂; :05. For the procedure examined, the adequacy for power and sample size

calculation is determined by the difference between the simulated power and approx-

imate power computed earlier. The simulated power and difference are also summarized

in Tables 1–3 for the three designated power levels.

3.1.2. Results

An inspection of the reported sample sizes in Tables 1–3 reveals that in general the

necessary sample sizes for Luh and Guo’s (2011) method are larger than those for Levy’s

(1978a) approach. There is only one case in Table 3where the two sets of sample sizes are

identical. But evenwith the same sample sizes, the two power functions p(ΛL) and p(ΛLG)

still give different approximate power values because of the distinct non-centrality

parameter formulations. More importantly, the discrepancies between simulated powers
and approximate powers indicate that the performance of Luh and Guo’s method is

noticeably unstable and in several cases disturbing. Specifically, the resulting errors in

Tables 1–3 range from .0131 to .1060. On the other hand, the errors associated with

Levy’s approach in Tables 1–3 clearly show that the approximate power formula of

equation (4) performs extremely well because all absolute errors are less than .01 for the

12 cases examined here.

3.2. Study II

3.2.1. Design

To show a profound implication of the sample size procedures, further numerical
assessments were performed with different variability patterns in mean structure. By
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way of illustration, we focus on the common situation of g = 4 with heterogeneous

variance characteristic {1, 4, 9, 16}. For mean patterns, two treatment structures are

examined for each case of the intermediate, maximum, and extreme variability

configurations:

� intermediate variability, {�3, �1, 1, 3}/201/2 and {5, 1, �2, �4}/461/2;

� maximum variability, {�1, 1, �1, 1}/2 and {�1, 1, 1, �1}/2;

� extreme variability, {3, �1, �1, �1}/121/2 and {�1, �1, �1, 3}/121/2.

Note that the average and the sum of the squared deviation for the mean values are �l ¼ 0

and
Pg

i¼1ðli � �lÞ2 ¼ 1 for all six situations. This particular formulation is designed to

expose how the non-centrality parameterΛLG of Luh and Guo (2011) is not sensitive with
respect tomean variability pattern. Moreover, themean patterns are combinedwith three

different sample size ratios, {1, 1, 1, 1}, {1, 2, 3, 4} and {4, 3, 2, 1}. These three settings not
only include both balanced and unbalanced designs, but also create direct and inverse

pairing with variance structures. Overall these considerations result in a total of 18

different model configurations. Thus our simulations cover a much broader range of

situations than those considered in Luh and Guo (2011). These combinations of different

variance structures, mean variability patterns, and sample size allocations were chosen to

represent as much as possible the extent of characteristics that are likely to be obtained in
actual applications. Moreover, the computed sample sizes associated with these model

configurations reveal common and reasonable magnitudes of sample sizes used in typical

research study. Similarly to the implementation of the design in Study I, the computed

sample sizes, approximate powers, simulated powers, and associated errors of the two

competing approaches are presented in Tables 4–6 and Tables 7–9 for power values .8

and .9, respectively.

3.2.2. Results

It is important to note that the sample sizes calculated with the procedure of Luh and

Guo (2011) are identical in each of Tables 4–9. In other words, their method does not

adequately reflect the actual fluctuation of mean structures in power and sample size

computation. As expected, the associated approximate powers also remain the same.

In contrast, the corresponding sample sizes of Levy’s (1978a) approach vary with

different mean variability configurations in combination with variance and sample size

structures. With regard to the accuracy of sample size determination, the differences

between simulated power and approximate power of Luh and Guo’s (2011) formula
are substantial and unsatisfactory, especially for cases of extreme variability in means,

or circumstances under inverse pairing of sample sizes and variance in Tables 6 and

9. For example, the resulting errors of the two mean patterns {3, �1, �1, �1}/121/2

and {�1, �1, �1, 3}/121/2 are (.1944, �.2599), (.1615, �.1574), (.1968, �.3700),

(.0990, �.2290), (.0884, �.1316), and (.0983, �.3671) in Tables 4–9, respectively.

Hence, Luh and Guo’s (2011) formula is clearly problematic and their method should

not be used. In contrast, Levy’s (1978a) method provides excellent performance in

that incurred errors are all within the small range of �.0072 to .0098. In short, this
numerical evidence demonstrates that Levy’s (1978a) approach outperforms the

procedure of Luh and Guo (2011) in power and sample size calculations under a wide

variety of heteroscedastic model configurations.
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4. Conclusions

The problem of heterogeneous error variances in one-way fixed effects ANOVA models
has received considerable attention in the literature. Numerous approaches have been

suggested to tackle the practical and complicated issue of heteroscedasticity. Notably, the

Welch (1951) procedure has proved in several empirical investigations to provide

excellent Type I error control and superior power performance. Its ease of computation

and inclusion in software packages further enhance the applicability of Welch’s (1951)

test of the equality of means. But despite the extensive discussions of the selection of

viable alternatives to the conventional ANOVA F test, the sample size computation has

received inadequate attention from researchers. This study thus evaluates the properties
of the existing approximate power functions ofWelch’s test in sample size determination

since it is vital that the properties of the rival sample size formulas be clearly understood.

Detailed numerical examinations were conducted to compare the procedures of Levy

(1978a) and Luh and Guo (2011) under a wide variety of model configurations. The

combined frameworks consist of the principle factors of means, variances and sample

sizes structures. The present research extends the conditions and findings beyond those

previously studied. We conclude that the intuitive approximation in Levy (1978a)

provides a feasible and accurate solution to the sample size problem in the heteroscedastic
ANOVA model. Considering the importance of power calculation and sample size

determination in actual practice and the limited features of available computer packages,

corresponding programs are developed to facilitate the use of the suggested approach.
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AppendixA: SAS IML program for calculating the required sample sizes of

Welch’s test

PROC IML;PRINT ”CALCULATE REQUIRED SAMPLE SIZE OF WELCH’S TEST”;

*USER SPECIFICATIONS;

*DEGNATED POWER;POWER=0.80;
*TYPE I ERROR;ALPHA=0.05;
*GROUP MEANS;MUVEC={-3 -1 1 3}/SQRT(20);

*GROUP VARIANCES;VARVEC={1 4 9 16};
*SAMPLE SIZE RATIOS;RVEC={1 1 1 1};
*END OF SPECIFICATIONS;

G=NCOL(MUVEC);

PRINT G,RVEC,MUVEC,VARVEC;

ORVEC=RVEC/VARVEC;
MUPR=SUM(ORVEC#MUVEC)/SUM(ORVEC);

LAMR=SUM(ORVEC#(MUVEC-MUPR)##2);

DF1=G-1;CCRIT=CINV(1-ALPHA,DF1);
LAMC=CNONCT(CCRIT,DF1,1-POWER);
NC=CEIL(LAMC/LAMR);

N1=NC-1;
DO UNTIL(NPOWER>POWER);

N1=N1+1;
NVEC=N1#RVEC;
OVEC=NVEC/VARVEC;
MUP=SUM(OVEC#MUVEC)/SUM(OVEC);

LAM=SUM(OVEC#(MUVEC-MUP)##2);
DEL=SUM(((1-OVEC/SUM(OVEC))##2)/(NVEC-1));

DF2=(G#G-1)/(3#DEL);
FCRIT=FINV(1-ALPHA,DF1,DF2);
NPOWER=SDF(‘F’,FCRIT,DF1,DF2,LAM);

END;*FOR UNTIL;

PRINT ’SAMPLE SIZES’ NVEC;

PRINT ’APPROXIMATE POWER’ NPOWER[FORMAT=8.4];
QUIT;
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Appendix B: SAS IML program for computing the approximate power of

Welch’s test

PROC IML;PRINT ”COMPUTE APPROXIMATE POWER OF WELCH’ TEST”;

*USER SPECIFICATIONS;

*TYPE I ERROR;ALPHA=0.05;
*GROUP MEANS;MUVEC={1 0 0 -1};
*GROUP VARIANCES;VARVEC={1 1 1 1};
*SAMPLE SIZES;NVEC={9 9 9 9};
*END OF SPECIFICATIONS;

G=NCOL(NVEC);
PRINT G,NVEC,MUVEC,VARVEC;

OVEC=NVEC/VARVEC;
MUP=SUM(OVEC#MUVEC)/SUM(OVEC);

LAM=SUM(OVEC#(MUVEC-MUP)##2);
DF1=G-1;
DEL=SUM(((1-OVEC/SUM(OVEC))##2)/(NVEC-1));

DF2=(G#G-1)/(3#DEL);
FCRIT=FINV(1-ALPHA,DF1,DF2);
NPOWER=SDF(‘F’,FCRIT,DF1,DF2,LAM);

PRINT ’APPROXIMATE POWER’ NPOWER[FORMAT=8.4];
QUIT;

Appendix C: R program for calculating the required sample sizes of

Welch’s test

function () {
#REQUIRED USER SPECIFICATIONS PORTION

power<-0.90 #DESIGNATED POWER

alpha<-0.05 #TYPE I ERROR

muvec<-c(-3,-1,1,3)/sqrt(20) #GROUP MEANS

varvec<-c(1, 4, 9, 16) #GROUP VARIANCES

rvec<-c(1,1,1,1) #SAMPLE SIZE RATIOS

#END OF REQUIRED USER SPECIFICATION

g<-length(muvec)
orvec<-rvec/varvec
mupr<-sum(orvec*muvec)/sum(orvec)

lamr<-sum(orvec*(muvec-mupr)^2)

df1<-g-1
n1<-5
apower<-0
while (apower<power){
n1<-n1+1
nvec<-n1*rvec
ovec<-nvec/varvec
mup<-sum(ovec*muvec)/sum(ovec)

lam<-sum(ovec*(muvec-mup)^2)
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del<-sum(((1-ovec/sum(ovec))^2)/(nvec-1))

df2<-(g*g-1)/(3*del)
fcrit<-qf(1-alpha,df1,df2)
apower<-1-pf(fcrit,df1,df2,lam)
}
print(“nvec”)

print(nvec)

print(“apower”)

print(apower,digits=4)
}

Appendix D: R program for computing the approximate power ofWelch’s

test

function () {
#REQUIRED USER SPECIFICATIONS PORTION
alpha<-0.05 #TYPE I ERROR

muvec<-c(1,0,0,-1) #GROUP MEANS

varvec<-c(1,1,1,1) #GROUP VARIANCES

nvec<-c(9,9,9,9) #GROUP SAMPLE SIZES

#END OF REQUIRED USER SPECIFICATION

g < -length(muvec)

df1 < -g-1

ovec<-nvec/varvec
mup<-sum(ovec*muvec)/sum(ovec)

lam<-sum(ovec*(muvec-mup)^2)

del<-sum(((1-ovec/sum(ovec))^2)/(nvec-1))

df2<-(g*g-1)/(3*del)
fcrit<-qf(1-alpha,df1,df2)
apower<-1-pf(fcrit,df1,df2,lam)

print(“nvec”)

print(nvec)
print(“apower”)

print(apower,digits=4)
}
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