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Over one-third of protein structures contain metal ions, which are the necessary elements in life
systems. Traditionally, structural biologists were used to investigate properties of metalloproteins (pro-
teins which bind with metal ions) by physical means and interpreting the function formation and reac-
tion mechanism of enzyme by their structures and observations from experiments in vitro. Most of
proteins have primary structures (amino acid sequence information) only; however, the 3-dimension
structures are not always available. In this paper, a direct analysis method is proposed to predict
the protein metal-binding amino acid residues from its sequence information only by neural net-
works with sliding window-based feature extraction and biological feature encoding techniques. In four
major bulk elements (Calcium, Potassium, Magnesium, and Sodium), the metal-binding residues are
identified by the proposed method with higher than 90% sensitivity and very good accuracy under
5-fold cross validation. With such promising results, it can be extended and used as a powerful method-
ology for metal-binding characterization from rapidly increasing protein sequences in the future.
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1. Introduction

It is very interesting that more than one-quarter of
the elements in periodic table are required for life,1

and most of them are metal ions. Many enzymes
incorporate metal divalent cations and transition
metal ions within their structures to stabilize the
folded conformation of protein or to directly par-
ticipate in the chemical reactions catalyzed by the
enzyme.2 Metal also provides a template for protein
folding, as in the zinc finger domain of nucleic acid
binding proteins, the calcium ions of calmodulin (a
protein molecule that is necessary for many biochem-
ical process, including muscle contraction and the
release of a chemical that carries nerve signals), and
the zinc structural center of insulin. Besides, metal
ions can also serve as redox centers for catalysis,
such as heme-iron centers, copper ions and non-heme
irons. Other metal ions can be used as electrophilic
reactants in catalysis, as in the case of active site zinc
ions of the metalloprotease (enzymes that catalyze
the splitting of proteins into smaller peptide fractions
and amino acids by a process known as proteolysis.
In other words, these enzymes hydrolyze proteins).

In fact, the research of metalloprotein is involved
in bioinorganic (or biological inorganic) chemistry
which is the study of interactions between inorganic
substances and molecules of biological interest, e.g.,
protein or DNA. Since metalloprotein participates
in the most important biochemical processes, includ-
ing respiration, nitrogen fixation and oxygenic pho-
tosynthesis, it is also one of main foci of bioinorganic
chemistry. In addition, life originates and evolves
from earth’s crust, an inorganic environment. This
fact again emphasizes the importance of bioinorganic
research, including metalloprotein.

Genome sequencing has “revolted” many fields
in life science and bioinformatics is devoted to offer
rapid and accurate analysis in silico with these
large amounts of biological data. In the beginning,
most foci are on 2 major molecules in life: protein
and DNA and many internet websites are designed
for collecting their biological resources, e.g., Pro-
tein Date Bank (http://www.rcsb.org/pdb/) and
GenBank (http://www.ncbi.nlm.nih.gov/Genbank/
index.html).3,4 Recently, people start to notice the
need for bioinorganic chemistry which was not
received great attention in this postgenomic area.5,6

Therefore, building genomic and proteomic linkage
on current basis of biological data becomes one of

the most important and urgent issue for extending
bioinorganic related searches into genome-wide scale.

Moreover, there is a wide range of computational
tools required to effectively process and analyze such
huge amount of biological data. Especially, various
machine learning techniques including self-organized
maps (SOM), artificial neural networks (ANNs), sup-
port vector machine (SVM), and fuzzy logic have
obtained great success in many fields in biological
and medical researches, such as coding region recog-
nition on DNA, protein structure prediction, and
diagnosis of disease.7 In this paper, one simple data
combination approach for metal ions and protein is
illustrated in Sec. 2. In Sec. 3, an artificial neural
network-based scheme is designed to identify bind-
ing (interacting) residues with metal ions in protein
molecules from protein sequences. The experimental
results with 5-fold cross validation are presented in
Sec. 4.

2. Materials: Dataset and Biological
Resources

Before building the model of metal-binding residue
prediction, one must identify all components in met-
alloprotein and organize them into comprehensive
way logically. Following the descending order by their
physical size, there are 4 layers in hierarchical and
abstract model of metalloprotein: protein, chain, site
and ligand. The top level (see also Fig. 1) is protein
which may contain one or more than one chains, and
each chain is represented as one polypeptide chain
belonging to one protein in nature. Each chain may
be “inhabited” several sites on it. Every site contains
the coordinate information about the entire metal
center binding site as shown in the left corner of
Fig. 1. One site is composed of molecules including
amino acid or other non-amino acid complex sur-
rounding the metal center. That is the second coordi-
nation shell of central metal and in this paper, what
we try to predict are the locations of these molecules
(amino acid residues only) on the protein sequence.
Furthermore, each atom directly interacting with the
metal is called “ligand.” In the coordinate chemistry,
it refers to atom or chemical group on the first coordi-
nation shell bound to the central atom which is usu-
ally a metal via dative bond, which refers that one
of the atoms gives up or yields electrons to another
to form this bond. In biochemistry, it becomes more
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Binding ligand (atom)

Fig. 1. Metal-binding protein structure model and
hierarchy.

universal, i.e., any low molecule weight compound,
including metal ion and metal compound bound to
the other macromolecule. In this paper, the former
definition is used.

The main data resources come from two web
sites, one is the metalloprotein database and browser
(MDB, the latest release is 18 and updated at Jan-
uary, 17, 2003).8 of metalloprotein structure and
design program of the Scripps Research Institute
(http://metallo.scripps.edu) where all proteins with
binding metal can be entirely extracted and the
metal-binding site is also defined by nearby amino
acid residues and compounds via distance-dependent
criteria. Another resource is Protein Data Bank
(PDB) which provides general information about
every protein structure. Hence, by combining these
databases, the detail description of metalloprotein
can be driven. For simplicity, the PDB infor-
mation can be replaced by another compacted
data — PDBFinder (http://www.cmbi.kun.nl/gv/
pdbfinder/).9

In integrated database, there are 19771 dis-
tinct proteins and 7559 of them with metal-binding.
Namely, over one-third (36.72%) of proteins are
metalloproteins. Furthermore, there are 43 kinds

of element concerned in MDB. After cross refer-
encing by PHP script language from local inte-
grated MySQL database, 41 and 36 elements (it is
because that some entries in MDB cannot find cor-
responding protein sequence in PDBFinder) can be
found in “protein set” and “enzyme set” respectively
(Table 1). Protein set is defined by the collection of
protein peptide chains binding to metal according
to the records in MDB, and some of these chains
belong to parts of enzyme which can catalyze chem-
ical reactions. Hence, this special subset is identi-
fied and isolated as another dataset named enzyme
set. From metal-binding information of MDB and
sequence information of PDBFinder, every amino
acid residue in protein chain sequence can be marked
as binding or non-binding and used as the training
target afterward.

3. Method: Machine Learning Scheme

Under the assumption that the behavior of metal-
binding residue is influenced by the surrounding envi-
ronment in nature, it is necessary to “observe” these
protein sequences in wider scope than a single one
amino acid so as to “decide” whether the metal-
binding phenomena happen or not. Therefore, the
prediction model under this assumption takes sub-
sequences of protein as input materials and sets its
output as “binding” or “non-binding.” Furthermore,
each input vector applied to learning machine is one
segment extracted from entire protein polypeptide
chain by the concept — sliding window. Each slid-
ing window is centered by the “target” amino acid.
And the rest of the amino acids in window are the
“neighbors” of this target residue. Figure 2 illustrates
the model of sliding-window encoding and learning
scheme when the window size is set as 5.

The learning scheme used in our experiments is
Multi-Layer Perceptron (MLP) neural networks with
back-propagation (BP) learning rule, where one hid-
den layer with 30 hidden nodes is used. Number of
input nodes is dependent on the number of features
used to represent one amino acid and the range of
observation (size of window). In order to indicate
the metal-binding or non-metal-biding state of tar-
get amino acid residue, two output nodes are used.
Binding state is represented by setting values of 2
output nodes as (1, 0) and the non-binding state is
(0, 1) while training.
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Table 1. List of elements in metal-binding residue prediction. The biological level of metal involves their concentration
in living organism. The element type is the element classification adapted from periodic table.

Biological level Name Element type Chains in protein set Chains in enzyme set Full name

Bulk element Ca Alkaline metal 2589 1106 Calcium
K Alkali metal 442 234 Potassium
Mg Alkaline metal 1999 863 Magnesium
Na Alkali metal 864 484 Sodium

Trace element Co Transition metal 192 110 Cobalt
Cr Transition metal 7 6 Chromium
Cu Transition metal 581 216 Copper
Fe Transition metal 2893 861 Iron
I Halogen 78 33 Iodine

Mn Transition metal 1003 434 Manganese
Mo Transition metal 128 70 Molybdenum
Ni Transition metal 208 101 Nickel
Se non-metal 225 110 Selenium
V Transition metal 26 12 Vanadium
Zn Transition metal 2433 1087 Zinc

Possibly essential trace As Semi-metal 111 64 Arsenic
element

N/A Ag Transition metal 3 1 Argentum, Silver
Al Basic metal 82 41 Aluminium
Au Transition metal 14 2 Gold
Ba Alkaline metal 3 2 Barium
Be Alkaline metal 24 3 Beryllium
Cd Transition metal 379 82 Cadmium
Cs Alkali metal 7 4 Cesium
Eu Rare Earth 2 1 Europium
Gd Rare Earth 16 0 Gadolinium
Hg Transition metal 236 117 Hydrargyrum,

Mercury
Ho Rare Earth 7 1 Holmium
In Basic metal 1 0 Indiana
La Rare Earth 5 0 Ianthanum
Li Alkali metal 3 2 Lithium
Pb Basic metal 31 16 Lead
Pt Transition metal 8 3 Platinum
Rb Alkali metal 1 0 Rubidium
Sm Rare Earth 20 3 Samarium
Sr Alkaline metal 13 3 Strontium
Tb Transition metal 1 0 Terbium
Te Semi-metal 4 2 Tellurium
Ti Basic metal 18 18 Thallium
U Transition metal 80 16 Uranium
W Transition metal 46 4 Tungsten
Yb Rare Earth 17 7 Ytterbium

In this paper, our experiments are divided into
3 subsections. First subsection is a preliminary test
to compare non-biological coding and biological cod-
ing. Two input coding methods are used (shown in
Table 2) in the first experiment. One is the direct

one-hot coding, which represents every amino acid
as one 20-bit vector. Only one bit in the vector is
‘1’ and the other bits in the vector are ‘0’. In this
way, every type of natural amino acid can be indi-
cated by the position of the only “1” bit. Owing
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Target residue

Raw amino acid
sequence of one chain

Sliding Window
(window size= 5)

Feature 
vector

Encoding

Learning Machine

Feed

Left
neighboring 

residues

Right 
neighboring 

residues

…V L E N R A A Q G N G G…

Decide whether target residue (central position of
window) is metal-binding or not

…V L E N R A A Q G N G G…
NEXT sliding window

Window sliding direction

NEXT Target residue

Fig. 2. Feature extraction, learning scheme and sliding window.

Table 2. Biological coding and one-hot coding for 20 amino acids. First column is one-letter code of amino acid. Sec-
ond column is the occurrence probability and columns 3 to 5 are the propensities of secondary structure. Column 6 is
metal-binding propensity (normalized frequency) and the last column is one-hot coding vector.

Amino acid Biological coding One-hot coding

Occurrence Helix Strands Trun Metal-binding propensity

A 7.49 1.41 0.72 0.82 0.032 100000000000000000000
C 1.82 0.66 1.40 0.54 0.658 010000000000000000000
D 5.22 0.99 0.39 1.24 1.000 001000000000000000000
E 6.26 1.59 0.52 1.01 0.659 000100000000000000000
F 3.91 1.16 1.33 0.59 0.035 000010000000000000000
G 7.10 0.43 0.58 1.77 0.120 000001000000000000000
H 2.23 1.05 0.80 0.81 0.967 000000100000000000000
I 5.45 1.09 1.67 0.47 0.040 000000010000000000000
K 5.82 1.23 0.69 1.07 0.033 000000001000000000000
L 9.06 1.34 1.22 0.57 0.043 000000000100000000000
M 2.27 1.30 1.14 0.52 0.063 000000000010000000000
N 4.53 0.76 0.48 1.34 0.198 000000000001000000000
P 5.12 0.34 0.31 1.32 0.017 000000000000100000000
Q 4.11 1.27 0.98 0.84 0.075 000000000000010000000
R 5.22 1.21 0.84 0.90 0.021 000000000000001000000
S 7.34 0.57 0.96 1.22 0.092 000000000000000100000
T 5.96 0.76 1.17 0.90 0.117 000000000000000010000
V 6.48 0.90 1.87 0.41 0.072 000000000000000001000
W 1.32 1.02 1.35 0.65 0.009 000000000000000000100
Y 3.25 0.74 1.45 0.76 0.081 000000000000000000010
X 0.00 0.00 0.00 0.00 0.000 000000000000000000001
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to the possible unknown type (usually using the
symbol ‘X’ in sequence) of amino acid in a pro-
tein sequence, one bit is added to record this con-
dition. This is the so-called “non-biological” coding
for amino acid. Another coding method is done by
referencing 5 different biological attributes of amino
acid. They can be divided into 3 types: probabil-
ity of occurrence from statistics of NCBI (National
Center for Biotechnology Information, http://www.
ncbi.nlm.nih.gov/) database adapted from amino
acid properties of PROWL (a resource for protein
chemistry and mass spectrometry developed in col-
laboration of ProteoMetrics and Rockefeller Uni-
versity http://prowl.rockefeller.edu/aainfo/contents.
htm), propensities of three protein secondary struc-
tures (helix, strand, and turn),10 and frequency of
metal-binding from our integrated database as shown
in Fig. 3.

In the second subsection of experiments, in order
to study the effect of window size and realize whether
the most “verbose” (comparing to biological coding
of 5 attributes in the first experiment, the one-hot
coding costs 21 bits) coding can bring better pre-
diction results, prediction models encoded by one-
hot coding method with different size (from 5 to
17) of sliding window are used on sampled subset
from enzyme set with mutually sequence identity
(SID) below 25%, where SID is defined as the frac-
tion of identical amino acids and the total length
of sequence after multiple sequence alignment. By
doing this, one can avoid the sequence homology
bias while models are trained and tested, and it also
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Fig. 3. Metal-binding frequency of 20 amino acids.

helps to retain the generalization ability of the pro-
posed prediction model. That is, there are no huge
amounts of similar sequences (sequence homology)
dominating entire dataset and thus it will greatly
influence the prediction models to fit them only.
Before performing this experiment, we expect to see
the performance becomes better with increase of win-
dow size. However, it is not “economical” to expand
the range of observation on primary structure of pro-
tein (amino acid sequence of protein) unlimitedly.
In fact, whether it is practical or not to increase
the window size while encoding protein sequence
information fed to the prediction model is the most
important issue need to be concerned. If it is indeed
an effective way to achieve promising result at “rea-
sonable” size of window, what is the optimal size
for predicting metal-binding residues from protein
sequences? If not, is there any better way to pro-
mote previous model in the first experiment other
than increasing the size of window?

Finally, comparing to the second subsection
which tries to optimize the model by adjusting the
window size while using one-hot coding, the third
subsection will introduce more biological feature
“sets” and enhance the performance of model sub-
stantially. In addition, there are only 5 attributes
used in the first subsection and they are combined
as one feature set of biological coding. Consequently,
in this subsection more biological attributes will be
used and organized more systematically. We add
5 different feature sets and their abbreviations are:
Phy, SEA, HP, 2nd and CC. “Phy” contains 3 ele-
mentary Physical measures (mass, volume and sur-
face area) of amino acids. Further, “SEA” is the
abbreviation of Solvent Exposed Area. SEA defines
3 attributes which refer to the possibility of amino
acid to have exposed area in the solvent under 3
different conditions: SEA (solvent exposed area for
short) greater than 30 angstrom2, SEA between 10 to
30 angstrom2 and SEA less than 10 angstrom2. Every
amino acid has its own possibility to have different
size of SEA under this feature set. “HP” is referred
to HydroPhobicity which states the degree of water-
repellent of non-polar molecule (it refers to amino
acid here) and there are 6 different HP scales from
6 different authors/groups contributed to HP fea-
ture set. The term “2nd” is the abbreviation of sec-
ondary structure of protein including helix, strand
and turn as used as part of biological coding in the
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Table 3. Definition and references of 5 biological feature sets.

Feature set name (size) Definition and content References

mass
Phy (3) Three physical measures of amino acid volume NCBI statistics

area

Three levels solvent exposed area (SEA) of SEA > 30
SEA (3) amino acids with thershold 10 and 30 10 < SEA < 30 (Ref. 12)

(angstrom square) SEA < 10

Engleman-Steitz (Ref. 13)
Hoop-Woods (Ref. 14)

HP (6) Hydrophobicity scales from six different Kyte-Doolittle (Ref. 15)
authors Janin (Ref. 16)

Chothia (Ref. 17)
Eisenberg Weiss (Ref. 18)

Alpha helix
2nd (3) Propensities of three secondary structures Beta strand (Ref. 10)

Turn (loop, coil)

Polar
Non-Polar
Charged

CC (8) Classifications of amino acids, it divides Positive (Ref. 11)
20 natural aminno acids into eight classes Tiny

Small
Aromatic
Aliphatic

first subsection. At last, CC is defined by Chemical
Classification of 20 amino acids. It classifies these
amino acids into 8 groups: polar, non-polar, charged,
positive, tiny, small, aromatic and aliphatic. Because
this classification is “overlapped” (namely, one amino
acid may be assigned to more than one group), we
define this feature set as 8-bit vector and each posi-
tion corresponds to the group of classification in the
order as previously mentioned. For example, while
amino acid A is classified to non-polar (2nd group),
tiny (5th group) and small (6th group), its feature
under “CC” coding is “01001100.” More details and
references of these feature sets are shown in Table 3
and their arithmetic values are listed in Table 4.

4. Experimental Results
and Discussions

In the following experiments, there are two major
data sets–protein set and enzyme set. Each type of
element has its own neural network for prediction
and 5-fold cross validation is used to evaluate the
performance. There are 5 performance indexes

listed– accuracy (1), positive predictive rate (2), sen-
sitivity (3), specificity (4) and negative predictive
rate (5) which are calculated from true positive (TP),
true negative (TN), false positive (FP), and false neg-
ative (FN) values. These elementary measures of per-
formance are defined and shown in Table 5.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

positive predictive rate =
TP

TP + FP
(2)

sensitivity =
TP

TP + FN
(3)

specificity =
TN

TN + FP
(4)

negative preditive rate =
TN

TN + FP
(5)

4.1. Comparisons between
non-biological coding and
biological coding

Table 6 lists the metal-dependent subset with non-
zero TP by applying 2 coding methods (one-hot
coding and biological coding) in both protein set
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Table 4. Values of 5 biological feature sets (Phy, SEA, HP, 2nd and CC).

Amino acid Phy (3) SEA (3) HP (6)

Mass Volume Area SEA1 SEA2 SEA3 HP1 HP2 HP3 HP4 HP5 HP6

A 0.39 0.39 0.45 0.52 0.47 0.65 −0.13 −0.15 0.40 0.17 0.03 0.14
C 0.55 0.48 0.53 0.34 0.39 1.00 −0.16 −0.29 0.56 0.50 0.00 0.02
D 0.62 0.49 0.59 0.87 0.28 0.17 0.75 0.88 −0.78 −0.33 −0.10 −0.40
E 0.69 0.61 0.75 1.00 0.08 0.07 0.67 0.88 −0.78 −0.39 −0.09 −0.34
F 0.79 0.83 0.82 0.45 0.44 0.78 −0.30 −0.74 0.62 0.28 0.00 0.34
G 0.31 0.26 0.29 0.55 0.36 0.67 −0.08 0.00 −0.09 0.17 −0.03 0.09
H 0.74 0.67 0.76 0.71 0.42 0.35 0.24 −0.15 −0.71 −0.06 −1.00 −0.22
I 0.61 0.73 0.69 0.42 0.39 0.87 −0.25 −0.53 1.00 0.39 0.02 0.41
K 0.69 0.74 0.78 1.00 0.14 0.04 0.72 0.88 −0.87 −1.00 −0.21 −0.61
L 0.61 0.73 0.67 0.44 0.28 0.91 −0.23 −0.53 0.84 0.28 −0.01 0.29
M 0.61 0.72 0.73 0.47 1.00 0.37 −0.28 −0.38 0.42 0.22 −0.02 0.14
N 0.61 0.50 0.63 0.88 0.22 0.19 0.39 0.06 −0.78 −0.28 −0.12 −0.36
P 0.52 0.49 0.57 0.84 0.25 0.24 0.02 0.00 −0.36 −0.17 −0.09 −0.04
Q 0.69 0.63 0.71 0.87 0.25 0.19 0.33 0.06 −0.78 −0.39 −0.15 −0.38
R 0.84 0.76 0.88 0.90 0.31 0.09 1.00 0.88 −1.00 −0.78 −0.27 −1.00
S 0.47 0.39 0.45 0.75 0.28 0.37 −0.05 0.09 −0.18 −0.06 −0.08 −0.14
T 0.54 0.54 0.55 0.76 0.36 0.30 −0.10 −0.12 −0.16 −0.11 −0.07 −0.10
V 0.53 0.61 0.61 0.43 0.28 0.93 −0.21 −0.44 0.93 0.33 0.01 0.30
W 1.00 1.00 1.00 0.53 0.19 0.81 −0.15 −1.00 −0.20 0.17 −0.06 0.21
Y 0.88 0.85 0.90 0.72 0.36 0.37 0.06 −0.68 −0.29 −0.22 −0.10 0.01

2nd (3) CC (8)

Alpha Beta Turn Polar Non-ploar Charged Positive Tiny Small Aromatic Aliphatic

A 0.89 0.39 0.46 0 1 0 0 1 1 0 0
C 0.42 0.75 0.31 1 1 0 0 1 1 0 0
D 0.62 0.21 0.70 1 0 1 0 0 1 0 0
E 1.00 0.28 0.57 1 0 1 0 0 0 0 0
F 0.73 0.71 0.33 0 1 0 0 0 0 1 0
G 0.27 0.31 1.00 0 1 0 0 1 1 0 0
H 0.66 0.43 0.46 1 1 1 1 0 0 0 0
I 0.69 0.89 0.27 0 1 0 0 0 0 1 1
K 0.77 0.37 0.60 1 1 1 1 0 0 0 0
L 0.84 0.65 0.32 0 1 0 0 0 0 0 1
M 0.82 0.61 0.29 0 1 0 0 0 0 0 0
N 0.48 0.26 0.76 1 0 0 0 0 1 0 0
P 0.21 0.17 0.75 0 0 0 0 0 1 0 0
Q 0.80 0.52 0.47 1 0 0 0 0 0 0 0
R 0.76 0.45 0.51 1 0 1 1 0 0 0 0
S 0.36 0.51 0.69 1 0 0 0 1 1 0 0
T 0.48 0.63 0.51 1 0 0 0 1 1 0 0
V 0.57 1.00 0.23 0 1 0 0 0 1 0 1
W 0.64 0.72 0.37 1 1 0 0 0 0 1 0
Y 0.47 0.78 0.43 1 1 0 0 0 0 1 0

and enzyme set (without sequence similarity sam-
pling) after 5-fold cross validation. In the first col-
umn, coding methods are summarized and in the
second column “set”, P and E represent Protein
set and Enzyme set, respectively. There are several

observations as follows. First, the neural network can
detect more types of life elements in protein than in
enzyme no matter which coding method is applied.
In the view of sequence homology, one possible expla-
nation is that the number of chains in the protein set
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is more than that in enzyme set and most of these
chains in the protein set are homologies with close
sequence similarity. Hence it becomes easier to learn
the metal-binding model in this redundant protein
set than in enzyme set. Furthermore, biological cod-
ing can perform better than non-biological coding

Table 5. Definition of elementary measures of
performance.

Observed Predicted

Binding (positive) Non-binding (negative)

Binding True positive (TP) False negative (FN)
(positive)

Non-binding False positive (FP) True negative (TN)
(negative)

with smaller coding size. Especially, the biological
coding can detect more meaningful biological ele-
ments in metal-binding residue prediction, such as
Calcium (Ca), Chromium (Cr), Copper (Cu) and
Zinc (Zn). Totally, the experiment shows that the
neural network successfully predicted 15 different
kinds of life elements (4 of them are “important”
life elements) in protein set, and 6 life elements in
enzyme set. Additionally, the performance is not fea-
sible, but the results in this subsection give some
clues to promote the modeling of neural networks in
the succeeding experiments.

4.2. Window size effect

According to the results in the last subsection,
in this subsection, all experiments are designed

Table 6. Comparison between non-biological and biological coding methods.

Coding method Set Element Biological TP TN FP FN Accuracy Positive Sensitivity P/N
level predictive rate

Cu trace 1195 141771 228 2310 98.26% 83.98% 34.09% 2.47%

Ho 19 865 7 7 98.44% 73.08% 73.08% 2.98%
One-Hot P La 11 1220 1 3 99.68% 91.67% 78.57% 1.15%
(21 bits per Ag N/A 27 127 0 0 100.00% 100.00% 100.00% 21.26%
amino acid) Cd 158 73946 57 1371 98.11% 73.49% 10.33% 2.07%

Tb 10 151 0 0 100.00% 100.00% 100.00% 6.62%

E Ho N/A 8 160 0 8 95.45% 100.00% 50.00% 10.00%
Ag 2 69 0 0 100.00% 100.00% 100.00% 2.90%

Ca bulk 2 717790 0 14399 98.03% 100.00% 0.01% 2.01%

Cr 3 1998 0 19 99.06% 100.00% 13.64% 1.10%
Cu trace 256 142352 216 3259 97.62% 54.24% 7.28% 2.47%
Zn 56 600151 27 10754 98.24% 67.47% 0.52% 1.80%

Biological Coding P Rb 1 427 0 3 99.30% 100.00% 25.00% 0.94%
(5 attributes Be 6 11453 1 44 99.61% 85.71% 12.00% 0.44%
per amino acid) Tl 16 7042 0 82 98.85% 100.00% 16.33% 1.39%
1. amino acid Ho 1 867 11 24 96.12% 8.33% 4.00% 2.85%
occurrence rate La 4 1222 3 9 99.03% 57.14% 30.77% 1.06%
2. secondary structure Yb N/A 3 5466 1 43 99.20% 75.00% 6.52% 0.84%
propensities Te 1 1083 0 5 99.54% 100.00% 16.67% 0.55%
3. metal-binding Ag 22 123 6 0 96.03% 78.57% 100.00% 17.05%
propensity Cd 28 74331 45 1505 97.96% 38.36% 1.83% 2.06%

Tb 8 152 0 1 99.38% 100.00% 88.89% 5.92%
U 6 28867 0 348 98.81% 100.00% 1.69% 1.23%

Cu trace 64 74583 46 1416 98.08% 58.18% 4.32% 1.98%

Li 2 865 0 4 99.54% 100.00% 33.33% 0.69%
E Tl N/A 13 7041 1 85 98.80% 92.86% 13.27% 1.39%

Ho 6 160 0 1 99.40% 100.00% 85.71% 4.38%
Ag 2 70 0 0 100.00% 100.00% 100.00% 2.86%
Hg 8 31348 7 540 98.29% 53.33% 1.46% 1.75%
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Fig. 4. Accumulated performance of metal-binding residue prediction in SID 25% enzyme set with different window size.

to observe the performance changes with varied
window size from 5 to 17 while one-hot coding
is applied. It is apparently that specificity, posi-
tive predictive rate, and negative predictive rate
(almost approach 100%) are relatively higher than
sensitivity in Fig. 4, owing to the extremely low
P/N ratio (Positive vs. negative instance ratio; that
is, ratio of metal-binding residue and not metal-
binding residue). Consequently, sensitivity becomes
the most critical term in performance measures in
this absolutely unbalanced (positive vs. negative)
neural networks modeling. Therefore in Table 7, it
only shows sensitivity of 31 elements in enzyme
set sampled with SID below 25% while applying
one-hot coding method. Obviously, although this
“costly” coding method (one-hot coding) has limita-
tion on sensitivity for predicting the metal-binding
residues in protein primary structure whenever the
window size increases, it indeed brings promising
specificity, positive predictive rate and negative pre-
dictive rate and partially shows the prior assumption
(i.e., metal-binding residues are influenced by neigh-
boring local residues) might be correct. There must
be a correlation between metal-binding state of tar-
get residue and its surrounding neighbors. And it
also indicates that the limitation problem of predic-
tion sensitivity can not be solved by window exten-
sion only.

4.3. Comparisons between five
biological feature sets

In Table 6, the power of biological coding should be
noticed and extended. It will be possible to increase
the sensitivity of metal-binding residue prediction
with high metal-binding correlated biological fea-
tures rather than exhaustive coding (e.g., one-hot
coding). Therefore, following the same concept in
the first experiment, 5 different sets (Table 3 and
Table 4 in Sec. 3) of amino acid-indexed biological
feature are used to predict amino acid’s 4 bulks ele-
ments binding state in the enzyme set sampled with
SID below 25%. These feature sets represent 5 dif-
ferent aspects to 20 natural amino acids in the infor-
mation space. In Table 8 (individual performance
measures for 4 bulk elements under 6 different cod-
ing methods) and Fig. 5 (accumulated performance
measures with respect to 6 different coding meth-
ods), the prediction performance of these biological
feature sets is compared with one-hot coding. From
the feature sets (Phy, SEA, 2nd) with the smallest
set size (3 attributes), secondary structure feature
set outperforms the others. It indicates that the sec-
ondary structures of amino acids are more significant
than their solvent exposed area or physical mea-
sures in metal-binding residue identification. That
is, secondary structures have higher correlation. It
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Table 7. Sensitivity of 31 elements in enzyme set w.r.t. different window sizes.

Biological level Element Window size

5 7 9 11 13 15 17

Bulk element Ca 21.01% 17.31% 16.13% 16.47% 15.97% 18.49% 20.50%
K 2.99% 14.93% 17.91% 23.88% 28.36% 37.31% 34.33%
Mg 8.50% 10.46% 12.09% 10.46% 13.40% 14.05% 18.63%
Na 9.59% 13.01% 13.70% 19.18% 19.18% 19.18% 24.66%

Trace element Co 31.43% 34.29% 35.71% 45.71% 48.57% 50.00% 54.29%
Cr 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Cu 32.73% 33.64% 41.82% 42.73% 40.91% 42.73% 46.36%
Fe 40.40% 35.82% 35.82% 36.39% 37.25% 40.40% 38.40%
I 0.00% 25.00% 62.50% 75.00% 75.00% 75.00% 87.50%

Mn 21.94% 31.12% 29.08% 33.16% 32.65% 31.63% 35.71%
Mo 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 20.00%
Ni 42.42% 42.42% 51.52% 54.55% 51.52% 54.55% 63.64%
Se 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
V 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Zn 24.22% 15.74% 14.19% 24.74% 29.58% 27.51% 30.10%

Possibly trace element As 25.00% 25.00% 25.00% 50.00% 50.00% 75.00% 62.50%

N/A Al 0.00% 10.00% 80.00% 90.00% 90.00% 90.00% 100.00%
Au 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Ba 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Cd 31.08% 30.41% 37.16% 38.51% 39.86% 43.92% 47.30%
Cs 0.00% 0.00% 0.00% 0.00% 0.00% 20.00% 60.00%
Hg 29.73% 43.24% 45.95% 51.35% 58.11% 56.76% 56.76%
Pb 50.00% 50.00% 58.33% 58.33% 66.67% 75.00% 75.00%
Pt 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Sm 0.00% 0.00% 0.00% 0.00% 0.00% 71.43% 85.71%
Sr 0.00% 0.00% 0.00% 50.00% 100.00% 75.00% 100.00%
Te 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Tl 62.50% 87.50% 87.50% 87.50% 100.00% 100.00% 100.00%
U 42.86% 42.86% 85.71% 85.71% 100.00% 71.43% 100.00%
W 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Yb 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

corresponds to the fact that metal ions are tended to
interact with special fraction of protein, i.e., motif
which has specific arrangement of secondary struc-
tures; e.g., EF-hand (helix-turn-helix) domains are
bound to calcium in calmodulin.

Additionally, the feature set of 6 hydrophobic-
ity scales (30.34%) also has similar and compa-
rable sensitivity to the feature set of secondary
structure (37.7%). It is also related to a well-known
phenomenon of protein folding, i.e., hydrophobic
interaction which makes residues with hydrophobic
site-chain to hide inside of protein structure; instead,
residues with hydrophilic site-chain are tended to be

exposed to outside, the aqueous environment. The
most ideal condition to fit this statement is when
this protein is “globular.” Assume that there is no
large conformation change during a globular enzyme
performing the catalysis reaction via metal ions on
itself, and then the metal ions should not be in the
core of the protein molecule. That is, the surround-
ing residues of metal ions in proteins prefer to be on
the surface of protein, including the metal-binding
residue. Whereas the ideal model does not always
happen in all kinds of proteins with various metal-
binding, the average sensitivity of HP feature set is
about 30% (30.34%). This is one possible explanation

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

05
.1

5:
71

-8
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/2
6/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 28, 2005 13:21 00011

82 C.-T. Lin et al.

Table 8. Comparison between 5 biological sets in 4 bulk elements.

Feature set Element TP TN FP FN Accuracy Positive predictive rate Sensitivity

2nd Ca 160 47471 25 435 99.04% 86.49% 26.89%
K 61 13054 0 6 99.95% 100.00% 91.04%
Mg 100 53897 21 206 99.58% 82.64% 32.68%
Na 99 19311 4 47 99.74% 96.12% 67.81%

Phy Ca 0 47496 0 595 98.76% n/a 0.00%
K 0 13054 0 67 99.49% n/a 0.00%
Mg 0 53918 0 306 99.44% n/a 0.00%
Na 0 19315 9 146 99.20% 0.00% 0.00%

SEA Ca 2 47496 0 593 98.77% 100.00% 0.34%
K 0 13054 0 67 99.49% n/a 0.00%
Mg 0 53918 0 306 99.44% n/a 0.00%
Na 1 19315 9 145 99.21% 10.00% 0.68%

HP Ca 120 47491 5 475 99.00% 96.00% 20.17%
K 67 13054 0 0 100.00% 100.00% 100.000%
Mg 67 53895 23 239 99.52% 74.44% 21.90%
Na 84 19314 1 62 99.68% 98.82% 57.53%

CC Ca 594 47496 0 1 100.00% 100.00% 99.83%
K 67 13054 0 0 100.00% 100.00% 100.000%
Mg 306 53918 0 0 100.00% 100.00% 100.000%
Na 146 19315 0 0 100.00% 100.00% 100.000%

OneHot Ca 110 47495 1 485 98.99% 99.10% 18.49%
K 25 13054 0 42 99.68% 100.00% 37.31%
Mg 43 53918 0 263 99.51% 100.00% 14.05%
Na 28 19315 0 118 99.39% 100.00% 19.18%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2nd (3) Phy (3) SEAs (3) HP (6) CC (8) OneHot (21)

Feature setsensitivity
positive predictive rate
specificity
negative predictive rate

Fig. 5. Accumulated performance of metal-binding residue prediction in 4 bulk element sampled from SID 25% enzyme
set with different feature sets.
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about the performance of HP feature set. The best
sensitivity is achieved by applying the feature set of
chemical classifications. It has nearly 100% (99.91%)
sensitivity in 4 bulk elements. Although the CC fea-
ture set has the larger coding size (8 bits) than any
other biological feature sets used in this subsection, it
does not mean that larger coding size will bring bet-
ter prediction result when comparing all these fea-
ture sets including one-hot coding.

5. Conclusions

In this paper, we developed a machine learning-
based method to successfully predict metal-binding
residues in protein molecule from protein sequence
information. With biological features set, the sen-
sitivity of prediction results is quite exciting for
structural biologists. When they get a protein with
unknown structure and only sequence information is
available, the proposed method can provide a pre-
view of locations on sequence of potentially metal-
binding residues. The result of identification can
further be helpful for determination of 3D structure,
and even the functional annotation in enzyme. There
is an alternative way to model this problem where
input must be 3D coordinates of protein molecule.19

Although it can provide more precise description
about the metal-binding phenomena from output, it
also restricts the usage of itself. More importantly,
most proteins have known primary structure but no
3D structure. Instead, our proposed prediction model
is pure sequence input so that it has broader usage
than structure-inputted modeling. In addition, there
is a sequence alignment-based method to detect pro-
tein with copper, zinc and iron-binding in PDB.20

It relies on the pre-defined metal-binding patterns
(a piece of sequence for metal-binding, a signature).
On the contrary, our method can perform the same
function (for example, when one protein sequence
through calcium-binding neural network predictor
reporting some residues have metal-binding state,
then this protein is recognized as “calcium-binding”
metalloprotein) without preparing and defining these
patterns in advance. Also it is easier to use while the
neural networks have been well-trained. From these
points of view, the proposed method can be a general
method for two levels of metalloprotein identifica-
tion: (1) protein with metal-binding and (2) location
of metal-binding residue. And it is a powerful tool for
data miming in biological resources to improve the

understanding about metalloprotein, and to speed
up relevant biomedical applications, e.g., design of
metalloprotein and deleterious mutations on metal-
loprotein for diseases.
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