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Mode Description of Routes to Chaos in 
External-Cavity Coupled 

Semiconductor Lasers 
Yao Huang Kao, Member, Nien Ming Wang, and Hong Ming Chen 

Abstract-The nonlinear behaviors of routes to chaos in semi- 
conductor lasers with extemal optical feedback were explored in 
this work. It was indicated that the relaxation oscillation was 
the origin of the first nonlinear instability of optical intensity 
under a short delay. Three types of transition routes with 
quasi-periodic, subharmonic oscillation, and periodic doubling 
to optical chaos were distinguished in terms of the delay time 
normalized to the inverse of the relaxation oscillation frequency 
of a solitary laser diode. The linearized mode theory and small- 
signal response were confirmed as part of the phenomena in the 
transitions to chaos. 

I. INTRODUCTION 
HE optical feedback in semiconductor lasers has T received a substantial amount of attention owing to 

its practical importance as well as to the wide variety of 
nonlinear properties. This effect has often been employed 
for reducing the optical linewidth so as to satisfy the 
requirements for some applications, such as coherent 
communication and interferometric fiber sensors. In these 
applications, the feedback strength is operated either at 
low feedback (< -40 dB) [ll, [21 or at strong feedback 
with an antireflective coating on the laser facet [3]. Within 
the considerable region of medium feedback levels, the 
linewidth is observed to become broadened to several 
gigahertz and is confirmed to be closely related to the 
coherence collapse, in which the optical intensity fluctu- 
ates in a complicated way [4]-[NI. The infinitely dimen- 
sional nature of the delay system is actually capable of 
giving rise to an extensive variety of nonlinear behaviors. 
Several types of chaotic transitions have been observed 
experimentally in some specific situations. The most no- 
ticeable behavior is quasi-periodic route (QP), in which 
the relaxation oscillation and external-cavity frequencies 
occur sequentially and are incommensurate with extemal- 
cavity length, of a few tens of centimeters [lo], [121, [141. 
The intermittent behaviors with the relaxation pulse mod- 
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ulated by the external cavity frequency have been found 
in a situation with the bias current around the kink region 
in the L-Z curve and with feedback from the medium to 
strong feedback regime [151, [161. Subharmonic cascaded 
bifurcations have also been observed with a relatively 
strong feedback level [51, [71, [MI. 

The cavity formed by extemal feedback takes actions 
not only in the optical frequency but also in the mi- 
crowave range, which is subject to an optical intensity 
fluctuation. Hence, the coupled-cavity laser contains a 
number of resonant frequencies for the intensity fluctua- 
tions, i.e., the temporal relaxation oscillation frequency 
due to the electro-optical interaction and a series of 
spatial external-cavity frequencies. The competition and 
interplay between these natural frequencies arise as the 
feedback level is increased. A successive occurrence of 
instabilities provide the chaotic fluctuation in the optical 
intensity. The theoretical study of feedback effects on the 
intensity instability are usually based on the rate equa- 
tions [191, which have been proven to contain the domi- 
nant information observed experimentally [lo], [12]-[14], 
[ 161-[MI. Simulations of a nonlinear injection-locking 
model have indicated a periodic-doubling cascade (PD) 
under decreasing feedback levels in a long external cavity 
[U]. The numerical results for the coherence collapse in a 
short external cavity have been presented, but without 
dealing with the transitions to chaos [20], [21]. Indeed, the 
periodic-doubling phenomena have been presented, how- 
ever, with parameters deep in the complicated region [ll], 
[18]. It is still interesting to extract the situation for the 
respective routes, especially for the periodic-doubling 
route at the actual beginning of the feedback level. The 
purpose of this paper is to investigate the dynamic transi- 
tions with an external cavity length of about 2-11 cm, 
which is equivalent to having the fundamental frequency 
of the cavity modes vary from twice to half that of the 
relaxation oscillation frequency, in order to test the peri- 
odic-doubling route. For convenience, the delay ratio 
~f,,,,, which is defined by the external delay time T nor- 
malized to the inverse of the relaxation oscillation fre- 
quency fm0, of the solitary laser, is employed so as to 
distinguish the feedback distance in the study. The first 
instabilities are forecasted in connection with the lin- 
earized mode theory. These investigations are not only of 
fundamental interest but also are the foundation of some 
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applications for the practical employment of optical de- 
vices, e.g., short pulse generations [22]-[24]. 

The organization of the paper is as follows. The rate 
equations in terms of photon density, carrier density, and 
optical phase are described in Section 11. The nonlinear 
instabilities from the small-signal approach are also pre- 
sented. Of special focus is the origin of the first instabili- 
ties. Section I11 summarizes the numerical results of tran- 
sitions to chaos under the various delay ratios. Three 
types of routes to chaos, i.e., the quasi-periodic route, the 
subharmonic-oscillation route, and the periodic-doubling 
route are distinguished from each other. The onset fre- 
quency and threshold feedback level of the first oscillation 
are also put into comparison with those predicted from 
the small-signal approach. The concluding remarks are 
given in Section IV. 

11. RATE EQUATIONS AND SMALL-SIGNAL APPROACH 
In the study, the feedback is assumed to come from a 

flat mirror with a reflectivity of R, .  RI  and R ,  are the 
reflectivities of the laser facets. According to the previous 
work [191, the complex electric field E( t )  of the outgoing 
field, which is situated at the internal laser facet opposite 
to the external cavity, satisfies the commonly used equa- 
tion 

+ k,E( t  - T) (1) 

where G(n,E:) is the optical gain and is dependent of 
optical intensity E:, n ( t )  is the carrier density in the active 
region, rp is the photon lifetime, r is the round-trip delay 
of the external cavity, and w ( n )  is the carrier-dependent 
optical angular frequency under single-longitudinal-mode 
operation. To account for the gain saturation, the gain 
G(n, E:) and angular frequency w ( n )  are assumed to be 
G(n, E:) = g(n - noX1 - €E:), and w ( n )  = wo + ag(n 
- nth)/2, respectively, where wo is the optical angular 
frequency without optical feedback, g is the differential 
gain coefficient, no is the carrier density for transparency, 
E is the gain saturation factor, a is the linewidth en- 
hancement factor, and nth is the threshold carrier density 
of the solitary laser. The term k,E(t  - r )  accounts for 
external reflection and renders the system of (1) infinitely 
dimensional. Under the assumption of a single reflection, 
the feedback coefficient k ,  is expressed as [25] 

where rd is the internal round-trip delay of laser cavity 
and Rex, is the ratio of the reflected power entering the 
laser at the laser facet to the emitted power per facet. The 
ratio Rex, can be related to R ,  via Rex, = R3$e-2ufLeXt, 
where 77, is the power-coupling efficiency, af is the ab- 
sorption coefficient, and Lex, is the length of the external 
cavity [26]. The ratio Re,, is the controlled parameter in 

the study. The optical field can generally be written 

E ( t )  = Eo(t)eAao‘+ Q(0l  (3) 

where the amplitude Eo(t)  and the phase +(t) are as- 
sumed to be real and slowly time varying. The E field is 
further replaced by the measurable quantity of the photon 
density S ( t )  = E;(t). Substituting (3) into (1) and taking 
the extra effect of the spontaneous emission into account, 
a set of equations governing the S( t )  and + ( t )  can then 
be obtained as [81 

where p is the spontaneous emission factor. These two 
equations must be solved in conjunction with the rate 
equation for the carrier density n( t )  

(6) 

where V is the active volume of the laser cavity, re is the 
carrier lifetime, e is the electronic charge and I is the 
injection current. Such nonlinear equations can be solved 
numerically. The typical parameters, as appropriate for a 
long wavelength InGaAsP laser diode, are given in Table 
I P61, 1271. 

As a matter of fact, the inherent properties of a solitary 
laser may play an important role in considering the emer- 
gence of intensity instabilities. As subjected to the inten- 
sity fluctuation, the laser diode can be modeled as a 
second-order low-pass filter with the transfer function 
rolling off 12 dB/octave above the relaxation oscillation 
frequency. Three fundamental parameters of the relax- 
ation oscillation frequency frso,, the damping factor 77, and 
the resonance amplitude H,,, of transfer function 
H(j2.rrf) are of special importance in describing the 
response. From (4) and (6) with no feedback k ,  = 0, the 
relaxation oscillation frequency frsol, the damping factor 
77, and the resonance amplitude H,,, of H(j2.rrf) are 
capable of being expressed as 

respectively, where So is the stationary photon density 
without optical feedback, I,,, = eVnth/re, S, = rp(Z - 
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TABLE I 
LASER PARAMETERS 

Laser Diode Parameters 

V (laser diode cavity volume ) 

rd (laser diode cavity round-trip delay) 

r, (photon lifetime) = 1.6ps 

= 1.10-’4 ma 

= 6 . 6 7 ~ s  

re (carrier lifetime) = 2ns 

a (linewidth enhancement factor) = 5  

fl (spontaneous emission factor) =1.10-5 

g (linear gain coefficient) 

c (gain saturation factor) 

no (transparent carrier density) 

= 1 . 5 ~ 1 0 ” ~  m3/s 

= 1 . 7 6 ~ 1 0 - ~ ~  ms 

= 1.102‘~-3 

RI, Rz (power reflection coefficient) 

I (bias current) = 1.3Ith 

= 0.32 

External Cavity Parameters 

L,t (external cavity length) = 2cm to l lcm 

w0r (feedback phase) = -arctan(a) 

It,,)/eV. The typical value of the damping factor is indi- 
cated from previous literature to be around 0.1 for In- 
G A P  lasers. The gain saturation factor E has the 
strongest influence on laser damping as a major result of 
(9). In the observed case, = 0.133 and Hm,, I: 3.7345. 
The effect of feedback gives rise to a modification of the 
transfer function. An oscillation occurs at the condition of 
infinite gain or the denominator of the modified transfer 
function being equal to zero. After algebraic manipula- 
tions from (4)-(6) around a stationary state, the denomi- 
nator of the modified transfer function after a Laplace 
transform is obtained as [28] 

+ ~ 1 ~ 5  - C4C5 + K’ + (C,  + C , )  [ 

+ K C , C ~  cos WT - ~ C ~ c x g S ,  sin WT 

- KC,C, cos WT + K C ,  agSS sin WT 

[ 

(10) 

S, is the photon density of the stationary state. The 
critical conditions for the first oscillation can be obtained 
as a zero of D ( z )  is crossing the imaginary axis. This case 
is also referred to as a Hopf bifurcation from the bifurca- 
tion viewpoint [171. A so-called limit-cycle solution is 
obtained after the Hopf bifurcation. Substituting z = jO 
and separating the real and imaginary parts in (101, we 
obtain two relations as 

X2k;  + X,k ,  + X o  = 0 

Y,k; + Y,k, + Yo = 0 

(11) 

(12) 

where 

- 2O( l  - cos S2T)sin OT 

X ,  = (1 - cos S ~ T )  -2R2  cos WT - C4agS,  sin WT [ 
- C4C5 cos WT + C,C5 cos WT + C ,  agSs sin WT 

- O(C, + C2) sin OT cos WT 

- 2O - + C,  sin Or cos WT 

(‘e 1 
c, + c, + c, + - 

Y, = O(I - cos 0 7 ) ~  - R(sin 07)’ 

- 2 n 2  cos WT - C,agS, sin WT 

+C,C, cos WT + C,agS,  sin WT 

-c4c5 COS W T  + (c, -k c,) 

+ a(Cl  + c , ) (1  - COS OT) COS 07 

+ 2 a ( 1  - COS OT) 

and 

Yo = -a3 + n(c,c5 - C4C5) + O(C,  + C, )  

The solution of the onset angular frequency O and the 
feedback strength k ,  in coupled-equations (11) and (12) 
can be found after some numerical procedures. For com- 
parison, the results equal those presented in [28, eq. (401, 
which are obtained simply by neglecting the quadratic 
terms of k ,  in (11) and (12) and approximating the photon 
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density S, and carrier density n, as the unperturbed ones, 
are also given as 

x='(cot-l(u(y-;)) Y T  + m r )  (13) 

where x = 7fmOl is the delay ratio, y = R/(2rfrs0,) is 
the normalized onset oscillation frequency, U = 2rfrSol/ 
(l/Te + (Tp E/g)4r2f:o~), = l/(l/Te + (Tp + E /  
g)4r2frfol), and m is an integer (m 2 0). The frequency 
and feedback level can be independently obtained from 
(13) and (14). The onset oscillation frequency is able to be 
determined solely from (13) once the delay T is fixed and 
the feedback level is determined from (14). 

Both the numerical and analytic results of the normal- 
ized frequency R/(2rfsOl) as a function of the delay 
ratio 7frSol are shown in Fig. l(a). The solid curve is from 
(13) and matches well with those from (11) and (12). The 
curve with open circles is derived from numerical calcula- 
tions. Several possible solutions actually arise, e.g., 
branches A, B, and C in Fig. l(a) at a fixed ratio. Each 
branch has its own origin. For comparison, the unper- 
turbed cavity modes are also plotted as marked with 
boxes. With a detailed examination, for a delay ratio less 
than one, branch A obviously corresponds to the relax- 
ation oscillation, branch B corresponds to the fundamen- 
tal cavity mode, and branch C corresponds to the second 
cavity mode. The second cavity mode actually has little 
effect on the relaxation oscillation and the system can be 
viewed as a two-resonator coupled system. The respective 
oscillation frequency has been pushed away from the 
unperturbed one, just like the weakly coupled situation. 
At the critical point with the delay ratio 7fmOl equal to the 
integer n(n = 0, the system behaves as a coupled cavity 
with two identical resonance frequencies. In such a situa- 
tion the resonance frequencies are shifted the farthest. A 
slight increase of the delay ratio swaps the roles of the 
branches. This implies that the roles of branch A and 
branch B interchange for a delay ratio between one and 
two. Branch B is now for the relaxation oscillation and 
branch A is the first external-cavity mode. This behavior 
repeats with branch B replaced by branch C for the delay 
ratio between two and three, as indicated in [29]. Branch 
C is the relaxation oscillation and branch B is the second 
external-cavity mode. The decision of the true branch 
depends on the lowest level Rex, required. The threshold 
Rex, for different branches can be obtained by substituting 
the corresponding R's and T such as points a, b, and c in 
the Fig. l(a) into (14). In the typical case of the delay ratio 
7fmOl = 3/2 (i.e., Lex, = 7.92 cm) and I = 1.31th, three 
possible oscillation angular frequencies with respect to 
branches B, A, C are at R = 27rsoIy R = (0.61) x (2rfrsoI), 
and R = (1.41) X (27rfm01)y respectively, with the required 
threshold feedback levels of Rex, at 6.64 X lop6 (- 51.77 
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Fig. 1. (a) The normalized angular frequencies Cl/(2n-fm,,) of the 
onset oscillation frequency and (b) the threshold feedback levels Rat 
versus the delay ratio ~f,,,,~ for I = 1.3& and E = 1.76 X m3. 

dB), 1.946 X (-37.1 dB), and 3.64 X lo-' (-14.38 
dB), respectively. It turns out that the oscillation fre- 
quency of the first intensity fluctuation comes from branch 
B, which originates from the relaxation oscillation. Alter- 
natively, for a short delay such as ~ f ~ , , ~  = 0.568 (i.e., 
Lex, = 3 cm), the predicted frequences are at 2.7 GHz 
from branch A and 5.28 GHz from branch B with Rex, = 

5.67 X (-52.46 dB) and Re,, = 3.55 X 
( - 14.49 dB), respectively. Obviously, the first oscillation 
comes from branch A and is also from the relaxation 
oscillation. The big difference in the threshold for the 
second instability recalls the features of the small-signal 
gain roll-off of 12 dB/octave for the frequency above frsol. 

The threshold feedback level for the first oscillation, 
predicted from both (11) and (12) and from (13) and (14) 
is illustrated in Fig. l(b) as a function of delay ratio. It 
reveals that the predictions with a delay ratio larger than 
one sufficiently correlates to the numerical computations 
in the next section. Whereas, for the delay ratio 7fsOl < 1, 
the results from (13) and (14) cannot match well with the 
numerical results. This implies that (13) and (14) are 
oversimplified for short delays. The deviation from (14) is 
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about 11 dB and only about 1 dB from (11) and (12). The 
frequency deviation from (13) is about 6 percent and 
about 3 percent from (11) and (12). Despite this oversim- 
plification, the simple expressions of (13) and (14) are still 
capable of easily predicting the onset oscillation fre- 
quency and threshold feedback level, especially in the 
long delay cases. 

111. NUMERICAL RESULTS 
The transitions to chaos of the limit-cycle solutions 

depend essentially on the subsequent instabilities. The QP 
route may occur as the second frequency is also from the 
Hopf bifurcation with a frequency incommensurate to the 
first. Additionally, the successive subharmonic-oscillation 
route may occur as the second frequency is rational with 
respect to the first. The PD route may arise as the 
successive half subharmonic components emerge in the 
spectrum. In principle, the second instability should be 
analyzed around the limit-cycle solution [301. Such an 
analysis needs the detailed information about the solution 
of the limit cycle, which in turn, is derived from numerical 
computation. Hence, the instability sequences and routes 
to chaos are further confirmed via numerical computation 
with the fourth-order Runge-Kutta algorithm. The calcu- 
lations begin without optical feedback within the first 
round-trip period T .  In avoiding the errors from the 
transient states, the first 15 000 round-trip periods are 
dropped out and calculations are put in action for another 
4096 round-trip periods. The frequency spectra of the 
output photon density are obtained by the FFT program 
with a resolution below 1 MHz after 64-fold ensemble 
averaging for the sake of improving the accuracy. The 
possibility of the periodic-doubling route is tested by 
choosing the delay ratio to be within the region of 1/2 to 
2. The relaxation oscillation frequency frso, of the solitary 
laser is about equal to 2.84 GHz with the bias current 
Z = 1.3Zt,,. The condition of W,,T = -arctan(a) for the 
minimum linewidth is applied during the calculations [6], 
[25], [31-[33]. The dynamic transitions are distinguished 
from the variations of the qualitative behaviors of the 
power spectra. 

A. The First Hopf Bifircation 
For completeness, the dependency of the first oscilla- 

tion on the damping factor 77 are checked by changing the 
gain saturation factor E ,  which originates from spatial 
hole burning and partially contributes toward the damp- 
ing factor 77 in (8). The H,,, becomes 17.32 and 77 
becomes 0.0289 for E = 0. The onset oscillation frequency 
and threshold feedback level as a function of the delay 
ratio are shown in Fig. 2(a) and (b), respectively. The first 
oscillation frequency still occurs around the relaxation 
oscillation frequency, but with a smaller shifting range. 
The threshold feedback level is less than that without the 
gain saturation effect. Thus, semiconductor lasers with a 
small gain saturation factor are more susceptible to opti- 
cal feedback. It is believed that the first instability from 
the relaxation oscillation is always attributed to the inher- 

1.3 1 
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7frsol 
(4 

-36 % y -43 
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d i o  o\ 

~ 2.2 

Fig. 2. The numerical results of (a) the normalized first oscillation 
frequencies fl/frso, and (b) the threshold feedback levels Re,, versus 
the delay ratio ~f,,,, for E = 1.76 X m3 and E = 0. 

ent properties of the high-peak H,,, and low-damping 
factor 7 of semiconductor lasers. 

B. Routes to Chaos 
The second instability emerges as the feedback strength 

is further increased. The different routes are differenti- 
ated with a variation of the delay ratio. 
1) Quasi-Periodic Route: According to our observations, 

this route often occurs as the delay ratio is set above 0.9. 
The scenario is that the stationary dc solution bifurcates 
first into a stable limiting cycle and further into a torus, 
followed either by an intermediate frequency-locking so- 
lution or directly by a chaotic state without any frequency 
locking, similar to those in [ 141. The typical transitions in 
terms of the power spectra of the photon density are 
illustrated in Fig. 3 in the case of Lex, = 7.92 cm (i.e., 
f ,  = 1/7 = 1.89 GHz) with ~ f , , , ~  equal to 3/2. The calcu- 
lated first onset frequency fl = 2.8 GHz is very close to 
frsol, as predicted in the previous section. The second 
oscillation frequency f i  = 2.15 GHz is higher than, but 
near, the fundamental cavity frequency f , .  This reveals 
that the second oscillation may originate from the funda- 
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0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  
Frequency (GHz) Frequency (GHz) 

Fig. 3. The power spectra of photon density for the quasi-periodic 
route interrupted by the interlocking state at f , / f 2  = 4/3 with Lex, = 
7.92 cm and (a)Re,., = -40.97 dB, (b) R,,, = -39.03 dB, (c) R,,, = 
-38.60 dB, and (d) Rex, = -36.38 dB. 

mental-cavity mode in the observed case. These two basic 
frequencies fl and f 2  adjust themselves due to the non- 
linear coupling to lock each other at fi/f2 = 4/3 and 
then become chaotic as the feedback strength is varied, as 
in Fig. 3 (c) and (d). Though the origin of the third 
oscillation frequency, which is a necessary ingredient of 
chaos, is not identified here. The third frequency is be- 
lieved to have something to do with the second cavity 
mode. The details will be discussed elsewhere. 

2) Subharmonic-Oscillation Route: These phenomena 
are observed with the delay ratio around the region of 
0.8-0.9. The typical power spectra of the photon density 
are demonstrated in Fig. 4 with Lex, = 4.8 cm (i.e., f, = 

3.125 GHz). The sequence of transitions in terms of the 
power spectra undergoes fl, f,/3, fJ6,  - 1 .  , to chaos, 
where fl is from the first Hopf bifurcation. The second 
frequency f 2  due to the second Hopf bifurcation is actu- 
ally locked to 4f1/3 with fl = 2.4 GHz and fi = 3.2 GHz 
such that the outcome has an f,/3 beaten component. 
The feedback thresholds of the first and second instabili- 
ties are at Re,, = 5 X lo-’ (-43.01 dB) and Rex, = 1 X 

(-40 dB), respectively. According to our observa- 
tions, there exist many fine interlocking structures (not 
shown here) so that the second oscillation is able to easily 
lock to the first one. Basically, the transition is similar to 
that in case 1. 
3) Periodic-Doubling Route: The periodic-doubling route 

can be found with a delay ratio less than 0.8. The typical 
power spectra of the photon density for the situation of 
Lex, = 3 cm (i.e., f ,  = 1 / ~  = 5 GHz) are displayed in Fig. 
5. The first Hopf bifurcation with frequency fl still near 
fn0, occurs as the feedback is increased to a certain level. 
As the feedback level is further increased, the frequency 
spectra of the photon density reveal the components of 
1/2,1/4,1/8;*., of fl. The second instability is periodic 
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Fig. 4. The power spectra of photon density for the subharmonic 
cascade route with Le,, = 4.8 cm and (a) Re,, = -40.04 dB, (b) Re,, = 
-40 dB, (c) Rex, = -39.83 dB, and (d) Re,, = -38.86 dB. 

x 
+I, 
.d v1 

Y 

U 
t2 

0 1 2 3 4 5 6 7  
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Fig. 5. The power spectra of photon density for the periodic-doubling 
route to chaos with Lex, = 3 cm and (a) Re,, = -39.20 dB, (b) Re,, = 

-37.12 dB, (c) Re,, = -36.66 dB, (d) Rex, = -36.55 dB, and (e) 
Re,, = -35.69 dB. 

doubling rather than a Hopf bifurcation. It seems that the 
feedback effect on the optical intensity fluctuation be- 
comes weakened and the second instability arises from 
the intrinsic nonlinearity of the laser diode itself under 
this very short delay case. The calculated frequencies f l  
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and f1/2 are at 2.85 and 1.425 GHz with Rex, = 7.8 x 
lo-’ (-41.07 dB) and Re,, = 1.84 x (-37.35 dB), 
respectively. The bifurcation diagram, which is obtained 
by taking the local maxima of the photon density fluctua- 
tions as a function of ReXt, is illustrated in Fig. 6 with the 
characteristic scaling constant being about equal to 4.833, 
which is close to the universal constant predicted by 
Feigenbaum [181. 

IV. CONCLUSIONS 
The intensity fluctuations and the related routes to 

chaos in semiconductor lasers with short delay feedback 
have been extensively investigated in this paper. The 
conditions of the quasi-periodic, and periodic-doubling 
routes occurring in terms of the delay ratio are indicated. 
The periodic-doubling route dominates the transitions to 
chaos in the short external cavity for delay ratios smaller 
than 0.8. The quasi-periodic scenario is mostly observed 
for delay ratios above 0.9. The subharmonic cascade is 
favorable for delay ratios around the intermediate region 
of 0.8 to 0.9. During the transitions, the first oscillation 
apparently takes place from the relaxation oscillation for 
typical semiconductor lasers with a low damping factor 
(v = 0.1). The second instability may be either from the 
fundamental-cavity mode with a delay ratio around unity 
or from another nonlinearity in the very short delay case 
and deserves further study. 
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