Reconfigurable Vertical Profiling Framework for the Android
Runtime System

TZU-HSIANG SU, HSIANG-JEN TSAIl, KENG-HAO YANG, PO-CHUN CHANG,
and TIEN-FU CHEN, National Chiao Tung University
YI-TING ZHAO, National Chung Cheng University

Dalvik virtual machine in the Android system creates a profiling barrier between VM-space applications
and Linux user-space libraries. It is difficult for existing profiling tools on the Android system to definitively
identify whether a bottleneck occurred in the application level, the Linux user-space level, or the Linux
kernel level. Information barriers exist between VM-space applications and Linux native analysis tools
due to runtime virtual machines’ dynamic memory allocation mechanism. Furthermore, traditional vertical
profiling tools targeted for Java virtual machines cannot be simply applied on the Dalvik virtual machine due
to its unique design. The proposed the Reconfigurable Vertical Profiling Framework bridges the information
gap and streamlines the hardware-software co-design process for the Android runtime system.

Categories and Subject Descriptors: C.4 [Computer Systems Organizations]: Performance of Systems—
Measurement techniques; D.2.8 [Software Engineering]: Metrics—Performance measures; D.4.8 [Operat-
ing Systems]: Performance—Measurements, Monitors, Operational analysis

General Terms: Design, Performance

Additional Key Words and Phrases: Profiling, vertical profiling, virtual machine profiling, nonintrusive
profiling, embedded systems

ACM Reference Format:

Tzu-Hsiang Su, Hsiang-Jen Tsai, Keng-Hao Yang, Po-Chun Chang, Tien-Fu Chen, and Yi-Ting Zhao. 2014.
Reconfigurable vertical profiling framework for the Android runtime systems. ACM Trans. Embedd. Comput.
Syst. 13, 2s, Article 59 (January 2014), 25 pages.

DOI: http://dx.doi.org/10.1145/2544375.2544379

1. INTRODUCTION

Limited computational space and power are major design factors for the increasingly
common smart mobile embedded devices. In order to maximize performance, optimizing
application and system software is often the most effective and economical approach.
Since how to optimize the software is not always apparent, profiling is an essential
methodology for pinpointing performance bottlenecks without introducing excessive
overhead which could skew measured results. In addition to optimizing software, pro-
filing can also be used to determine the hardware requirements when a target system
software has been chosen and assist the hardware-software co-design process [Shannon
and Chow 2004].

This research was supported in part by the National Science Council Project NSC 100-2220-E-009-036 and
also by Information and Communications Research Laboratories (ICL) of the Industrial Technology Research
Institute (ITRD.

Corresponding author’s (T.-F. Chen) email: tfchen@cs.nctu.edu.tw.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2014 ACM 1539-9087/2014/01- ART59 $15.00

DOI: http://dx.doi.org/10.1145/2544375.2544379

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:2 T.-H. Su et al.

The majority of popular mobile operation systems today are fine tuned and tied to
a few selected hardware platforms in order to optimize performance. These types of
specific hardware are often locked to prevent users from altering the mobile opera-
tion system, fearing it would diminish performance. Android on the other hand, is a
fast evolving mobile platform that differentiates itself by delivering frequent version
upgrades and supporting a variety of hardware devices. Android achieves architecture-
neutrality by running applications on top of the Java inspired Dalvik runtime virtual
machine [Google 2011]. These features make optimizing Android hardware and soft-
ware a more challenging task, as it becomes difficult to determine whether performance
bottlenecks occurred at the application level, the user-space libraries, or deeper at the
Linux kernel level.

Currently, the need for performance analysis to accelerate the Android hardware-
software co-design process has already produced many Java-level trace tools [Paul and
Kundu 2010]. Some of these tools approximate the time spent on Linux user-space
libraries by adding instrumentations to the beginning and end of each function of a
test application [Chang et al. 2010]. Unfortunately, this creates large operational and
runtime overheads which introduce inaccuracies to the profiling results.

In order to make up for the lack of Linux user-space and kernel-space information,
Android source code provides Linux systems profiling and tracing tools to its developers
along with those virtual-machine-level specific tools [Google 2010]. However, these tools
are unable to provide application statistics, because runtime-interpreted Dalvik opcode
segments for a DVM application are first loaded into its process’ heap and then executed
as the heap itself. Traditional Linux profiling and tracing tools can only see the heap
being executed and can not distinguish which method is currently running.

Furthermore, since Android applications running inside Dalvik virtual machines are
forked and controlled by the Zygote parent process, these Linux native performance
analysis tools are unable to determine the relationship between Linux libraries and
Java applications running inside Dalvik virtual machines. Thus it is difficult to retrieve
useful information past the Dalvik virtual machine layer.

This article proposes a Vertical Virtual Address Remapping Integrated (VARI) pro-
filer, a reconfigurable vertical profiling framework for the Android runtime system in
which a low-overhead memory map address remapping methodology, linking virtual
machine to kernel with a memory map tunnel, is devised to bridge the information
barrier and provide a way for performance analysis tools to tie the usage of Linux
native libraries with those Android applications that utilized them.

Furthermore, this article aims to lower vertical profiling overhead, thus minimizing
probe-effect-related inaccuracies. This framework enables reconfigurable profiling at
three levels: method-specific, application-specific, and service-specific profiling, which
allows users to only instrument targets of interest. By combining the ability to focus
on specific profiling targets, memory map remapping mechanism, and the appropri-
ate instrumentation methodology devised to suit the unique designs of Dalvik virtual
machine, this article reduces over 30% of overhead generated by traditional vertical
profiling methods. The proposed reconfigurable vertical profiling framework stream-
lines the difficult task of identifying system bottlenecks and accelerates the Android
hardware-software co-design process.

2. RELATED WORK
2.1. Opcode Instrumentation

Native code instrumentation, opcode instrumentation, and binary instrumentation are
the three common approaches to altering a virtual machine for the purpose of providing
further debugging information to the host analysis tools.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:3

Opcodes are known as bytecode for Java virtual machines, because most JVM opcodes
are one byte in length due to the fact that most JVMs are stack machines. Bytecode
instrumentation monitors runtime-generated Java bytecodes. As the result of DVM
not employing standard Java bytecodes, standard Java debugging or profiling tools
do not work on Android, at least not without significant modification [Chang et al.
2010; Nicolaescu and Veidenbaum 2005]. In addition, most bytecode instrumentation
methodology examines every bytecode generated at runtime, thus introducing greater
overhead. Many opcode instrumentation tools rely on JVMTI.

2.1.1. JVMTI. JVMTI stands for Java Virtual Machine Tool Interface [Oracle 2002]. It
was developed by Sun Microsystems, now owned by Oracle. It offers dynamic bytecode
instrumentation functionality which allows users to profile for information, add break-
points, and even make changes to the opcodes of Java methods. These JVMTI functions
are made possible by adding events to the code of a method, for example, adding a call
to methodEntered() at the beginning of a method. The inserted code is standard byte-
codes, which JVM treats as a part of the application [Oracle 2010]. Although these
additions do not modify application state or behavior, they introduce additional over-
head to the original application. To sum up, JVMTI is a great Java debugging tool but
perturbs the original application when utilized as the backend of a profiler.

2.2. Native-Code Instrumentation

Native-code instrumentation entails instrumenting virtual machine’s native source
code. Usually native-code instrumentation is event based and delivers application in-
formation to the performance analysis tool when specific virtual machine events take
place [Hauswirth et al. 2004, 2005; Mousa and Krintz 2005; Mousa et al. 2010; Binder
et al. 2007]. An example of native-code instrumentation is VIProf [Mousa et al. 2007].

2.2.1. VIProf. VIProf extends Oprofile to enable integrated profiling across the virtual
layers of a system. The VIProf architecture modifies Oprofile to re-label samples that
belong to the Java heap as a substitute file. The application’s method information
is collected by instrumenting Jikes RVM’s method compile, recompile, and flags GC
move method. VIProf is implemented on Jikes, which produces a static image in a
Jikes internal format and an associated map. VIProf is able to modify the Oprofile
post-processing tool to associate samples with static image produced by Jikes.

Most native-code instrumentation methodologies and Javana mentioned later are
implemented on Jikes RVM [Alpern et al. 2005]. Jikes is a Research Virtual Machine,
which is a JVM implemented as a Java runtime application. The issue with employing
Jikes is that it is designed to be flexible. There is a MAGIC class defined in Jikes’
compiler which allows users to implement machine code and interact with system
memory [Alpern et al. 1999]. Barriers imposed by regular virtual machines are easier
to circumvent on Jikes if functionalities like MAGIC are utilized.

2.3. Binary Instrumentation

Binary instrumentation modifies the interpreter of a virtual machine to monitor for
codes of interest. When an interested native instruction occurs, the modified code uti-
lizes special native instructions to deliver stack information relevant to the monitored
instruction. These special native instructions can also be dynamically inserted to trig-
ger profiling [Schneider et al. 2007].

2.3.1. Javana. Javana is a binary instrumentation methodology that comes with its
own profiling language. It is implemented on Jikes RVM and utilizes DIOTA as its
underlying profiler. Javana proposes a dynamic binary instrumentation tool that re-
sides between the virtual machine and host operating system. This dynamic binary

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:4 T.-H. Su et al.

Table I. Comparison of Vertical Profiling Instrumentation Methods

Profiler Instrument method JVM platform Profiler

Opcode

JVMTT [Chang et al. VM agent inserts additional opcode into the Sun/Oracle JVM | Adaptive

2010} original application methods
Native-code
VM agent saves method information to disk at .
VIProf [Mousa et al. JVM events. Oprofile kernel driver replaces heap | Jikes RVM Oprofile
2007] execution with substitute file. Post-processing
modified to read Jikes generated static image
Binary
Javana [Maebe et al. VM agent monitors JVM events and instruments | Jikes RVM DIOTA
2006 opcode to send information to profiler
Binary
beNOP [q An interrupt handler that issues ProbeNOP to
ProbeNOP [Inoue an initiate profiling is inserted at the start of every | j
; 2SE Oprofil
Nakatani 2009] method. ProbeNOP is a special instruction not Protte

used by the system

instrumentation tool tracks all native instructions executed by the virtual machine to
keep track of events, such as thread creation, thread switching, thread termination,
class loading, object allocation, object relocation, method compilation, garbage collec-
tion, etc. Javana defined a set of aspect oriented instrumentation language to allow
programmers to specify the events of interest, such as before or after time qualifier,
memory operation to a target. The dynamic binary instrumentation tool loads the user-
defined scenario and instruments at runtime. Similar to other binary instrumentation
methods, tracking all native instructions in order to identify the location to instrument
at runtime introduces considerable overheads [Maebe et al. 2006].

2.3.2. ProbeNOP. Inoue and Nakatani [2009], utilized an unused instruction in the
POWERS architecture as their special instruction to trigger Oprofile. The ProbeNOP in-
struction employs a POWERSG6 architecture vector permute instruction unused by JVM
to increment hardware performance counters and at the same time deliver context-
dependent information to the hardware performance counter interrupt handler. The
interrupt handler to trigger ProbeNOP is inserted into every method entry to trigger
profiling. For instance, to profile lock activity, ProbeNOP can be added to all lock ac-
quisition operations in JIT-compiled methods and the entry point of the monitor enter
helper function. When lock contention takes place, ProbeNOP will provide information
on the program locations that causes it by showing a high HPC count for a method’s
allocated address. Since ProbeNOP does not employ Oprofile, it maintains its own
back-trace tree by deriving object creation profiles from the Java object headers store
instruction profiles collected by hardware performance counters.

This mechanism creates relatively small overhead when compared to software solu-
tions, such as scanning for memory locations. It also provides context-sensitive vertical
profiling.

The drawback of native code instrumentation is that the target program source
code needs to be manually instrumented. Additionally, duplication of efforts is re-
quired when applying to different architectures. Some architecture might not have an
unutilized instruction to act as the special NOP function. These factors make binary
instrumentation less ideal for the Android platform.

2.4. Comparison of Vertical Profilers

Table I compares the instrumentation methods of the just works introduced. Each work
provides distinctive benefits to profiling integration on JVM. However, they all have

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:5

Android Application

Application Framework

Libraries Android Runtime

(tibe) (opengl) (Danvikvm

Linux Kernel

drivers

Fig. 1. Android architecture.

design aspects that are incompatible with the unique designs of DVM, such DVM being
a register-based machine, rather than stack-based, like most JVM.

3. BACKGROUND AND SYSTEM DESIGN

Android presently runs on several iterations of ARM and x86. These include single-
core and multicore architectures with varies memory hierarchies. Given that Android
is designed to be architecture-neutral and our goal is to minimize probe effect related
inaccuracies, this article adopts a modified event-based native-code instrumentation
approach to suit the unique process execution and stack management of Android’s
Dalvik virtual machine.

3.1. Android Platform

Android platform is built on top of the Linux kernel. In the pursuit of making the system
more suitable for mobile devices, many modifications are made to the system, including
changes to the basic Linux system libraries, such as libc and ptrace. The basic Android
framework is shown in Figure 1. Linux kernel and drivers are the foundation of Android
framework and directly interact with the hardware. Android runtime is built as a part
of the Linux system libraries which consists of the Dalvik Virtual Machine and other
libraries that manages DVM thread creation and interprocess communication [Batyuk
et al. 2009; Binder et al. 2006].

Although the Dalvik virtual machine is a modified Java virtual machine, unlike most
JVM stack machines, DVM implements a register-based design. A register-based ma-
chine uses fewer instructions, but since each instruction is longer, it also has larger code
size compared to the stack machines. Aiming to reduce code size, Android redesigned
the packaging format to share common code and constants between class files. The
resulted dex format typically produces files less than half the size of the same code in
the uncompressed JAR format [Khan et al. 2009].

Application framework is a special Dalvik application which contains Android system
services, such as telephony manager, activity manager, and windows manager. The rest
of the applications interact with the basic systems through this application framework.
Android user interfaces, such as the home screen, telephone dialer, and browser, are
all Dalvik applications.

3.2. Dalvik Virtual Machine Application Initiation

The proposed vertical profiling framework will modify codes within the Dalvik virtual
machine to enable sending application information to our Linux user-space profiler.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:6 T.-H. Su et al.

DAEMON RUNTIME §| ZYGOTE SYSTEM HOME TEST APP
PROCESSES SERVER

Activity
[Manager] [home] [Testapp]
Windows Dalvik Dalvik
Manager VM VM
Dalvik
VM
Surface
Finger
daemons runtime zygote AGE
¥8 Finger
ibe JJ(tioc JJ(tioc JJ(tioc JY(tioc JJ(e)

Fig. 2. Android processes [Google 2008].

Y

During the initiation of new Android applications, a new Dalvik virtual machine is
created for each, as shown in Figure 2 [Google 2008]. A process called Zygote monitors
the application initiation and forks it into a new thread when it is ready. Thus, modi-
fications for the virtual machine event-based instrumentation should focus on Zygote
and the Dalvik virtual machine.

Traditional vertical profiling instrumentation methodologies track events that mod-
ify stack address of the virtual machine. These important events includes Zygote fork-
ing a new thread, Dalvik virtual machine undergoing method creation or garbage
collection, new frames being pushed or popped on the thread stack, and other memory
related events. A log of these changing address locations helps to correspond application
information to Linux profiler samples.

3.3. Oprofile

In the attempt to minimize profiling overhead, Oprofile is chosen as our Linux user-
space profiler. Oprofile utilizes hardware performance counters of different architec-
tures to sample both user-space and kernel-space usage data [Contreras and Martonosi
2005]. Using Oprofile, developers can avoid dramatically affecting accuracy by ad-
justing sampling frequency to minimize overhead. At the same time using hardware
counters further reduces overhead [Sweeney et al. 2004; Cohen 2004].

The most recent official Oprofile release includes a JIT extension which provides
a set of tools, such as opagent and opjitcov to use along with JVMTI on traditional
JVMs. However, due to design differences between JVM and DVM, the extension is not
functional on Android without our proposed changes to the DVM.

Furthermore, Oprofile source code included with Android is modified to adapt to the
differences between Android’s Linux kernel and regular Linux systems. As a result,
Oprofile provided with the Android source code is older in version and stripped of newer
features that are needed for the proposed communication flow. To complete our profiling
work flow, the VARI profiler ported the official version of Oprofile to Android and a few
other Linux components that are required to run with this version of Oprofile, such as
Sed and Awk, to our test system.

3.4. Profiling Gap and System Design

The main goal of this article is to establish a bridge to communicate application in-
formation from the Dalvik virtual machine to a Linux user-space profiler without
modifying target application source code.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:7

Android ‘ Apps Android Aops s
< T
DVM EIP DVM
El !
4 g
Android runtime lib Android runtime lib A Z
__ Pl Il
Barrier Barrier g A 5
___ ot [I S— -
g g
Linux user space and lib < Linux user space and lib e f =
7 & z
aprofic]
z | = | H 5
Z 1 £ | ®
Kernel space E Kernel space 3 5
: :
g
3 {mof JEX
Hardware E Hardware 58]
=]
| HPC | | file system memory I 4 HPC |
(a) Current profiling process with an information barrier. (b) Bridging the barrier with even-based instrumentaion.

Fig. 3. Profiling flow on Android runtime. (a) Current profiling tools with the barrier. (b) The proposed
method employs an event-pipe instrument module which sends method name, stack frame address, and
other information to the Linux profiler.

3.4.1. Information Barrier. Figure 3(a) shows the profiling flow of those Android perfor-
mance analysis tools currently available. Linux-based profiling tools are only able to
gather information of the runtime virtual machine itself as an independent process.
They are unable to penetrate the virtual machine and retrieve Android application
method and stack address information. Therefore an information barrier is formed,
where profiling disconnects take place between Android applications, Linux libraries,
as well as the kernel events that the applications invoked.

3.4.2. Vertical Profiling. The proposed vertical profiling flow utilizing memory map ad-
dress remapping and direct memory tunnel is shown in Figure 3(b). Event-based
native-code instrumentation is achieved with the addition of the Dalvik instrumen-
tation module, which is responsible for two different sets of communications.

First, a virtual device module is loaded in the kernel space before profiling began.
When an application initiates, its DVM process opens a virtual file corresponding to the
DVM’s PID. During profiling, DIM delivers time-sensitive remapping memory address
to kernel space through the proposed direct memory tunnel.

The Dalvik instrumentation module looks up a method’s virtual memory address
during virtual machine events, such as method invoke, and subsequently forwards the
VMA of this method to the kernel-space virtual device file. This is the main implemen-
tation of the memory tunnel.

Second, at the same time, DIM collects Android application thread information, such
as, UID, PID, TGID, current stack frame, frame pointer, method name, and class name.
The modified events then dump this method information in a location where our Linux
user-level profiler can retrieve and correlate with sample results, thus bridging the
profiling gap.

4. PROPOSED EFFICIENT VERTICAL PROFILER - VARI

4.1. Traditional Method Invoke Instrumentation Methodology

Traditionally, JVM instrumentation for vertical profiling takes place whenever an
address has changed. Since typical JVM machines are stack machines, the allocation
of a Java method’s VMA is not known until the interpreter invokes the method. When
the stack frame is full, garbage collection and other memory relocation functions
also modify the method’s address. Therefore, implementing vertical profiling requires

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:8 T.-H. Su et al.

Process Virtual Memory Address
DVM interprets
dex opcode into
assembly code

app_process:
0x00008000 —
0x0000a000 =
jo file: -t

1 -
0x00214000 —— | OPagent [

heap:

M

I

1/O access required during runtime e
for each method invoked

L

Load method from
0x415bf000 [—— dex o

Virtual Tirect

method: methods
1 Invoke Method

dex file:

_—
Y

0x419¢7000|

1

o s|wlo|—E

n n

0xaca00000 =

NI libe.so: Dalvik Instrumentation Module
0Oxacb4e000 [

Fig. 4. Instrumenting ‘method invoke’ creates more runtime overhead.

instrumenting every JVM function that would alter the memory allocation, such as
method compilation, method recompilation, method relocation, garbage collection, etc.

In the case of the register-based DVM, stack frames also undergo garbage collection;
however, since the dex files are mapped onto the process memory map, the addresses
are fixed as long as the process remains running. As a result, method VMA retrieved
by DIM remains the valid method address for the duration of profiling. When DVM
invokes a method, it loads a section of the mapped dex file starting from the VMA
where the method’s beginning opcode is located. DIM instrumentation captures this
action and sends the starting VMA of the invoked method through the direct memory
tunnel. To ensure DIM instruments all method invocation’s final entries points, this
article examined DVM opcode interpreter. The DVM interpreter contains four types
of method invocations. DIM instrumentations are inserted at the DVM native code
where the method invocations instructions are issued. The flow of DIM retrieving
VMA for methods being invoked is show in Figure 4. The DIM component responsible
for delivering VMA through the memory map tunnel is not shown in the figure.

(1) When a method is invoked, the interpreter retrieves opcodes of the method from the
VMA and loads the interpreted code into the heap. For each method invoked, DIM
sends method name and its VMA to a substitution symbol file through opagent.
When a JNI method is invoked, DIM only sends the init method through opagent.
When Dalvik-heap executes the JNI call, they are processed by Oprofile as regular
Linux user-space execution.

(2) By instrumenting method invocation, every method invocation requires additional
I/0 operations to write the substitution symbol file.

The benefit of instrumenting method invocation is that only the information of those
methods used will be saved, thus reducing the spatial overhead for the substitution
symbol file and the generated substitute ELF file. For mobile devices, sample log files
can use up limited storage space quickly. However, I/O operations in step 3 are costly,
even if the substitution symbol file does not need to be converted into ELF format
during runtime. Furthermore, the benefit of reducing spatial overhead is eliminated if
most of the methods are invoked during profiling.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:9

Legend

Control @

| DIM —
Method Invoke
DIM

configuration
—

Target methods/
Target Apps/
Target System

part of the
target?,

Guest
VMA

sk

Control Computer L

Opreport || Opimport DIM —

Load method
from dex

Get current VMA

Jodud(y

© vy]

C DIM — DIM—
OPagent Send method info send pc
Dalvik VM -t

Symbol

@ Dump
Log i

opjitconv

(.dump)

Host
Symbol
Files

memory map
4 tunnel

(6) H
6
User Space 4 @
H r Guest
Control | Event Buffer VMA J (PU
@ Memory Tunnel Cyete
Dalvik M

Fetch VMA avt Virtual Device 0

CPU Buffer |4 heap 1

) VMA? :

Oprofilefs Host N
VMA |t PC execute T5500

Kernel Space

Android Platform

Fig. 5. Vertical profiling architecture.

4.2. VARI Profiler Architecture and Profiling Flow

Figure 5 describes the architecture of the proposed VARI Vertical Profiler. The dot-
ted lines represent control signals. Solid lines represent dataflows. Components and
flows with bold borders and fonts are modified or added for proposed vertical profiling
framework. The rest are existing components of Android, Oprofile, and Oprofile JIT
extension tools.

Profiler is initiated by setting up sampling frequency and assigning hardware per-
formance counters of interest in step). Opcontrol then initiates the Oprofile daemon
and sampling begins. Oprofile daemon will halt the system for a short period to empty
and process sampled data in the event buffer when the buffer is almost full in).

When the DVM process begins invoking methods after initiation, DIM looks up the
method’s VMA, which is the VMA of the dex file in the process map plus an offset, then
gathers relevant information in 3.

After retrieving method VMA, DIM sends it through the proposed memory map
tunnel to a designated kernel space virtual device in @). The virtual device file only
contains a valid VMA when a method is invoked. Once Oprofile’s kernel driver receives
a pmnc (Performance Monitor Control) interrupt, and the modified driver determines

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:10 T.-H. Su et al.

this sample belongs to a Dalvik method, the sample VMA is replaced with the VMA in
the virtual device file in &).

DIM then saves the current method name, method VMA, and size into a substi-
tute symbol file. Once the profiling is complete, Oprofile daemon calls opjitconv which
converts the saved substitute symbol files into ELF symbol files. These ELF files con-
tain only the relevant symbol information for Oprofile to correlate samples to Android
applications.

The original Oprofile JIT extension expects that Oprofile will be unable to find sym-
bols of Java applications samples and resort to labeling them as anonymous. Due to
Dalvik’s process management, Oprofile actually identifies these samples as Dalvik
heap or Dalvik JIT code cache execution, part of the Android shared memory process
(ashmem). In step @, DIM and Oprofile kernel driver modifications remapped Dalvik
method samples with a new VMA to avoid this issue.

At this point, the ideal behavior is for Oprofile daemon to process these ELF files
as it would do with regular Linux processes and saves the logs in the file system.
However, these remapping VMAs actually point to application dex files on the DVM
process memory map, and not the ELF symbol files. Oprofile daemon saves samples to
logs in (8), which are retrieved along with the ELF information file in).

4.3. Memory Map Address Remapping and Substitute Symbol File

This article noticed that Dalvik VM map dex files contain application opcodes to the
application’s process memory map, and this address does not change for the duration of
application execution. This article proposes a memory map address remapping mecha-
nism to replace the address of Oprofile samples in kernel space with its corresponding
dex file memory map location. This eliminates the need to keep track of the interpreted
method address in the heap or stack as they change after VM memory operations.

DIM instrumentation at method invocation will trigger the remapping mechanism
and deliver the method’s address on for its corresponding dex file to a kernel space
virtual device file mapped to the DVM’s memory map. This communication technique
goes through the profiling barrier to provide DVM application information to Oprofile;
therefore it is referred to as direct memory tunnel. The Oprofile driver device is modi-
fied to monitor the pmnc (performance monitor control) interrupt and replace current
sample’s VMA when the memory tunnel sets the virtual device file’s value. After the
remapping, the rest of the flow inside the kernel space remains unchanged from the
original Oprofile.

Utilizing the direct memory tunnel to update time-sensitive application method lo-
cation information as methods are invoked reduces context-switching overhead caused
by implementing system calls.

4.3.1. Substitute Symbol File Generation. After remapping Oprofile’s sample address, even
though DVM application samples are now able to link back to their own dex file, they
cannot be traced back to a method, because dex files contain Dalvik opcodes, and
currently Oprofile only processes ELF format symbol files. To correlate samples to the
correct Dalvik application methods, a technique is required for Oprofile to link samples
to a substitute symbol file.

To resolve this issue, DIM needs to provide method name, method VMA, and method
code size to an ELF format skeleton symbol file. This article utilizes opagent and
opjitconv from Oprofile’s JIT extension to write the substitute symbol file. When target
application initiates, it creates an empty substitute symbol file and allocates it in the
DVM’s memory map.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:11

Process Virtual | | |j0 ﬁlel

MemoryAddress | doiitle | | Il |

method #0
onCreate

method #0
onCreate

Class #6

method #2 method 9

method 9 method #1

method #1 | method #2

I 1 1
0x00002000 0x0000a009 0x415bf000 0x419bf000

~

method 9

method #0

onCreate method #2

method #1

0 400000

Z
E
=

Logically linked

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
‘ method #0), . hod #1 |method #2
* onCreate

method 9

0xa000
+009

0xa000 0xa000 0xa000
+000 +001 +002

opagent save to dump file

000 009

DIM hash remapping algorithm |

Memory map

Fig. 6. Generating hash address remapping symbol file.

This file’s mapped address is different from the dex files, hence before DIM sends a
method’s VMA through the memory map tunnel, it will need to recalculate the method’s
new location on the substitute symbol file location. The simplest way to do so is to shift
all the address by the offset between substitute symbol file’s address and the address
where the dex file is mapped to. If there are more than one dex file in an application’s
memory map, they will also be mapped to the same substitute file with an updated
offset to last entry of the file.

4.3.2. Hash Address Remapping. The issue with the previous methodology is that since
the substitute ELF file contains only the method name and the address, most of the
space allocated is wasted. Larger applications could cause allocated section to overflow.
Figure 6 shows the remapping algorithm used to reduce memory necessary for mapping
the substitution ELF file. A hash table is generated to reduce overhead of looking up the
method’s substituted address during runtime before sending the method VMA through
the memory map tunnel. Also the substitute symbol file only records the name and
address of the method.

Ideally, this substitution ELF file is generated by utilizing functionalities provided by
opjitconv during runtime from the substitution symbol file provided by DIM. However,
since symbol searching is carried out by Oprofile analysis tools, such as opreport and
opannotate during post-processing, generating ELF files during runtime becomes un-
necessary, especially when it creates extra runtime overhead. Instead, the substitution
symbol file will be converted into the ELF format when profiling concludes.

By eliminating the need for runtime generated substitute file, only a dummy substi-
tute address needs to be recorded by the hash table. This file is only logically mapped
to the dex files on the process virtual memory map, since method information can be
acquired by correlating the substitute address to the dex file in post-processing. The

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:12 T.-H. Su et al.

memory space savings are shown in the following equations.
N
Soriginal = Z M)
i=1

Sdummy]msh = N»
Roriginal = (Ai - AO) + H01

Rdummy,hash =1+ HO’

where there are N methods in the target application. M; is the code size of each method
of the target application. Syiging is the memory size of the original remapping file
memory map allocation. Sgunmy hask is the memory size of the heap table remapping file
memory map allocation. Roigina is the substitution address sent through the memory
tunnel for memory map address remapping without hash table. Rgunmy nast is the hash
table substitution address sent through the memory tunnel for memory map address
remapping with hash table substitution. A is the first address of the first dex file on the
target application memory map. A; is the address of the current method’s corresponding
dex file address. Hy is the starting address of the allocated hash remapping file. Ry igina
and Riummy_hash Need to be calculated at runtime. It is clear the hash table methodology
requires less look up to calculate a method’s substitute address. The maximum size (N)
for a hash table substitute address file can also be determined quickly during target
application’s initiation.

A discovery of an instrumentation methodology specific to Dalvik virtual machine
renders the dummy hash table substitution unnecessary for most methods. However,
the hash remapping methodology can still be used to keep track of dynamically compiled
methods generated by Android’s new just-in-time compilation capabilities. Aside from
Android’s JIT functionalities, the aforementioned hash table remapping method can
also be used to adopt VARI profiler to stack-machine-based JVMs.

5. DALVIK INSTRUMENTATION MODULE

The Dalvik instrumentation module is an agent added to DVM for the purpose of
retrieving application information within the virtual machine. The DIM is aimed to be
architecture-neutral; therefore, this article avoids instrumenting the assembly portion
of the DVM’s opcode interpreter. The applied instrumentation methodology determines
the accuracy of the final profiling result. This section examines instrumentation module
in DVM with the load method from dex instrumentation methodology and how to lower
overhead based on DVM’s distinctive features.

5.1. Load Method from dex Instrumentation

This article observed that DVM loads dex files into its process’ virtual memory map
during the initiation of the DVM process. Therefore, except for the JIT functionality,
the dex VMA allocation of an interpreted method is known before it is invoked. When
the target application initiates, DVM will store the VMA of every method from a dex
file into an array. This gives the opportunity to avoid instrumenting actual runtime
method invocation; instead, DIM can write the name and VMA of every method in the
dex files to the substitute symbol file before the application is executed.

This methodology merges multiple runtime I/O operations in the previously men-
tioned method, invoking instrumentation technique into one single write operation to
the substitute symbol file at the initiation of the application. Aside from a slightly
slower application start time, load method from dex instrumentation does not affect

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:13

Process Virtual Memory Address

DVM interprets
app_process: dex opcode into
0x00008000 assembly code

heap: %
0x00002000 F—
9 OPagent
Send symbol information
only once per dex file e

jo file:

A

0x00214000 —

T

DVM loads entire Load method from
dex file from the dex
memory map

0x415bf000 ——

i

dirc
el

=
method:
—% Invoke Method

dex file:
0x419¢7000)

ual
ods

E

K
el

——

i‘

o e|wle]—
(73 IFNY K90 IO

n n

0xaca00000 [}
INI: Dalvik Instrumentation Module

" Oxacb4e000 —

Fig. 7. Instrumenting when DVM loads the every method of a dex file.

profiling results and does not perturb the target application during runtime. Thus this
methodology reduces the overhead caused vertical profiling.

Figure 7 shows the change in the DIM flow. While step 1 remains the same, before
methods are invoked, in step 2, DIM sends information for every method to opagent
when an application initiates. DVM doesn’t begin invoking methods until it has com-
pleted loading methods into the array in step 3; therefore, this instrumentation does
not impact the profiling result during runtime.

5.2. Improved VARI Profiler Architecture and Profiling Flow

Figure 8 shows the modified portion of VARI profiling flow after switching to load
method from dex methodology. DIM is modified to instrument at application process
initiation to loading every method from dex files and adding them to the hash address
remapping table. The highlighted portion shows component changes. New components
are in bold.

The following is a detailed description of modified DIM instrumentation flow.

(A) DVM loads every method from application dex files during application initiation.
DIM gathers information for all methods and saves it to a substitution symbol file
via opagent.

(B) At method invocation, DIM determines if the invoked method is a profiling interest.
Hash address remapping is only generated to keep track of methods dynamically
compiled by JIT compiler. The generated address is stored in DIM as a hash table
for faster lookup. Maximum hash lookups take O(n) time. The generated remapping
VMA is sent through the direct memory tunnel and to the substitute symbol file
along with method name.

(C) DIM looks up remapping VMA of none JIT methods and sends it through the
direct memory tunnel. For profiling flow that incorporates the hash remapping
methodology, reused methods only need to look up the hash table for their original
translated address. In that case, all methods will be mapped to the substitute ELF
format file. Regardless of whether the current method VMA is replaced by the hash

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:14 T.-H. Su et al.

| DIM —
Method Invoke

DIM
configuration

.

DIM—
hash lookup

Guest
VMA

part of the

Target methods/ target?

Target Apps/
Target System

Get current VMA

DIM —
JIT Method Invoke

DIM —
Load method
from dex

DIM— DIM—
OPagent generate hash addr. send pc
Dalvik VM

Dalvik

Symbol
Dump

(.dump)

memory map
tunnel

Fig. 8. Hash remapping table and load method instrumentation flow.

lookup, DIM sends it to the kernel space virtual device through the direct memory
tunnel.

(D) The substitute symbol file created in step A is converted into the substitute ELF
file. This substitute ELF file is the guest symbol file. To reduce overhead, this ELF
file is generated post profiling. It is only logically mapped to the dex files on the
process virtual memory map to ensure the memory allocation will not be used.

The hash remapping address mechanism is useful for keeping track of dynamically
compiled methods from JIT. In this case, the process’ virtual memory map has to
allocate a section of virtual memory for the substitute symbol file to ensure address
generated by the remapping algorithm will not create a conflict with other allocations.
By remapping both the JIT compiled and interpreted methods into the address range of
the substitute symbol file file, no renaming is required during post processing. Oprofile’s
post-process analysis tools will search for the symbols for DVM related symbols within
the substitute symbol file file. But in comparison, renaming the substitute symbol
file post profiling process is still the methodology that introduces the lowest runtime
overhead.

5.3. Reconfigurable Profiling

DIM employs two techniques to achieve reconfigurable profiling. For finer granularity,
DIM can be set to write information only for the specified methods from the profiling
target method list to the substitute symbol file. For larger granularity, DIM can be

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:15

Table Il. Testing Platform

Development Board

Beagleboard Rev. C4
CPU OMAP3530DCBB72 720MHz
CPU Arch. CPU: ARM V7
Micron
POP M.
OP Memory - NAND (256MB) [2Gb MDDR SDRAM (256MB)

configured to only profile DVM process of an application by checking the process
command line, which is the equivalent of Java package name.

Hard-coding the desired application to profile will require recompilation of the entire
Dalvik virtual machine every time a new application needs to be profiled. A configura-
tion file informing DIM which application or methods to profile avoids having to recom-
pile DVM. This configurability can be provided by modifying a text configuration file.

By combining several method-level or application-level configurations, DIM can pro-
vide a better picture of specific events, for example, combining methods from the system
server process to evaluate video performance. By only writing the substitution symbol
files of Android’s system service process to the file system, Oprofile daemon can orga-
nize samples by system services. Services specific profiling can identify power hotspots
and point to possible causes.

Such measures reduce the overhead of writing unnecessary files to the file system
when the developer only wants to track down bottleneck in a specific application or a
section of code.

6. RESULTS
6.1. Experimental Environment

Testing is conducted on a Beagleboard Rev. C development board running Android 2.3
Gingerbread which incorporates a JIT compiler (Table II).

6.2. VARI Profiling Results

Figure 9 demonstrates profiling results of the unmodified Oprofile provided with the
Android source code and VARI profiler, running the same OxBench Math bench-
mark. 0xBench Math benchmark includes Java mathematic benchmarks Linpack and
Scimark?2 (Table III).

In Figure 9(a), the unmodified Oprofile’s does not provide any Android application
information from within the Dalvik virtual machine. Therefore it appears that the
virtual machine itself (libdvm.so) takes a large portion of the execution time; however,
most of the samples came from application executions and not the virtual machine
itself.

The VARI profiler result running the same benchmark is shown in Figure 9(b). It re-
veals that the actual Dalvik VM itself only takes up less than 9% of the execution time.
The system spends most of time, 56%, executing the Android benchmark application
data@app@org.zeroxlab.benchmark-1.apk@classes.dex. Bottlenecks of an application
could exist in the application itself or certain system library. If this were an underper-
forming application, it would indicate that the source of bottleneck is likely to exist in
the application instead of the system’s native libraries.

Multimedia applications depend on Linux native libraries for image processing.
Figure 10 shows the profiling result of running the Newton’s Cradle application, which
is a two-dimensional graphic-intensive application. In this case, graphics drivers
and libraries, such as Android’s two-dimensional graphic library libskia, take up the
most execution time after the Linux kernel. The VARI profiling result reflects the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

T.-H. Su et al.

0xBench MATH (without VARI)

lab.benchmark-1.apk

- djaydo
2 99/7'ST'T'T°0S'pzindq|| 8 0s'2nN2Iq|
. S
o0s'30|qI B pqpe
8 | osplopueTs3I0q) S |
S
0S'++2p1sql| 0s'Aoe8a| asempJeyqi|
3 | ST T T'0s193sM™aI0¥aANYIAdG)] S | 99,TSTTTOSI9ISM QIO¥ANYAdg)
5
os'iad[ayanieuq| 0519341
o
g os'Aoega|"asempaeyq| S | dewo
°© 13Ul *Je[Aa1jod"plolpue@>Jomawel) @ walsAs
m) o S | osugTinoqy
8 | osugrinagy < S
S — os'Jad|ayaaneuqi|
qjjdewo p.m o i
- . o 2 OS'ND TAS31Oq!
g | 0sTo3gl 2, os'sa8ul|yfxiday)
os'a|bsql| m S | osaubsay
m os sasulyaxidqr) < oszql|
OS'IND” TAST19!| > — S | 9sLzsTTTOSIBDNIq!
m 99/7'ST'T'T'0s" ¢dewodo||esd m m us
99/7°STT'T°05'|89DINIq!| _.m A W 99/7'ST'T'T°05" ¢dewo 20| jess
g 0sannaIq|| = W | o B
99/7'STT'T°0S' WNAISq| 3 = & | gvzsrTTosw Ay
- - = 05°3102qaMql|
~ — < o _
o _ = M 3 05°S1aAI9S™ ploJpueq|
1[0 428ulje0euNnsql| 0 S . _
o) =) = 0s7ua1|2” Ja8ulyadeNSql|
3 0S'SJaAIS ™ ploJpueql| H S m oswaq
0s'3100qaMql| —= pnw pajyosdo
3 os'wq|| nm w o | osuepuqqy
0s*Japulqql] o, > xogAsnq
® 1 wpsiad o = os'Ja8uljyaoeNSql|
o _ f— © .
~ 1 0sdwnuniploipueq| < os'Inq|
S - . _
S g os.a8ulyedeunsql| B o os’awRuns plopueq|
L . on wjnIsInd
¢ W 0s’Inql| g - - o
r . @ "'S'TCT 0€SXOS YAYIMO IND TAS319q!
0s's|1Ingl| O ° os's|inql|
3 m T0ESXDS YAYIMOd INDTTASITOq! = <
- .
I 05°s|13n2q1| P d osaqy
8 os'enisq| 3w osensay
J 3 0s°2q| R | o 05'wApq
€T ~ — L
9 XNUI[WA 2 XNUIJWA
9 . P = “oyJewyouaq ge|xoaz sio@dde @ ele
¢ s e—— 0S'WAPQ]| E HJewyduaq ey @dde@ejep
R 2 I B 8KV e BB RLPIIBIILAIVBE Y-
so|dwes |e10} JO % sajdwes [£303 40 %

116

59

(b) Same benchmark result with VARI profiler.

Org.Zerox
ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Fig. 9. Profiling results of 0xBench Math benchmarks: (a) Original Oprofile provided by Android source
code, only Linux level information is visible. (b) The proposed VARI profiler can identify Android application

samples.

Reconfigurable Vertical Profiling Framework for the Android 59:17

Table Ill. Experimental Environment

Experimental Environment

Android 2.3 Gingerbread
Kernel 2.6.29-00261
Compiler gee version 4.4.0
Oprofile 0.9.6

Newton’s Cradle [Hyndman 2011]
Linpack [Dongarra et al.][Dongarra et al.]
Scimark2 [Pozo and Miller 2004]

Benchmarks | OxBench Math [jserv 2010]

0xBench VM [jserv 2010]

Newton's Cradle with CPU Cycle = 1500

50 46.95

45

40

35 31.5546

30

25

20

15 1132 9.98
’ . -
0

% of total samples
.
o

0:20 0:01

x wv kel — <
5 < T ° o] 9=
£ s Y] = = 2
= I R ES] S = E
€ S a = c 5 Qg
> = o 8 < o2

« >S5 o3 S o

2 s = 3]

<) >

Q =4 s

o o

(U]

Fig. 10. Example of invoked Linux graphics libraries and native libraries taking up more execution time
than the Android application itself.

characteristics of the Android application. In comparison with the graphics library,
the actual Newton’s cradle application workload is less significant.

If this is an underperforming application, there are two targets for optimization.
First, the lack of performance could be due to not using the optimal native library
functions for the task, and performance could be improved by better utilizing Linux
native libraries. Second, the performance might improve by optimizing the Linux native
library or the Linux device driver. System software engineers can use VARI profiler to
investigate whether the performance of a native library or driver is affected running
with applications inside the Dalvik virtual machine.

The last example is when the Dalvik virtual machine is actually consuming most of
the computing time. Figure 11 is the VARI profiler result of OxBench’s virtual machine
benchmark, which performs garbage collection tests. The result shows that libdvm.so
and other Android services are using up close to 70% of the CPU time. These types
of results could mean performance is affected because the application is causing too
many GC.

Reducing resources used or cleaning up allocations in the application can minimize
numbers of GC; for instance, scaling back frame rate for graphic-intensive games can
decrease virtual machine workload. System software engineers can also use the VARI
profiler to identify whether the Dalvik virtual machine itself requires optimization,
such as adjusting heap frame size or improving opcode translation for the target archi-
tecture.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:18 T.-H. Su et al.

0xBench VM Benchmark (VARI)
80
69.44
70
60
50
40
30

20 1268

% of total samples

©
w
o

vmlinux
profiler

DVM & Android

Native shared
libraries

VM Benchmark

,_‘
o o
~
Graphics libraries]
o
w
-
o
~N
o

Fig. 11. VARI profiling result of 0xLab Benchmark with overhead in DVM itself.

Table IV. Sample DIM Instrumented Results Corresponding to Memory Map

PC VMA Method Name Class Description Source File Name | Line#
6 0 x 42729240 | run Ljava/lang/Runnable; ViewRoot.java 2044
636 | 0 x 43966df0 | atan Ljava/lang/Math; BallsView.java 616
725 | 0 x 254608 | native_drawBitmap | Landroid/graphics/Canvas; Canvas.java -2

(a) VMA can trace back to the line number of the source Java file.

Start Addr. | End Addr. | Mod | Nod. Mapped File Name

00002000 | 002bd000 |rwxp| O | [heap]

4245b000 | 42b01000 | r-xp | 293 |/data/dalvik-cache/system@framework@framework.jar@classes.dex
43964000 | 4396b000 | r-xp | 723 |/data/dalvik-cache/data@app@com.geekyouup.android.newton-1.apk
@classes.dex

(b) VARI profiler and VMA remapping correlates heap exec. to respective dex files.

The data generated by vertical profiling helps developers to spot possible bottlenecks
quickly. If a suspected Linux library is compiled with debugging symbol information,
the profiling result could be matched to each line of the source code. With this fea-
ture, developers could determine if a Linux library can be improved to gain better
performance.

6.3. VARI Mapping Results

6.3.1. DIM and Symbol Correlation. The next table illustrates how results from the Dalvik
instrumentation module can be correlated to symbol files mapped to the process virtual
memory map. Table IV(a) demonstrates that DIM is able to retrieve information inside
the virtual machine, such as a method’s program counter, method name, Java class
description, the name of its source Java file, and the line number of the method in
the source file. This is achieved by matching the process memory map for the test
application, as shown in Table IV(b).

Three virtual machine methods are used as examples. The first method, named run,
has a VMA value of 0 x 42729240, which falls into the range of process map address
belonging to the Android framework dex file. The VMA of the second method atan falls

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:19

603 for(int p=0;p<numPointers;p++)

604 {

605 if(mObjectTouched && mObjectsTouchedlds[p]!=-1)

606 {

607 mBallVelocity[mObjectsTouchedlds[p]]=0;

608

609 //translate the roational origin

610 float transX = reflectGetXForPointer(event, p)-mCenterOfRotationX[mObjectsTouchedlds[p]];

611 float transY = reflectGetYForPointer(event, p)-mCenterOfRotationY’;

612

613 if(!isOrientNormal) {transX=-transX; transY=-transY;}

614

615 //figure out the angle the ball is now at

616 if(transY>0) mBallAngle[mObjectsTouchedlIds[p]] = ((float) (-Math.atan(transX/transY))+PI_F);

617 else mBallAngle[mObjectsTouchedlds[p]] = (float) -Math.atan((transX/transY));

618 }

619 }

Fig. 12. BallsView,java source code for Newton’s cradle.
Table V. Call Graph Result

samples % image name symbol name Code
474 25.9302 app-process /system/bin/app_process

—474 25.9302 app_process /system/bin/app_process [self]
193 18.7016 vmlinux /sdcard/vmlinux

—193 | 100.000 vmlinux /sdcard/vmlinux [self]
113 10.9496 org.test.app org.test.app

—45 38.823 org.test.app org.test.app org.test.app/.Graphics

—68 60.000 libGLES_android.so libGLES_android.so [self]

$ opreport -t 10 -1 ../samples/.

CPU: ARM V7 PMU, speed 0 MHz (estimated).

Counted CPU_CYCLES events (clock cycles counter) with a unit mask of 0 x 00 (No unit mask) count
15,000.

into the test application’s dex address range, and this function can be found in the
BallsView.java application source file, as show in Figure 12.

The third method native_drawBitmap is a graphics library function of the Android
system. Since the VARI profiler is only instrumenting, its VMA was not replaced by
a memory map tunnel and therefore falls into the heap section of the process map.
Consequently, Oprofile will be unable to correlate the samples of this function back to
its Java method and source location.

6.3.2. VARI Call-Graph Results. The vertical profiler generates call graphs and other fea-
tures provided by Oprofile. Table V is a section of call-graph information generated by
opreport after a profiling session. This particular call graph shows that after Kubench
benchmark finishes one round of testing, it tries to use another Linux system library.

Graphical representations of call graph table can be generated by dot or the VARI
profiler eclipse plug-in. Utilizing results like Table V and Figure 13 enables developers
to discern relations between Linux user-space libraries and Android applications right
away. Bottlenecks of an application could exist in the application itself or certain sys-
tem library. The data generated by vertical profiling helps developers to spot possible
bottlenecks quickly.

6.4. DIM Overhead

The following is overhead statistics of the proposed VARI profiler. Sending VMA
through the memory tunnel and writing method information to the substitution sym-
bol file are the two most significant DIM events. It is essential to implement these two

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:20 T.-H. Su et al.

app_process
system@framework@senices. jar@classes.dex

sleepBetweenRound:Kubench.java: 47
20.00%
(0.00%)

20.00%

app_process
libutils.so
android::ResTable::getTableCookie(unsigned int) const

20.00%
(20.00%)

Fig. 13. Graphic representation of the call graph using dot.

functions appropriately, as they greatly affect profiling performance and accuracy. This
section examines whether the proposed methodology is efficient.

The analysis is done by running these methodologies through four benchmarks.
Newton’s cradle is a two-dimension graphics simulation of the conservation of mo-
mentum and energy. User controls the application through drag and release motions.
0xBenchmark’s math test consists of Linpack and Scimark2. 0 xBenchmark’s VM test
consists of a garbage collection test that creates a large binary tree and a large array
of doubles to test GC performance. 0xBenchmark’s 3D benchmark includes popular
OpenGL benchmarks, such as OpenGL Cube, OpenGL Blending, OpenGL Fog, and
Flying Teapot.

6.4.1. DIM Log File Size Overhead. Enabling vertical profiling unavoidably increases
profiling result file size by introducing Java application information to original Linux
level samples. If the DIM methodology is applied to Linux tracing tools which generate
GB sized result files within a short execution time, it is also undesirable to add large
virtual machine instrumentation logs to the limited system resources and storage
space. These additional file system accesses to provide vertical profiling capability
should be limited to avoid perturbing the target application.

Traditional vertical profiling methodologies require recording every time a method
is invoked to correlate method with the currently assigned heap address. If a method is
invoked more than once, the profiler needs to record duplicates of the method’s informa-
tion. The longer the profiling process goes on, the more excess logs need to be written.

VARI profiler’s DIM methodology avoids writing to the file system during profiling
runtime to minimize runtime overhead. It does so by exporting every method’s
information during the application initiation. This means if a large target application
invokes only a few methods during profiling, the unused method information is still
written to file.

The result file size overhead is shown in Figure 14. Newton’s cradle has a relatively
small code size of 25.9KB. Thus, of the four benchmarks, it generates the smallest
VARI profiler log. The other three benchmarks are part of the same application with
a code size of 236.6KB. Therefore they have similar VARI profiler log sizes. The small
variations in log sizes arise from extra information included for the different Android
core libraries that each benchmark called. The largest log size of the three is the three-
dimensional graphics benchmark with 276KB. It is only 48KB larger than the virtual
machine benchmark, with the smallest log file of the three. Log size generated by DIM
does not increase with application execution time.

On the other hand, the traditional vertical profiling methodology incurs 166 KB more
log file size overhead than VARI profiler for the Newton’s cradle application, because
despite its small code size, during experiments, Newton’s cradle has a long application
execution time. Of the three 0xBench benchmarks, the virtual machine benchmark

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:21

600 /
Sso0 4~
=]
L 400 /
£
- Y
=} - .-
g 300 7 Traditional method log
S VARI log
Qo
200
E e
o
=
S
« 100
o
9]
N
)

0 /
Newton 0xBench math 0xBench vm 0xBench 3D

Fig. 14. Vertical profiler sample information size overhead.

has the shortest execution time, and as a result, also has the smallest traditional
vertical profiling log size of the three. The three-dimension graphics benchmark has
the longest execution time; therefore, it has the largest log file overhead, consuming a
total of 538KB additional space.

6.4.2. DIM Runtime Overhead. Sending VMA through the memory tunnel and writing
method information to the substitution symbol file are the two most significant DIM
events. It is essential to implement these two functions appropriately, as they greatly
affect profiling performance and accuracy. This section examines whether the proposed
methodology is efficient. The runtime overhead experiment uses three benchmarks,
Newton’s Cradle, 0xBench Math benchmark, and 0xBench virtual machine’s bench-
mark to demonstrate the efficiency of each methodology. Target applications’ execution
time running on the unmodified Android Dalvik machine using original Oprofile from
the Android source code is used as control statistics.

VARI profiler utilizes Oprofile together with memory map address remapping, di-
rect memory tunnel, and the instrumentation methodology proposed by this article.
Figure 15 compares the total profiling time in seconds among three different methods
for Dalvik virtual machine instrumentation. The DIM overhead statistics are mea-
sured with performance counter cycle count and then converted to seconds with CPU
clock frequency.

Figure 16 shows the overhead analysis of the additional runtime in percentage over
the original Oprofile execution time. The y-axis is in logarithmic scale due to a huge
difference between overhead created by different methodologies. The x-axis shows DIM
instrumentation methodology overhead with each benchmark.

Vertical profiling methodology, such as instrumenting every ‘method invoke’, involves
writing method information to a log file when the method is called during runtime in
order to keep track of the allocated heap address. It is the traditional approach to
instrument JVM. Since it writes to file frequently during runtime, the overhead is
much large in comparison to instrumenting ‘load method from dex’, which only writes
to file once when the test application initiates.

The extra overhead is generated by context switches to access I/O and I/O latencies.
An addition of at least eight seconds is added to the original profiling time for the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:22 T.-H. Su et al.

60.0

50.0

40.0

30.0 M Original Application
Method invoke
20.0 ™ Load method from dex

™ Memory tunnel overhead

execution time ofinseconds (s)

10.0

0.0

Newton

0xBench math OxBenchvm

Overhead of different DIM instrument methodologies over 3 benchmarks

Fig. 15. Total profiling time of different DIM instrument methodologies.

100%

10%

M Original Application

Method invoke

M Load method from dex

™ Memory tunnel overhead

additional overhead percentage (%)

0xBench math

0xBenchvm

Overhead of different DIM instrument methodologies over 3 benchmarks

Fig. 16. Overhead of different DIM instrumentation methodologies.

method invoke tactic, which introduces an overhead of at least 35%, where as ‘load
method from dex’ instrumentation only asserts at most an additional 0.08 seconds, an
overhead of 0.32%.

Figure 16 is in logarithmic scale due to the huge difference between overhead created
by different methodologies.

The memory map tunnel is the foundation of this article, as it makes memory remap-
ping technique possible; furthermore, it generates less than 0.02 seconds of additional
overhead during the entire profiling process when compared to the original Oprofile
flow. Vertical profilers that do not utilize a memory map tunnel have to record the same
information to a file. If memory tunnel is removed from the VARI profiler, given that

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:23

L Graphical Representation Of CallGraph Te [B]E]®]
PROCESS ALLOCATION GRAPH METHOD ALLOCATION GRAPH e

toolbox

Fig. 17. VARI profiler Eclipse plug-in.

the remapping VMA is sent through the memory map tunnel at every method invoke,
the overhead of writing them to a file would be similar to the overhead for the method
invoke tactic. This demonstrates the efficiency of the memory map tunnel. It greatly
reduces overhead by avoiding context switches and I/O latencies during runtime.

7. CONCLUSIONS

The goal of this article is to establish a bridge to communicate application information
from Dalvik virtual machine to a Linux user-space profiler. Moreover, proposed verti-
cal profiling methodology, such as memory map address remapping methodology and
communication tunnel, are not bound to Oprofile, and can also be adapted by other
Linux user-space trace tools, such as strace or LTTng.

Furthermore, the techniques used in the Dalvik instrumentation module, such as
the hash remapping address, can be applied on other Java virtual machines to achieve
register-based machine-styled profiling on stack machines.

Currently, even though the VARI profiler provides some source-line-level informa-
tion, this functionality is not integrated with native tools found in Oprofile. There are
several ways to approach this issue, such as converting dex file’s DWARF3 inspired
debug_info_item [45] into an ELF symbol file, or modifying oprofile’s post-processing
tools to utilize dex disassembler to treat dex files as a symbol file.

As it is, by bridging the profiling gap between the Dalvik virtual machine and Linux
user and kernel space, the VARI profiler achieves vertical profiling on Android mobile
systems. This ability enables users to identify Java-level bottlenecks and trace back to
the point of origin in the Linux system library while introducing less than 1% runtime
overhead.

VARI and DIM enables Oprofile to provide integrated virtual machine application
analysis. Eclipse is the recommended integrated development environment (IDE) for
Android. By incorporating graphical analysis and side-by-side source-line annotation
from the VARI profiler into eclipse IDE, as shown in Figure 17, developers can analyze
application bottlenecks intuitively.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

59:24 T.-H. Su et al.

ACKNOWLEDGMENTS

Many thanks to Professor Tien-Fu Chen for his guidance and to our lab mates at the National Chiao Tung
University for their assistance and inputs. Special thanks to Po-Chun Chang for advising to understand the
issue and not just trial and error.

REFERENCES

B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind,
K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar, and M. Trapp. 2005. The Jikes Research
Virtual Machine project: Building an open-source research community. IBM Syst. J. 44, 2, 399-417.

B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J. Barton, S. F. Hummel, J. C. Shepherd,
and M. Mergen. 1999. Implementing jalapefio in Java. In Proceedings of the 14th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM
Press, 314-324.

L. Batyuk, A.-D. Schmidt, H.-G. Schmidt, A. Camtepe, and S. Albayrak. 2009. Developing and benchmarking
native Linux applications on Android. In MobileWireless Middleware, Operating Systems, and Applica-
tions. J.-M. Bonnin, C. Giannelli, and T. Magedanz, Eds., Springer Berlin, 381-392.

W. Binder, J. Hulaas, and P. Moret 2006. A quantitative evaluation of the contribution of native code to
Java workloads. In Proceedings of the IEEE International Symposium on Workload Characterization.
201-209.

W. Binder, J. Hulaas, and P. Moret. 2007. Advanced Java bytecode instrumentation. In Proceedings of the
5th International Symposium on Principles and Practice of Programming in Java. ACM Press, 135.
C.-W. Chang, C.-Y. Lin, C.-T. King, Y.-F. Chung, and S.-Y. Tseng. 2010. Implementation of JVM tool interface
on Dalvik virtual machine. In Proceedings of the International Symposium on VLSI Design Automation

and Test (VLSI-DAT). IEEE, 143-146.

W. Cohen. 2004. Tuning programs with Oprofile. Wide Open Mag. 53.

G. Contreras and M. Martonosi. 2005. Power prediction for Intel XScale® processors using performance
monitoring unit events. In Proceedings of the International Symposium on Low Power Electronics and
Design. ACM Press, 221.

J. Dongarra, R. Wade, and P. McMahan. Linpack Benchmark — Java Version. http:/www.netlib.org/
benchmark/linpackjava/.

Google. 2011. Dalvik - Code and documentation from Android’s VM team - Google Project Hosting. http:/
code.google.com/p/dalvik/.

Google. 2010. Using DDMS | Android Developers. http://developer.android.com/guide/developing/debugging/
ddms.html.

Google. 2008. Anatomy & Physiology of an Android - 2008 Google I/O Session Videos and Slides.
http://sites.google.com/site/io/anatomy—physiology-of-an-android.

M. Hauswirth, A. Diwan, P. F. Sweeney, and M. C. Mozer. 2005. Automating vertical profiling. In Proceedings
of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). ACM Press, 281.

M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind. 2004. Vertical profiling: Understanding the behavior
of object-priented applications. ACM SIGPLAN Not. 39, 251-269.

R. Hyndman. 2011. Newtonscradle - Android app to model the physics of Newton’s Cradle - Google Project
Hosting. http://code.google.com/p/newtonscradle/.

H. Inoue, and T. Nakatani. 2009. How a Java VM can get more from a hardware performance monitor. ACM
SIGPLAN Not. 44, 137-154.

JSERV. 2010. 0xbench - Comprehensive Benchmark Suite for Android - Google Project Hosting. http:/code.
google.com/p/Oxbench/.

S. Khan, S. Khan, S. H. K. Banuri, M. Nauman, and M. Alam. 2009. Analysis of Dalvik virtual machine and
class path library. Tech. rep. Security Engineering Research Group, Institute of Management Sciences,
Peshawar, Pakistan.

dJ. Maebe, D. Buytaert, L. Eeckhout, and K. De Bosschere. 2006. Javana: A system for building customized
Java program analysis tools. ACM SIGPLAN Not. 41, 10, 153-168.

H. Mousa, and C. Krintz. 2005. HPS: Hybrid profiling support. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques (PACT 05). IEEE, 38—47.

H. Mousa, K. Doshi, T. Sherwood, and E. Ould-Ahmed-Vall. 2010. VrtProf: Vertical profiling for system
virtualization. In Proceedings of the 43rd Hawaii International Conference on System Sciences (HICSS).
IEEE, 1-10.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

Reconfigurable Vertical Profiling Framework for the Android 59:25

H. Mousa, C. Krintz, L. Youseff, and R. Wolski. 2007. VIProf: Vertically integrated full-system performance
profiler. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium.
(IPDPS’07). IEEE, 1-6.

D. Nicolaescu and A. Veidenbaum. 2005. Understanding and comparing the performance of optimized JVMs.
In Proceedings of the Conference on Innovative Architecture for Future Generation High-Performance
Processors and Systems. IEEE.

Oracle. 2002. JVM(TM) Tool Interface 1.0.38. JVM Tool Interface. http:/download.oracle.com/javase/1.5.0/
docs/guide/jvmti/jvmti.html.

Oracle. 2010. Java SE - Java Platform Debugger Architecture Home. http://java.sun.com/javase/technologies/
core/toolsapis/jpda/.

K. Paul and T. K. Kundu. 2010. Android on mobile devices: An energy perspective. In Proceedings of the
IEEE 10th International Conference on Computer and Information Technology (CIT). 2421-2426.

R. Pozo and B. Miller. 2004. Java SciMark 2.0. http:/math.nist.gov/scimark2/.

F. T. Schneider, M. Payer, and T. R. Gross. 2007. Online optimizations driven by hardware performance
monitoring. ACM SIGPLAN Not. 42, 6, 373-382.

L. Shannon and P. Chow. 2004. Using reconfigurability to achieve real-time profiling for hardware/software
codesign. In Proceedings of the ACM/SIGDA 12th International Symposium on Field Programmable
Gate Arrays. ACM, 190-199.

P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove, and M. Hind. 2004. Using hard-
ware performance monitors to understand the behavior of Java applications. In Proceedings of the 3rd
Conference on Virtual Machine Research And Technology Symposium. Vol. 3, USENIX Association, 5.

Received January 2012; accepted January 2013

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 59, Publication date: January 2014.

