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In this paper, an efficient error analysis of a real-time vision-based pointing system 

is proposed. We use two cameras to implement the pointing system according to a sim-
plified 3D reconstruction scheme which is based on image feature extraction, homogra-
phy, and 3D geometry. To that end, we study the relationship between image noises and 
the ultimate reconstruction errors, and develop efficient methods to find the error range 
of the latter given a range of the former. Experimental results show that the proposed 
approach can find the error range satisfactorily. Accordingly, users of similar pointing 
systems can get more robust pointing results by selecting a special pointer location, or 
possibly a special pair of cameras, that will result in minimal range of pointing error.   
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1. INTRODUCTION 
 

Nowadays, interactions between human and machines are no longer restricted by 
using a keyboard and a mouse since researchers have developed many ways to commu-
nicate with machines. Such new ways of communication are widely adopted in many 
applications such as an interactive game, the control of household robot, a presentation in 
a conference and so on. For effective support of these applications, automatic recogni-
tions of hand gesture and pointing direction have been two important issues of human- 
computer interaction (HCI). 

There are different types of HCI methods which include glove-based and vision- 
based approaches. Glove-based methods collect motion data of finger/hand through a 
glove which contains many sensors. These sensors can accurately measure motion data 
from hands for gesture recognition. However, the glove is expensive and heavy so its 
usability is greatly limited. In contrast, vision-based methods use cameras to obtain im-
age data and have less burden on users. In recent years, conventional artificial intelli-
gence tools such as HMM [1, 2] and Neural network [3-6] have been used widely for 
vision-based hand gesture recognition. In [6], an innovative neural classifier called Self 
Growing and Organized Neural Gas (SGONG) is applied to find morphology of hands as 
features. These features are used to classify the raised fingers into five classes by consid-
ering their probability distributions. 

In [7], a template-based hand gesture recognition system that recognizes ten kinds 
of hand gestures is developed. A nearest neighbor classifier is used to identify the gesture 
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for the hand region extracted by color and motion cues. In [8], three cameras are used to 
get multi-angle images of one hand. Accordingly, three trained support vector machines 
are used to classify hand gestures, respectively, and the classification results are inte-
grated into a final result. All these methods provide natural ways to give instructions to 
machines through hand gestures. 

For many HCI applications, pointing directions of a user can be transformed con-
veniently into instructions such as asking a robot to move to desired positions or control-
ling a computer by a virtual mouse. While real-time computations of the pointing direc-
tion (and its target) for a user are often needed, accuracy and stability of the computation 
are the most desirable attributes of such pointing systems. In the following, three types of 
methods for recognizing pointing direction will be reviewed, which include approaches 
based on human eye, laser pointer, and head and hand, respectively. 

Some researchers find the gaze direction through eye tracking. Such information not 
only can point out where a user is looking at [9], but also useful for other applications. 
For example, in [10] eye moments are used to control an experimental multimedia sys-
tem. In [11], the tracking results are used in an autostereoscopic display system, which 
can render the stereo video for the left and right eyes of a user according to their positions. 

Some existing pointing systems have been developed by detecting the laser point on 
a projection plane [12-17]. The approaches are based on 2D plane projection to establish 
spatial relationships among image plane, projection plane, and display plane. While a 
laser point appears on the projection plane, the systems will first find the location of the 
laser point and then transform it into the display plane. By detecting the laser dot directly, 
these systems typically perform in high accuracy. However, such systems are not appli-
cable to applications wherein the projection planes are not visible in all views, or do not 
exist at all. For example, it may not be used to operate electric appliances in a digital 
smart home environment even if the 3D positions of the electric appliances are known in 
advance. 

In some other pointing systems, human hands are exploited to give instruction via 
associated direction vectors. For example, the connected line from the finger root to the 
fingertip is recognized as a pointing direction in [18], while the pointing direction is con-
nected from head to hand in [19]. Similarly, one eye and one fingertip are consider to 
form a direction vector in [20], while similar vector is established by connecting a line 
from shoulder to arm in [21]. Instead of using skin color to detect pointing direction of a 
human hand, as in [19, 20], motion analysis of feature points of user’s hand is adopted to 
estimate the shoulder point and the direction vector in [22]. In [1], a vision-based method 
is proposed to find the pointing directions which are extended from head to hand. In ad-
dition, artificial neural networks are used to find head orientation to improve the accu-
racy of pointing results. In general, to locate the pointing position in a 3D environment, 
some forms of 3D reconstruction need to be carried out to determine the direction vector. 
In [1, 20, 21, 23], 3D voxels of a pair feature points used in the pointing are calculated 
before such a vector is formed. 

In order to study the accuracy and stability of pointing, a real-time, vision-based 
system similar to that presented in [19] but with pointing direction specified by a pointer 
is implemented (see Fig. 1) in this paper. By considering the intersection of planes in the 
3D world, the system first calculates two planes each formed by two endpoints of the 
pointer and the center of one of the two cameras. The intersection of these two planes 
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Fig. 1. Configuration of the pointing system and the reconstruction of a pointing point. 

 

then forms the direction vector. Instead of explicitly deriving intrinsic and extrinsic cam-
era parameters, the approach only needs the camera positions, and needs to calibrate the 
homographies, providing distortion in the camera from perspective projection is fixed. 

For all pointing systems, different forms of measurement and computation errors 
can be generated during the reconstruction of the pointing line, which has five degrees of 
freedom, and a clear understanding of these errors may greatly improve the applicability 
of such systems. However, existing error analysis schemes are mainly concerned with 
planar localization, based on image data acquired by a single camera [24-28], as well as 
reconstruction of 3D point features using stereo cameras [29-32], which only have two/ 
three degrees of freedom. In this paper, an efficient error analysis scheme is established 
for an experimental pointing system by evaluating the error range of pointing results on a 
projection plane, e.g., a screen, with image data assumed to be corrupted by additive 
noises, as in some of the above approaches. Hopefully, with the help of such analysis, 
more robust pointing results can be achieved by selecting the most appropriate pointer 
positions, or pairs of cameras, that will result in minimal range of pointing error. While a 
pointer with bright color is used here to greatly reduce the influence of certain sources of 
error, e.g., those due to errors in image feature extraction, the error analysis results will 
provide an upper bound of pointing accuracy for systems using different pointers, e.g., 
those discussed in [1, 18-21, 23], if similar reconstruction process is adopted. 

The rest of this paper is organized as follows. In Section 2, an experimental pointing 
system is then given, which is similar to [19] but adopts a simpler camera calibration 
process to reconstruct a hand-held pointer with bright color1. In Section 3, we proposed 
efficient error analysis methods2 for such a pointing system so that the error range of the 
system output can be estimated in real-time. In Section 4, the experimental results show 
that the proposed approach can find the error range satisfactorily. Thus, users of similar 
pointing systems can achieve more robust pointing by selecting proper pointer positions, 
or possibly a special pair of cameras, that will result in minimal range of pointing error. 
Finally, some concluding remarks are given in Section 5. 

                                                 
1 The calibration of intrinsic and extrinsic parameters can be achieved according to [33]. However, the imple-

mented pointing system only needs the point correspondence between planes. In other words, only homo-
graphic transformation matrices are required. 

2 A preliminary approach of error analysis is presented in [34]. 
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2. AN EXPERIMENTAL POINTING SYSTEM 

In this section we describe the configuration of a simple experimental pointing sys-
tem used in this paper which is similar to [19] but using homographic transformations to 
derive the pointer direction. The system uses two cameras mounted on the ceiling, four 
reference points on the floor, and a projection plane perpendicular to the ground (see Fig. 
1).3 A two-fold simplification is associated with such a pointing system. First, unlike in 
[18], [20] which use color and brightness to find hand region, we use a pointer with 
bright color to reduce the complexity in feature extraction. Second, unlike in [19] and 
[21], the simple camera calibration similar to that used in [18] is adopted for 3D recon-
struction based on homographic transformations. With such a simplified system configu-
ration, the errors generated during the reconstruction process can be studied more easily 
and understood more clearly. 

In the proposed approach, the left and right images are acquired simultaneously 
from the two cameras. For each of the stereo images, the image pixels of the pointer are 
obtained through a preprocessing step (see Appendix), and we calculate a best-fit line of 
these pixels via principal components analysis (PCA). The line intersects the bounding 
box of the above image pixels at two points, which are then regarded as (extended) end-
points of the pointer in the image. In this paper, the two sets of pointer endpoints are de-
noted as {ILS, ILE} and {IRS, IRE} for the left and right images, respectively. 

Once the positions of the above endpoints are located in the left and right images, 
we use homographic transformation to find their projections, RLS, RLE, RRS, and RRE on 
the ground plane, as shown in Fig. 1.4 Thus, plane L which contains RLS, RLE, and the 
center of the left camera CL, and plane R which contains RRS, RRE, and CR can be recon-
structed. Planes L, R, and the projection plane P will then intersect at the pointing po-
sition P. Finally, we transform P into the 2D coordinate of the monitor screen through an- 
other homographic transformation, and display the reconstructed pointing position (RPP). 

With the above simple reconstruction process (see Appendix), there is no need to 
find all camera parameters, as required in typical 3D reconstruction approaches, and the 
pointing system can operate efficiently in real-time. However, noises in the imaging pro-
cess may result in reconstruction errors and thus unstable pointing position. To under-
stand the influence of such undesirable effects, and hopefully to develop a scheme to 
reduce the influence accordingly, an efficient error analysis approach to the estimation of 
pointing errors is proposed and presented next. 

3. ERROR ANALYSIS 

For the real world implementation of the pointing system described above, the RPP 

                                                 
3 The coordinates (in cm) of the two cameras CL and CR are (192, 365, 264) and (493, 122, 264), and the coor-

dinate of the four corners of the projection plane are (115, 0, 243), (115, 0, 108), (295, 0, 108), and (295, 0, 
243). In general, the pointing system can be used to identify a non-planar object at various locations in the 
3D space. The projection plane is included here for demonstration purpose only. 

4 The corresponding transformations, HL (for ILX → RLX, X = S, E) and HR, are found in advance by using posi-
tions of four reference points marked on the floor (not shown in Fig. 1), and their positions in the stereo im-
ages. 
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and actual pointing position are not always the same. Such discrepancies can be catego-
rized into (i) static and (ii) dynamic errors. Static errors such as digitization, lens distor-
tion and measurement errors are almost unavoidable. For example, when we determine 
the positions of four reference points on the ground and image planes, for calculating the 
transformation matrix between the two planes, computation or measurement errors may 
occur. Such errors can be corrected by an additional homographic transformation, and 
may even be unnoticeable to a user in reality because of the simultaneous self-adjusting 
ability resulted from the visual feedback during the pointing operation. However, dy-
namic errors may cause obvious jitters in RPP, which are usually unacceptable. Thus, the 
error analysis discussed in this section will focus on (ii). 

There are several sources of the dynamic errors, and a major one is due to noises 
associated with image acquisition. For example, pixels of the pointer region are identi-
fied in each of the stereo images before the PCA is performed; however, size and shape 
of the region may change with time because of illumination changes and influences of 
noise from the camera sensors5. In the following, some error analysis methods will be 
developed to investigate the influence of dynamic errors on the RPPs of the proposed 
systems. The goal is to correctly and efficiently identify the range of error in the position 
of RPP. 

For the pointing system shown in Fig. 1, P, CL and CR are fixed in position; there-
fore, RPP is decided by the reconstructed planes L and R, and in turn decided by 
pointer endpoints ILS, ILE, IRS and IRE. The process of the extraction of these points from 
stereo images is often influenced by the imaging noises mentioned above. As a result, the 
obtained pointer endpoints are not stable, so is the calculated RPP. Thus, the deviation of 
the RPPs due to the variations of ILS, ILE, IRS and IRE will be the main focus of this section. 

For a preliminary examination of the above deviation, simulated noises of unit mag-
nitude are added to these pointer endpoints. In particular, 24 simulated points placed 
evenly (with 15 spacing) along ”noise” circles with radius of 1 pixel are generated for 
ILS = (188,158), ILE = (247,189), IRS = (159,142), and IRE = (226,155) in Fig. 1, as shown 
in Fig. 2 (see Fig. 3 for close-up views of these circles). In each run of the simulation, 
four points, each selected from one of the above four circles, are selected as endpoints of 
the pointer in the stereo images to reconstruct a RPP using aforementioned homographic 
transformations. Fig. 4 (a) shows all 244 RPPs (in red), with the convex hull of them (the 
range of reconstruction errors) shown in Fig. 4 (b), computed from the 24 × 4 simulated 
points shown in Fig. 3. 

In general, it is desirable to have such a range calculated more efficiently, e.g., with 
less simulated endpoints of the pointer. However, a direct reduction in the data size may 
underestimate range of reconstruction errors. For example, the blue region in Fig. 5 is ob- 
tained by using only 4 points (with 90º spacing) from each noise circle shown in Fig. 3. 

From some close examinations of the relationship between the above reconstruct- 

                                                 
5 Influences from more complex situations, e.g., when the pointer’s color is close to the background, are not 

considered in this paper since highly dynamic segmentation errors of the pointer due to pointer-background 
interaction may be so large that the error analysis of the RPPs will make no sense. (Similarly, extraction of 
reference points in the system calibration stage is also assumed to be free of such complex situations.) In 
general, more involved segmentation schemes will be needed to resolve such a problem, which is out of the 
scope of this paper. One way of resolving such a problem is to employ special hardware in the system setup, 
e.g., attaching blinking LEDs [35] to the pointer. 
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(a)                                       (b) 

Fig. 4. (a) RPPs for simulated points shown in Fig. 3; (b) Range of reconstruction errors (with er-
ror-free reconstruction show by an “x”). 

 

tion errors and the locations of the four simulated endpoints of the pointer obtained from 
Fig. 3, it is found that the error range is mainly due to (two) extreme values in the slopes 
of '' LELS II (and '' RERS II ). Based on such an observation, we then try to use only the 
contacts of the internal common tangents (CICTs) of the two noise circles in each of the 
stereo images (see Fig. 2 for such tangents). The range of reconstruction error thus ob-
tained is also shown in Fig. 5 (as four points connected by black line segments). One can 
see that such results almost coincide with that obtained using all (24) points from each 

Fig. 2. Noise circles (simulated points) for the pointer endpoints located in stereo images shown in 
Fig. 1, and their CICTs (see text). 

Fig. 3. Close-up views of the four groups (noise circles) of simulated points shown in Fig. 2. 
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noise circle of simulated points shown in Fig. 3. A closer examination can be carried out 
by comparing the coordinates of the vertices shown in Fig. 5, as listed in Table 1. Thus, 
estimation of the error range from a larger number of the simulated points (24 × 4) can be 
replaced by using only the 8 (2 × 4) CICTs with negligible change in the estimation, and 
with the number of reconstructed RPPs reduced greatly (from 244 to 24). 

Fig. 5. Error range shown in Fig. 4 (b) (red), similar range but obtained by using only 4 points 
(with 90 spacing) from each noise circle in Fig. 3 (blue), and error range based on internal 
common tangents (black, see text). 

Table 1. Coordinates of the vertices shown in Fig. 5. 
 xmax xmin ymax ymin 

(blue) 535.9857 455.9600 395.6483 330.5393 

(red) 539.2251 453.4022 397.8248 328.1907 

(black) 539.2422 453.2395 397.8823 328.1027 
 

The above observations regarding CICTs of two noise circles, i.e., a RPP of a 
pointer from stereo images will be displaced much more when the pointer is rotated than 
if it’s translated with comparable amount of movements of its endpoints, can be ex-
plained with a simple example, as discussed in the following. Consider a pointing system 
with geometric configuration similar to that shown in Fig. 1, and assume the pointer is 
initially perpendicular to the projection plane. When the pointer is translated by k in a 
direction parallel to the projection plane, the RPP will be translated by k too. However, if 
we fix the endpoint of the pointer which is far away from the projection plane as the 
center of rotation and rotate the pointer by θ degrees such that the other end of the 
pointer is displaced by k = θr, with r being the length of the pointer, the RPP will have a 
displacement of k′ > θd with d being the distance from the pointer to the projection plane. 
One can see that if d >> r, which is often the case in various pointing situations, the 
amount of movement of RPP with a rotated pointer is much larger than that due to a 
translated pointer, or k′ >> k. Such an example reasonably explains why the estimated 
maximal error range (EMER) efficiently obtained using CICTs can represent the real 
error range with high accuracy, as the CICTs give the limits of the rotation angle of the 
pointer, with its end points confined to two noise circles in each of the stereo images. 
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Fig. 6. (a) Image captured by C3 when the pointer is pointing toward P4; (b) Image captured by C1 
when the pointer is pointing toward P4; (c) Simulated sample points of the left end point 
shown in (b); (d) Simulated sample points of the right end point shown in (b); (e) EMERs 
obtained with radii in (c) and (d) (in blue) and with unit radius (in red); (f) A tighter EMER 
(see text). 

 

The use of unit circle for noise is only to provide a baseline for error estimation, 
which can in fact be adapted for specific applications. For pointing systems based on the 
estimation of two ends of an elongated pointer, the idea of CICTs can be generalized 
easily and applied to the spatial supports, regardless of their shapes6, of the error distri-
butions of the two points to estimate the EMER of the pointing position. Such supports 
can be obtained for a static pointer in each view by observing its two ends for some time. 

In fact, the same EMER can also be obtained from CICTs of virtual noise circles 
centered at these end points by assigning suitable radii to the circles. For example, as-
sume a synthesized imaging noise with a uniform distribution in [0.5, 0.5] is added to 
each foreground pixel of the pointer shown in Figs. 6 (a) and (b). For Fig. 6 (b), the im-
age locations of the left and right ends, estimated with the proposed approach for a pe-

                                                 
6 For example, error distributions can often be described by elliptical Gaussian blobs. 
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riod of 100 frames, are shown in Figs. 6 (c) and (d), respectively. By choosing radii of 
0.1279 and 0.1079 for noise circles in Figs. 6 (c) and (d), respectively, it is easy to see 
that all estimated end points of the pointer are well bounded by the internal common 
tangents (two nearly parallel lines). Similar results can also be obtained for the (longer) 
pointer image shown in Fig. 6 (a) with (smaller) radii equal to 0.0796 and 0.0747, re-
spectively. 

Fig. 6 (e) shows the EMER (in blue) obtained from the above CICTs, which actu-
ally provide a much tighter boundary of EMER than that obtained using a unit radius (in 
red). On the other hand, by considering the fact that samples of two ends of the pointer 
shown in Figs. 6 (c) and (d) are actually generated in pairs in each figure from PCA 
computation, instead of independently estimated, the resultant EMER (as shown in black 
in Fig. 6 (f) for a close-up view of 10000 RPPs generated for the presumably stationary 
pointer) can be reduced by 24%7. While a loose bound of EMER, which can be obtained 
easily with minimal computation cost, is useful for the identification of inappropriate ca- 
mera pairs to be avoided, a tighter bound of EMER is crucial for the spatial arrangement 
of interactive content on the screen, e.g., the minimum size of an icon to be pointed to. 

4. EXPERIMENTAL RESULTS 

In order to clearly verify the validity of the EMERs with respect to actual error dis-
tributions, we focus on the static pointing situation in the experiments, i.e., we fix the 
pointer in space and measure the locus of RPPs. Thus, additional sources interferences, 
e.g., due to multi-camera synchronization and/or motion blur of a moving pointer, can be 
avoided. The error analysis results obtained here can be applied in the future to situations 
involving highly dynamic pointing situations if these interferences can be well controlled 
or even eliminated, e.g., via better imaging hardwares. We will first examine the pro-
posed error estimation method by placing the pointer at different positions, and pointing 
to different positions on the projection plane, for both real and synthesized scenes. Then, 
pointing results obtained by selecting of a pair of cameras for each RPP according to the 
EMERs are compared with those obtained by using all cameras.  

Figs. 7 (a) and (b) show an orange stick which is fixed in the workspace and is used 
in the experiment as a pointer. In Fig. 7 (c), the purple quadrilateral shows the EMER 
obtained for simulated 1-pixel error in point feature extraction, while the red dots are the 
actual positions of RPPs found by the pointing system during a period of 30 seconds. 
One can see that the latter is well bounded by the former. Figs. 8 (a) to (c) show results 
similar to those depicted in Fig. 7, but with a different pointer location. One can see that 
in this case, the actual errors and estimated errors have a nice match in their distributions 
which are spatially highly directional. In particular, the locations of the RPPs are now 
distributed in a fairly narrow region, with its elongated direction well predicted by the 
EMER. 

To further investigate the relationship between EMERs and different pointing posi 
tions, and with respect to different camera pairs, a synthesized room of size 500cm by 

                                                 
7 Instead of considering estimation error of the two ends of the pointer, it may be possible to use the error 

estimate of the line direction directly, which is currently under investigation. 
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(a) 

        
(b) 

 
(c) 

Fig. 7. (a) Left image; (b) Right image; (c) EMER and actual RPPs. 
 

          
(a)                                 (b) 

 
(c) 

Fig. 8. (a) Left image; (b) Right image; (c) EMER and actual RPPs. 
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500cm is built. Fig. 9 (a) shows the top view of the layout of the room. Cameras C1, C2, 
C3 and C4, marked as crosses, are mounted on a ceiling of height 250cm while pointing 
toward the center (250, 0, 250) of the room. The red line represents the pointer and the 
green line corresponds to the projection plane, on which a user will point to nine fixed 
pointing positions P1, P2, …, P9 as shown in Fig. 9 (b). The resultant EMERs computed 
for different camera pairs are shown in Fig. 10. Because of the left-right symmetry of 
camera configuration with respect to the pointer (which is located 100cm above ground 
level), highly symmetrical patterns of EMERs can be observed. 

The above EMERs can serve as good references for a user to select camera pairs 
that will achieve the highest stability in the pointing process. Table 2 shows such sugges-
tion of camera pairs for each of the nine pointing positions8, which correspond to the 
minimum areas of EMER. On the other hand, huge EMERs in Fig. 10 also indicate inap-
propriate camera pairs e.g., C1&C3 in Fig. 10 (c) and C2&C4 in Fig. 10 (d), that may re-
sult in highly unstable pointing and should be avoided. One of such EMERs of C1&C3 
occurs while the pointer is pointed toward P2. The problem is due to the very short pointer 
extracted in one of the pair of images (see Figs. 11 (a) and (b)), which is highly sensitive to 
image noise and may cause huge reconstruction errors. Similar problem occurs when the 
pointer is pointed toward P8 (see Figs. 11 (c) and (d)). Note that some of EMERs shown in 
Fig. 10 are highly directional. Thus, suggestions other than those listed in Table 2 are pos-
sible if requirements of pointing accuracy for a particular application are not isotropic. 

Fig. 12 shows similar experiment results obtained by moving the pointer left 150cm. 
The EMERs shown in Fig. 12 are not symmetrical due to the lack of symmetry in the 
geometry of system configuration. However, the huge EMER shown in Fig. 12 (a), 
which does not correspond to a very short pointer in the image, as shown in Fig. 13, it is 
due to the fact that the reconstructed planes R and L are almost parallel to each other. 

As for a more rigorous and quantified evaluation, a large number of pointer posi-
tions are considered in a virtual room of size 1000cm by 500cm, as shown in Fig. 14. 
The camera positions are from the top view as triangles with screen on the upper side and 
a ceiling height of 250cm. The pointer, which is located 100cm above ground level, is 
placed at 200 different positions. Figs. 14 (a) and (b) show best camera pairs9 selected 
for different pointer positions such that the EMERs for pointing toward P5 obtained by 
using (i) unit radius and (ii) separately estimated radii as in Fig. 6, respectively, are 
minimized. One can see the two sets of the selections are quite similar with the latter 
based on tighter bounds of EMER than the former. On the other hand, Fig. 14 (c) shows a 
set of camera pairs which will result in maximum EMERs, based on estimations using 
(ii), for different pointer positions and should be avoided. It is readily observable that 
none of such pairs are recommended in Fig. 14 (a) by using (i). Similar results are pre- 

                                                 
8 These positions are mainly used to show that if arbitrary camera pairs are adopted for different locations on 

the projection plane, the resultant RPPs may be too unstable to be useful. For other locations, the trend of 
RPP stability may be estimated via interpolation, which is omitted for brevity. On the other hand, since the 
proposed CICT-based error analysis is extremely efficient, the EMER, as well as the preferred camera pair, 
may be estimated on the run, as the pointer ends are extracted, for arbitrary RPP and user (and pointer) loca-
tions. The above arguments can also be applied to the next set of experiments which use selected (200) 
pointer locations to show that using unit circles is as good as using more precise (often smaller) circles to 
simulate noises in terms of helping the user to avoid camera pair(s) of worst stability performance. 

9 Camera pairs C1&C2, C1&C3, C1&C4, C2&C3, C2&C4, and C3&C4 are represented by red, green, blue, cyan, 
magenta, and yellow colors, respectively. 
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(a) 
 

(b) 
Fig. 9. (a) Layout of the synthesized room; (b) Pointing positions on the projection plane. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 10. Estimated maximal error ranges for different camera pairs: (a) C1&C2; (b) C2&C3; (c) 
C1&C3; (d) C2&C4; (e) C1&C4; (f) C3&C4. 
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Fig. 12. Estimated maximal error ranges for the pointer moved left 150cm for different camera 
pairs: (a) C1&C2; (b) C2&C3; (c) C1&C3; (d) C2&C4; (e) C1&C4; (f) C3&C4. 

 

  
(a)                                 (b) 

 
 
 
 
 
 

(c)                                 (d) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. (a) Image captured by C1 when the pointer is pointing toward P2; (b) Image captured by 
C3 when the pointer is pointing toward P2; (c) Image captured by C2 when the pointer is 
pointing toward P8; (d) Image captured by C4 when the pointer is pointing toward P8. 
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Fig. 14. Effects of using (i) simple (unit radius noise circle) and (ii) more accurately estimated error 
distribution on camera pair selection at 200 pointer locations, for pointing toward P5; (a) 
Best pairs suggested by using (i); (b) best pairs suggested by using (ii); (c) worst pairs 
identified by using (ii). 

(e) 
  

(f) 
Fig. 12. (Cont’d) Estimated maximal error ranges for the pointer moved left 150cm for different 

camera pairs: (a) C1&C2; (b) C2&C3; (c) C1&C3; (d) C2&C4; (e) C1&C4; (f) C3&C4. 

 
(a) 

 
(b) 

Fig. 13. (a) Image captured by C1 when the pointer is pointing toward P7; (b) Image captured by C2 
when the pointer is pointing toward P7. 

 

 
(a) 

 
 (b) 

 
  (c) 
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sented in Fig. 15 for pointing to P3. These results suggest that simpler estimation ob-
tained by using (i) may perform reasonably well in terms of selecting camera pairs to 
work with so that unstable pointing results can be avoided. 

As for the pointing accuracy, the mean values (and standard deviations) of the 
pointing errors of the 200 selected camera pairs shown in Figs. 14 (a) and (b) are 
1.5450cm (1.0163cm) and 1.5130cm (1.0100cm), respectively. Similar quantities for 
camera pairs shown in Figs. 15 (a) and (b) are 2.7534cm (2.2294cm) and 2.2892cm 
(1.5744cm), respectively. Such results suggest that the estimation of using (i) can achieve 
comparable accuracy as that with (ii). 

 
A Comparison to Using All Cameras 

While the goal of the proposed error analysis is to identify one of camera pairs that 
will result in best pointing performance in terms of pointing stability, the underlying as-
sumption is that when highly unstable RPPs are reconstructed with data obtained from 
using all cameras, the problem can be alleviated by not using inappropriate cameras (or 
camera pairs) if possible. For example, if more than two cameras are used for the point-
ing system shown in Fig. 1, the proposed approach will choose two cameras to find the 
RPP, while a least square solution of RPP can be found by using all cameras, as in [19].10 
To verify the above assumption, additional experiments are conducted for the simulation 
environment described in Fig. 9, with additive noises similar to that described in Section 
3 for Fig. 6, for a period of 100 frames. 

Table 3 shows pointing errors generated by (i) the proposed method which selects a 
camera pair for each pointing position (from P1 to P9) according to Table 211 and (ii) the 
least square approach discussed in [19] which uses all cameras.12 One can see that simi- 

                                                 
10 For [19], the pointing direction is defined by the hand-head line, and the RPP is obtained as the least square 

solution of the intersection of projections of this line on the projection plane from all cameras. If there are 
only two cameras, as shown in Fig. 1, the two approaches will generate identical RPP. 

11 For P5 (P6), C2&C3 (C2&C4) are selected. 
12 To ensure a fair comparison, the two end points of the pointer adopted in our system for error analysis are 

used to define the pointing line in each camera view for both (i) and (ii). 

 
(a) 

 
  (b) 

 
  (c) 

Fig. 15. Results similar to Fig. 14 but with pointing target changed to P3. 
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Table 3. Pointing errors of the two methods for the pointer placed at (250, 100, 350). 

Mean error (standard deviation) cm 
Pointing position 

Our method [19] 

P1 4.04(2.04) 4.16(2.32) 

P2 5.96(3.78) 6.35(3.66) 

P3 13.35(8.14) 24.48(11.73) 

P4 1.67(0.92) 1.58(0.87) 

P5 5.09(2.91) 4.33(2.21) 

P6 7.64(4.02) 7.10(3.50) 

P7 4.14(2.36) 3.79(2.31) 

P8 6.70(4.23) 7.40(4.09) 

P9 12.90(8.44) 24.74(10.09) 
 

lar pointing accuracy (within 0.76cm) can be achieved by both (i) and (ii) for all pointing 
positions, except for P3 and P9 which correspond to the largest pointing error on the av-
erage for both methods. Intuitively, one would expect that most unstable pointing results 
will be generated for these two points, as shown in Fig. 16 (a), since they correspond to 
the smallest angle between the pointer and the projection plane. Note that up to 47% re-
duction (from 24.74cm to 12.90cm) in mean pointing error can be achieved with the 
proposed camera selection scheme for these worst case scenarios. 

Additional observations can be made for more general system configurations 
wherein the pointer is moved left by 150cm from that specified above, as shown in Table 
4. Unlike the nearly symmetric pattern shown in Fig. 16 (a), the corresponding distribu-
tions of the RPPs shown in Fig. 16 (b) are not symmetric since the camera locations are 
no longer symmetric with respect to the pointer position. Again, more than 40% reduc-
tion (from 19.01cm to 10.87cm) in mean pointing error can be achieved for the worst 
case situation with the proposed approach compared with the least square one. The above 
results suggest that the camera selection scheme based on the efficient error analysis pro-
posed in this paper can indeed help the pointing accuracy and stability. 

Table 2. Suggestion of camera pairs for different pointing positions. 
Pointing positions Camera pairs for smallest error range 

P1 C3&C4 

P2 C3&C4 

P3 C1&C3 

P4 C3&C4 

P5 C1&C4 or C2&C3 

P6 C1&C3 or C2&C4 

P7 C3&C4 

P8 C3&C4 

P9 C2&C4 
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5. CONCLUSION 

In this paper, a simple and real-time pointing system is implemented so that the 
pointing error can be examined closely. A pointer with bright color is used in the point-
ing process to reduce the complexity in extracting its direction in an image, and error 
ranges in the pointing position are estimated by synthetic image noises. To greatly in-
crease the efficiency of the estimation, a fast analysis method is developed which only 
utilizes an extremely limited subset of noise data. With the help of such analysis, suitable 
operation positions may be suggested to a user of similar pointing systems if the pointer 
can be used in different locations in a 3D workspace. Moreover, in a multi-camera envi-
ronment, the overall pointing operation can achieve smallest error ranges, and most sta-
ble pointing results, by automatically selecting a pair of cameras based on the proposed 
error analysis scheme. While experiments are conducted and studied in this paper for 
static pointing situations, the proposed approach is applicable to more dynamic situations, 
e.g., in applications wherein instructions are given via various trajectories of pointing 
positions. 

(a) (b) 
Fig. 16. Distribution of RPPs of the nine pointing positions for the pointer placed at (a) (250, 100, 

350) and (b) (100, 100, 350). 

 

(a) 
 

(b) 
Fig. 17. (a) An input image; (b) The detected pointer and its bounding box. 
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6. APPENDIX 

6.1 The Preprocessing Step 
 
The objective of this step is to extract the region of the pointer, analyze its orienta-

tion, and locate its two endpoints in an image. The pixels belonging to the region can be 
found by measuring similarities of the specified color distributions13 which are obtained 
in advance. The measurement is achieved by thresholding in HSI color space to find out 
the pointer while avoiding the interference of the light changes. The pointer detection 
result of Fig. 17 (a) is shown in Fig. 17 (b). One can see that the pixels of the pointer do 
connect to each other and occupy a sufficient and elongated area. According to such ob-
servations, the connected component labeling is used to identify connected regions, and 
the region which has largest elongated area is selected as the region of the pointer. After 
that, principal components analysis is used to find its two axes. Assume a connected re-
gion which has n points is represented as X = [x1, x2, …, xn]

T. The mean value of the con-
nected region is represented as 1( ) .n

i im x n   The covariance matrix S can be calcu-
lated by 1( )( ) .n T

i X m X m    Next, the eigenvalues and eigenvectors can be found by 
eigen decomposition. The eigenvector corresponding to the largest eigenvalue can then 
be used to calculate a best fit line passing through the pointer. Finally, the two intersec-
tion points of (i) this line and (ii) the bounding box of the connected region will be de-
fined as the two endpoints of the pointer. 

 
6.2 Reconstruction of Pointing Points by Homographic Transformations 

 
In order to find the pointing positions, 3D coordinates of RLS, RLE, RRS, and RRE are 

needed. These coordinates can be calculated from the above endpoints in the stereo im-
ages by using 3 × 3 homographic matrices, namely HL and HR, which can provide trans-
formations of homogeneous coordinates between the image planes and the ground plane 
shown in Fig. 1. For example, given ILS = [u, v]T and ILE = [u, v]T , we can obtain the 2D 
coordinates of RLS = [x, y]T and RLE = [x, y]T on the ground plane as 

 [x, y, 1] T = HL [u, v, 1] T (1)  

and 

 [x′, y′, 1] T = HL [u′, v′, 1] T, (2) 

respectively. Similarly, RRS and RRE can be found by HR.  
Next, we need to find the 3D plane equations of L and R, with the former being 

determined by CL, RLS, and RLE, and the latter being determined by CR, RRS, and RRE. Let 
L, R and P, be represented by equations 

                                                 
13 The color distributions of a pointer are measured under several light sources. In our experiments, the meas-

ured color distributions are H: 340º~20º, S: 0.5~0.9 and I: 0.35~0.7. In addition, in order to obtain a com-
plete pointer region without many holes, we release the threshold as H: 300º~40º, S: 0.2~1.0 and I: 0.3~1.0. 
In general, if the color is not changed suddenly and can be correctly detected by the assigned color distribu-
tions at an initial stage, the color distributions can be updated and utilized continuously. 
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LX + LY + LZ = L, (3) 

RX + RY + RZ = R, (4) 

and 

PX + PY + PZ = P, (5) 

respectively, the pointing point P can then be calculated as 




































P

R

L

PPP

RRR

LLL

P







 1

. (6) 

 
Table 4. Pointing errors of the two methods for the pointer placed at (100, 100, 350). 

Mean error (standard deviation) cm 
Pointing position 

Our method [19] 
P1 2.12(1.11) 3.11(1.14) 
P2 4.28(2.80) 4.84(3.04) 
P3 9.43(6.82) 11.39(7.28) 
P4 2.67(1.82) 4.11(2.05) 
P5 3.40(1.71) 6.63(3.38) 
P6 5.99(3.04) 14.40(8.64) 
P7 7.02(5.10) 14.86(6.97) 
P8 7.23(4.75) 11.51(5.46) 
P9 10.87(5.07) 19.01(13.72) 
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