A statistics-based pitch contour model for Mandarin speech
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A statistics-based syllable pitch contour model for Mandarin speech is proposed. This approach
takes the mean and the shape of a syllable log-pitch contour as two basic modeling units and
considers several affecting factors that contribute to their variations. The affecting factors include
the speaker, prosodic staighich essentially represents the high-level linguistic components of FO
and will be explained more clearly in Seg, tone, andinitial and final syllable classes. The
parameters of the two modeling units were automatically estimated using the
expectation-maximizatiofEM) algorithm. Experimental results showed that the root mean squared
errors(RMSES obtained in the closed and open tests in the reconstructed pitch period were 0.362
and 0.373 ms, respectively. This model provides a way to separate the effects of several major
factors. All of the inferred values of the affecting factors were in close agreement with our prior
linguistic knowledge. It also gives a quantitative and more complete description of the coarticulation
effect of neighboring tones rather than conventional qualitative descriptions of theaodkirules.

In addition, the model can provide useful cues to determine the prosodic phrase boundaries,
including those occurring at intersyllable locations, with or without punctuation marks20@
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I. INTRODUCTION will result in underarticulation of tones and lead to the gen-
eration of unnatural speech.

Prosody is an inherent supra-segmental feature of human Pitch modeling is even more critical for Mandarin
speech. It carries stress, intonation patterns, and timing struspeech processing, as Mandarin is a tonal language and the
tures of continuous speech which, in turn, determine thénformation related to the tonality of a syllable appears, for
naturalness and understandability of an utterance. How tthe most part, on its pitch contour. Although there are only
automatically generate, analyze, and recognize prosody ifive lexical tones and a previous stifiyias concluded that
speech is one of the unresolved problems confronting rethe pitch contour of each of the first four tones can be simply
searchers who study speech synthesis and recognition. Alepresented by a single standard pattern, syllable pitch con-
though it is known that prosody is affected by many factors four patterns in continuous speech vary highly and can devi-
such as the phonetic context, sentence type, syntactical stru@te dramatically from their canonical forntise., high-level
ture, semantics, and the emotional status of the speaker, tf{2n€, mid-rising tone, low-falling tone, high-falling tone, and

relationship between these affecting factors and prosody af@W-€nergy tong Many factors have been shown to have a
not totally understood. major influence on the pitch contour of a tone. They include

Among all the features known to carry prosodic infor- the effects of neighboring tones, referred tsaadhirules;

. e . goarticulation, stress, intonation type, semantics, emotional
mation, pitch is the most important one. It has been reporte " o )
Asgatus, and so on. In addition, the pronunciation of tone 5 is

that the FO contour. characterizes t.he speaking style an sually highly context dependent and is relatively arbitrary.
speaket. Therefore, pitch plays a role in many speech relate hus, pitch modeling is not a trivial research issue for Man-

applications,  like  text-to-speech (TTS),*° tone  yiuin speech processing.

i 210,11 H H 2,13 H . . .
recognition, prosodic  labeling?*® emotional ~state Pitch modeling has been the subject of many recent re-

recognition;* speaker accent identificatidnand so on. Ad-  search studies on various languages. The general goal of
equate pitch control is very important for synthetic speech tgyitch modeling is to derive a computational model that de-
be natural in TTS. If a TTS system generates a tone shapgribes the relationship between a set of affecting factors and
matching only the lexical expectation of each individual syl-pitch contour patterns. The related literature has been con-
lable, the lack of consideration of contextual tone variationscerned with finding perceptual cues and intonational linguis-
tic representation®19The pitch contour generation rules for

dAuthor to whom correspondence should be addressed. Electronic maiﬁyntheSiZing.inte_”igible and natural-spunding spe&ctand
Iwh@cht.com.tw the automatic pitch or tone analysis for the purposes of
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je-4 (0) wei-4 (0) yue-1 (1) han-4 (1) huo-4 (3) pu-3 (7) jin-1 (7) sz-1 (7) da-4 (7) shiue-2 (8)
ming-2 (8) yu-4 (8) jiay-4 (8) shou-4 (12) tzai-4 (1) di-4 (1) yi-1 (3) jie-4 (7) guo-2 (5) ji-4 (8)
shing-4 (3) gau-1 (8) chau-2 (9) huei-4 (9) yi-4 (10) jung-1 (13) shuo-1 (14) , ta-1 (0) duei-4 (1) FIG. 1. An example of prosodic states.
je-4 (1) yi-4 (5) shr-3 (4) yu-2 (7) yi-1 (3) jiou-3 (4) ba-1 (7) ling-2 (6) nian-2 (8) dai-4 (8) de-5
(6) shing-4 (5) chiu-1 (11) shr-4 (15) gan-3 (6) dau-4 (6) nan-2 (11) guo-4 (14).

speech recognitiol''! speech understandiffyand word lexically marked with a lexical tone, which is a factor that
finding?! have also been studied. Pitch modeling can be perstrongly affects pitch in Mandarin. But it is well known that
formed using two approaches that are rule baskdr data  the prosody of an utterance is better modeled with an interval
driven®-82223The former approach is conventional; it usesthat is much longer than a syllable. Therefore, we use the
linguistic expertise to manually infer some phonologic rulesneighboring tones and the prosodic states to measure the
of pitch contour generation, based on observation of a largempact. The affecting factors used include the speaker, pro-
set of utterances. A prevalent method in the approach appliesbdic state, tone, and initial and final syllable classes. Here,
to TTS uses sequential rules to initially assign the pitch conthe prosodic state is conceptually defined as the state of a
tour of a segment with an intrinsic value and then successyllable in a prosodic phrase. In continuous speech, speakers
sively applies rules to modify & * There are three main tend to group words into phrases whose boundaries are
disadvantages to this approach. First, manually exploring themarked by durational and intonational cues. Those phrases
effect of mutual interaction among several linguistic featuresare usually referred to as prosodic phrases. Many phonologi-
at different levels is highly complex. Second, the rule-cal rules limit their operation within prosodic phrases. While
inference process usually involves a controlled experimentyt is generally agreed that the prosodic structure of an utter-
in which only a limited number of contextual factors is ex- ance has some relationship with its syntactic structure, the
amined. The resulting inferred rules may, therefore, not béwo are not isomorphic. In the model, the prosodic state is
general enough for unlimited texts. Third, the rule-inferenceused as a substitute for high-level linguistic information, like
process is cumbersome. As a result, it is generally very difa word, phrase, or syntactic boundaries. Our purpose in using
ficult to collect enough rules without expending a great deathe prosodic state to replace conventional high-level linguis-
of effort. tic information is to divide the complicated pitch modeling
The data-driven approach tries to construct a pitchtask into two subtasks. The first one involves modeling the
model from a large speech corpus, usually by means of stgitch parameters by considering the effects of some low-
tistical method$?® or artificial neural network (ANN) level linguistic features and the prosodic state. The second
techniques:?? It first designs a computational model to de- subtask involves exploring the relationship between the pro-
scribe the relationship between pitch contour patterns andodic state and high-level linguistic cues. Through this two-
some affecting factors and then trains the model, using thetage pitch modeling approach, some unsolved problems can
speech corpus. The training goals are to automatically dedubtie avoided. Problems such as the inconsistency of prosodic
phonologic rules from the speech corpus and to implicitlyand syntactic structures, the ambiguity of word-segmentation
incorporate them into the model's parameters or into theand word-chunking for Mandarin Chinese, and the difficulty
ANN'’s weights. The primary advantage of this approach isof performing automatic syntactic analysis on unlimited
that the rules can be automatically established based on thatural texts can be prevented in the first subtask. In the
training data set during the training process, without the helgecond subtask, the researcher can focus on modeling the
of linguistic experts. The recurrent neural netw@RNN)-  global effect of mapping high-level linguistic features to the
based methotf?is a popular method which uses an RNN to prosodic state, since interference caused by low-level lin-
learn the mapping between the pitch parameters and songiistic features has already been removed in the first subtask.
linguistic features. The main criticism raised against thisin this paper, we attack the first subtask only, leaving the
method is the difficulty of interpreting the hidden structuressecond subtask to be dealt with in the future. Due to the fact
of the model. Other methods include the hidden Markovthat the prosodic state of a syllable is not explicitly given, it
model (HMM),Z regression analysfsyector quantizatiod, has been treated as a hidden variable and expectation-
and the tree-based approdcm addition, an approach that maximization(EM) algorithms have been applied to estimate
adopts the concept of separating an utterance’s pitch contoatl the parameters of the two pitch models based on a large
into a global trend and a locally variational term has beertraining set. A by-product of the EM algorithm is the deter-
applied in recent pitch modeling studies, e.g., those on sumination of the hidden prosodic states of all the syllables in
perpositional modelirf?® and two-stage modelin?® the training set. This is an additional advantage because pro-
In this paper, a new pitch modeling approach for Man-sodic labeling has recently become an interesting research
darin speech is proposed. It takes the mean and shape oftapic!? An example is given as Fig. 1. This example shows
syllable log-pitch contour as two basic modeling units andthat the term prosodic state could be made more understand-
uses statistical methods to model them separately while corable. Figure 1 shows the phonetic transcription, téaféer
sidering several affecting factors that control their variation.dash, and the prosodic statds1 parenthesgsof each syl-
The reason for using parameters of the syllable pitch contouable, which are assigned automatically by our model. For
as modeling units lies in the fact that the syllable is the basi@ach syllable, in our experiment, 1 of 16 prosodic states was
pronunciation unit of Mandarin speech and each syllable isssigned. From the sequence of prosodic states, some high-
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level linguistic phenomenon could be observed, like the pos- |
sible prosodic phrase boundaries. The prosodic state essen- %o M =1,
tially represents the high-level linguistic components of FO,

so the results reported in this paper apply to the prediction of [ 122M]1¥2 10 1
the low-level linguistic componentone, initial/final class, b1 M/ IM+2] Im 2
and speaker factors in our mogejiven the prediction of . 5 1o )
high-level linguistic components of F@he second subtask é ('_) :[ 180 M
mentioned above M/ [(M=1)(M+2)(M+3)
This paper is organized as follows. Section Il discusses, o
in detail, the proposed pitch modeling approach for Manda- [('_) — '_+ _M _ 1}
rin speech. Section Ill presents the experimental results. De- M/ M 6-M]

tailed analyses of the inferred affecting factors are given in i
Sec. IV. An application of the proposed syllable pitch con- ¢3<M> :[(M )
tour model to pitch prediction of TTS is given in Sec. V. In
the last section, we offer concluding remarks and suggestions
for future research.

2800 M® 12

(M=2)(M+2)(M+3)(M+4)

( [ )3 3( [ )2+6M2—3M+2( [ )
M 2\M 10-M?2 M

IIl. THE PROPOSED PITCH MEAN AND SHAPE
MODELS _M-DM=2)

2

In the proposed pitch modeling approach, we first per- 20-M
form rough speaker normalization to the pitch period. Ourfor O<i<M, whereM +1 is the length of the current syl-
purpose is to adjust the pitch levels and dynamic ranges dhble log-pitch contour ant=3. They are, in fact, discrete
all the speakers so that they are approximately the same, lregendre polynomials. A syllable log-pitch contotifi/M),
order to improve the efficiency of the subsequent syllablecan then be approximated by
log-pitch contour modeling. In Ref. 27, a Gaussian normal- i 3 i
ization was used to perform a mapping from the reference f<_> :E aj,(/)j(M)’ o<i<M, 3)

pitch values to the desired frequencies, and the authors found M/ =0
that pitch contour moved in the proper direction. We use th here
same idea to normalize the pitch period of a speaker as fol-
lows: 1§M:f<i) (I) 4
£1() = 1 VEE PRIV RN VIR @
f(t)= o Tant Man 1)

. ) ) B. Affecting factors
wheref’(t) and f(t) are the original and normalized pitch

periods of framet; u, and o, are the mean and standard In naturally spoken Man_darin _Chin_es_,e, pitc_h va_rie_s con-
deviation of the pitch period distribution of speakerand S|derably,_ depending on various linguistic/nonlinguistic fac-
wan and oy are the average mean and average standar’i?rs_- In this study, we considered some factors t_hat may have
deviation of the pitch period distribution of all the training Major effects on control of the variation of the pitch contour.
speakers. We then take the logarithm of the normalized pitcf "€ specific affecting factors chosen for the pitch mean and
period, and the resulting log-pitch contour of each utteranc€h@pe models are discussed in the following.
is subsequently divided into a sequence of syllable log-pitch . .
contours. Each syllable log-pitch contour was then decom-l - Affecting factors for the pitch mean model
posed into two parts, the mean and the shape, using a third- The pitch mean is mainly affected by intonation, while
order orthogonal polynomial expansion, with the zeroth-the pitch shape is affected mainly by lexical tones. A brief
order coefficient representing the mean and the other thregummary of the major factors affecting intonation contours
higher order coefficients representing the shape. We thewas given in Ref. 28. They include declination, downstep,
take the syllable’s pitch mean and shape as basic modelinfjnal lowering, accents and tones, segmental effects, and in-
units and employ the two separate statistical models to corfonation type. In our pitch mean model, the affecting factors
sider several major affecting factors. Some parts of the pitcieonsidered include the tones of the previous, current, and
modeling approach are discussed in detail in the following.following syllables; thenitial andfinal classes of the current
syllable; the prosodic state of the current syllable; and the
speaker’s level shift and dynamic range scaling factors. Their
Since all syllable log-pitch contours are smooth curvesjnfluence on the syllable pitch mean is discussed below.
a third-order orthogonal polynomial expansion is employed  Mandarin Chinese is a tonal and syllable-based lan-
to represent them. Actually, in some previous studiesr-  guage. The syllable is the basic pronunciation unit. Each
thogonal polynomials, up to the third order, were shown tocharacter is pronounced as a syllable. Only about 1300 pho-
be good enough to represent Mandarin syllable pitch connetically distinguishable syllables, comprising the set of all
tours. The four basis polynomials used are normalized, idegal combinations of 411 base-syllables and five tones, ex-
length, to[0,1] and can be expressed as follows: ist. The tonality of a syllable is mainly characterized by its

A. Discrete orthogonal polynomial expansion
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pitch contour, loudness, and duration. We, therefore, considarormalized syllable log-pitch contour is still speaker depen-

the tone of the current syllable as an affecting factor. Coardent.

ticulations from the neighboring tones, which are known as

sandhi rules, also exist. Thus, the tones of the previous ang Affecting factors for the pitch shape model

following sy!lables are also chosen as affecting factors. . Pitch shapes are relatively tone determined. Production
Mandarin base-syllables have a very regular phonetic

structure. Each base-svilable is composed of an optizoral Studies of Chinese tones have shown that tone shapes in
- -SY . P P natural continuous speech often deviate from their canonical
sonant initial and afinal. The final can be further broken

. . . shapes. They suffer from large deformations due to tone
down into an optionamedial a vowel nucleusand an op- P y g

i I | endingAs di din Refs. 28 and 29 coarticulation, also known as torsandhi This situation is
t;;)pneas gﬁzisg:‘\légg’:osm:\/ceu;i}it z;rr]e cZusée q be;/nthesé smezrrlz articularly common in conversation, where the boundaries

. - ) nong tonal categories are blurred. It has been suggested in
tal effects. We, therefore, consider the braaitial andfinal g g 99

| fth \abl focting f di Ref. 17 thatsandhicontour patterns of poly-tonal groups are
classes of the current syliable as affecting factors and INVeSiper invariant and can be treated as the basic units of pitch
tigate their effects on pitch mean variation.

Aside f he i istic f ioned ab h contour analysis/generation. Therefore, lexical tone combi-
hiah IS' eI lr.omt. ¢ Inguistic factors mehnt|one adolve, |°t €Mhations are used here to consider the effect of tone coarticu-
igh-level linguistic components, such as word-leve and1ation. To give further consideration to the coupling/

syntactic-level features, can _also seric_)usly affect the pitdﬁoncoupling effect of neighboring syllables, we considered
contour of an utterance. As discussed in Sec. |, the prosodigne_ 1yo- and three-syllable tone combinations as affecting
state_ is in our gpprpaph used to account for the mfIyence %ctors in the pitch shape model.

a_II high-level linguistic features. Here,_ the prosomc state  iher affecting factors chosen for the pitch shape model
simply means the state of the syllable in a prosodic phrasg, g theinitial andfinal classes of the current syllable for

The pitch level of a syllable can vary drastically in different y,o segmental effect, the prosodic state of the current syllable
parts of a prosodic phrase. The declination effect of the glogy; the effects of high-level linguistic features, and the pitch
bal downtrend, referring to the tendency of FO to declingg, g shifting effect of speakers.

over the course of an utterance, is a well-known example.
There are two advan_ta_ges of using _the p_rosqdlc stat(_a to_ " The pitch models
place high-level linguistic features. First, pitch information is
a kind of prosodic feature, so the variation of the syllable  In pitch modeling, we take the mean and shape of the
pitch contour should better match the prosodic phrase strusyllable log-pitch contour as basic modeling units and use
ture than the syntactic phrase structure. Second, as mefwo separate models to exploit their variations. Because the
tioned above, some unsolved problems, such as the ambigaemplicated high-level linguistic components of FO are rep-
ity of word-segmentation and word-chunking in Mandarin resented by prosodic states, only acoustic factors are consid-
Chinese and the difficulty of performing automatic syntacticered. Therefore, simple additive models are adopted in our
analysis on unlimited natural texts, can be avoided in thestudy. They are discussed in detail in the following.
.curr.ent pitch queling apprqach. This_ preye_nt; us from USy 1he pitch mean model
ing improper or incomplete high-level linguistic information. ) ] )
The main problem with using the prosodic state is the lack of ~ 1h€ pitch mean model was constructed by first consid-
large speech corpora with prosodic tags that have been proffng the two affecting factors of the speaker, expressed as
erly labeled. Thus, we have to treat the prosodic state of a 7 =(Y,+ B¢ )7, (5)
syllable as a hidden or unknown variable. Fortunately, we are v
able to solve this problem by using the expectaﬂon_wherezn is the observed mea(ne., the zeroth-order coeffi-
maximization(EM) algorithm, which is a technique of maxi- Cienteg of the orthogonal polynomial transfojrof the log-
mum likelihood (ML) estimation from incomplete data. A Pitch contour of theith (curreny syllable; 35 andys are the
by-product of the approach is the automatic determination o€ompanding(compressing-expandingactors (CF9g of the
prosodic states for all the syllables in the training set. This igwo affecting factors of the speaker, representing, respec-
an additional advantage because prosodic labeling has révely, the effects of level shift and dynamic range scaling on
cently become an interesting research tdpit.In addition,  Z,; andY, is the speaker effect-compensated pitch mean.
such prosodic phrasal information provides clues for resolvHere, CF means the effect of a factor on the expangion
ing syntactic ambiguity in  automatic  speech creasg or compressior(reduction of the pitch mean. The
understanding?13%3land for improving the naturalness of model goes on to further consider other affecting factors,
TTS3233 expressed as

Lastly, the pitch contour of an utterance is also signifi- _ ,
cantly affected by the speaker. Speakers have different pitch Vo= Xa Byt ey * Brey T By Bt B ©
levels and dynamic ranges. Rough speaker normalization iwhere X,, is the normalized pitch mean of theh syllable
performed in the preprocessing stage in order to suppress tla@d is modeled as a normal distribution with mearand
speaker effect and allow the pitch period distributions of allvariancev; B, is the CF for affecting factor; t,, pt,, and
the speakers to have the same mean and standard deviatidh, represent the lexical tones of the current, previous, and
However, we also use two speaker affecting factors in thdollowing syllables, respectivelyi;, and f,, are broadnitial
pitch mean model to examine whether the Gaussianandfinal classes of the current syllable; apglrepresents the
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TABLE I. (a) CFs of the affecting factors in the pitch mean modb).CF
vectors of the affecting factors in the pitch shape model.

(@

CF of the dynamic range scaling of the speakers

D. Training the pitch models

1. Training the pitch mean model

To estimate the parameters of the pitch mean model, an

Bs, CF of the level shift of speakers EM algorithm is adopted. The derivation of the EM algo-
Bt CF of the current lexical tone . . . .
B CF of the previous lexical tone rithm is based on treating the prosodic state as an unknown
Bf," CF of the following lexical tone variable. An auxiliary function is first defined in the expec-
i, CF of the initial class tation step(E-step as follows:
Br, CF of the final class N P
Bp, CF of the pitch-mean prosodic state — —
QAN=2 X p(PalZa . NIogp(Zy,palN),  (®
(b) n=1p,=1

bSn CF vector of the speakers . . .
brc, CF vector of the lexical tone combination of the current whereN is the tOtal_ number of training sampléjs the total

syllable and its two neighbors number of prosodic statep(p,|Z,,\) andp(Z,,p,/\) are
by, CF vector of the initial class conditional probabilities,\ ={u,v,B; +Bpt: Bt Bi 1Bt B
by, CF vector of the final class , Bs,7vs} is the set of parameters to be estimated, &ahd\
b, CF vector of the pitch-shape prosodic state

are the new and old parameter sets, respectively. Based on
the assumption that the normalized pitch megnis nor-
mally distributed,p(Z,,,p,/\) can be derived from the as-
sumed model given in Eq$5) and(6) and expressed as

prosodic state of the current syllable. Note thatranges
from 1 to 5, while bottpt, andft, range from 0 to 5 with 0 P(Zp,Pal M) =N(Zy; (et Be + Byt + Bie, + Bi_ + Br_
denoting cases with punctuation marks or the nonexistence 5

of a preceding or succeeding syllable. The affecting factors +Bp,+ Bs) Y5, VY5 ©

for pt,=0 andft,=0 are simply set to zero because we do,yhare N(Z;a,b) denotes a normal distribution & with

not want to mclude_ the effect_ of tone across punctuation .- -4 varianceb. Similarly, p(ps|Z,,,\) can be ex-
marks. All the affecting factors in the pitch mean model andpressed as

their notations are summarized in Tabla)l

—  p(Zn.palN)
p(pn|znv)\): P L N
Ep;I:lp(vapnl)\)

(10

2. The pitch shape model
Then, sequential optimizations of these parameters can be
performed in the maximization stéM-step.

A drawback of the above EM algorithm is that it may
produce a nonunique solution. To solve this problem, we
modify each optimization procedure in the M-step to con-
strained optimization by introducing a global constraint. The
auxiliary function is then changed to

N P

QUN=3 3 P(PelZn MIogP(Zn Pal)

The pitch shape model is expressed as
Zn:Xn+ btcn+ bqn+ bsn+ bin+ bfn’ (7)

whereZ,, is the observed pitch shape vecfar, a, a3]" for
the nth syllable; X,, is the normalized pitch shape vector of
the nth syllable and is modeled as a multivariate normal
distribution with mean vectop and covariance matriiR; b,

is the CF vector for affecting factar tc,, represents a lexical
tone combination of the current syllable and its two nearest

neighbors; andy,, represents the pitch-shape prosodic state +n
of the current syllable. Here, a lexical tone combination, in-
stead of individual tones, is used because we want to con-
sider the aggregative influence of the current tone and its two
nearest neighboring tones. The invoking of the preceding and
succeeding tones in the tone combination depends owhereu; is the average o, and»is a Lagrange multiplier.
whether or not long intersyllable pauses exist before and/ofhe constrained optimization is finally solved via the
after the current syllable, respectively. In a case where bothlewton—Raphson method.

the pre- and postpauses of the current syllable are not long, To execute the EM algorithm, initializations of the pa-
we consider the effects of both the preceding and succeedimameter set. are needed. This is done by estimating each
tones, and use a tri-tone combination. When the prepaudadividual parameter independently. Specifically, the initial
and/or the postpause are equal to or longer than a predetenultiplicative/additive CF for a specific value of an affecting
mined threshold =13 frames or 65 ms in this stugywe factor is assigned to be the ratio/difference of the mea#,of
ignore the influence of the preceding and/or succeeding sylwith the affecting factor equaling the value to the mean of all
lables, and use a single-tone/bi-tone combination. All the afZ,,. Notice that, in the initialization of the CFs for the affect-
fecting factors in the pitch shape model and their notationsng factors of the prosodic states, each syllable is preassigned
are summarized in Tablgh). a prosodic state by means of vector quantization. Following,

N
ngl (mt B+ Bpt, T B, T Bi +Bs,

+:8pn+ﬁsn)'ysn_N1U*Z , (13)
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all the parameters are sequentially updated in each iteratiotwo speaker-affecting factors and the prosodic state of each
The iterative procedure is continued until convergence isyllable. The following testing procedure is used to estimate
reached. The prosodic state can, finally, be assigned as these unknown parameters:

ph =arg maxp(pn|Z,,\). (120 (1) Initialization:
Pn
(a) Freeze the CFs for the current, previous, and follow-

The EM algorithm is summarized below: . L :
¢ ing tones, for thenitial andfinal classes, and for the

(1) Compute the initial values of by independently esti- prosodic state, the mean, and variance of the nor-
mating each individual parameter from the training set. malized pitch mean to their trained values, and form
(2) Do this for each iteratiot: a parameter set,={u,v, 5 Bpt:Brt . Bi . Bi !Bp}'
@ Updatef=)\ (b) Compute the initial CFs for the parameter et
. :{ﬁs‘.a')’s}-

(b) E-step: Use Eq99)—(11) to calculateQ(f,)\).

(2) Do this for each iteratiotk:
(c) M-step: Find the optimak as follows:

(@ Updatefzz N\o.

A=arg rr;axQ()\,)\). (13 (b) E-step: Calculate
N P
(d) Termination test: IfL(k)—L(k—1)<e or k=K, Q({z,hz):E > p(palZ, flfz)
then stop, where n=1pp=1
N —
Xlog p(Z,,PnlN1,N2). 1
L=, logp(z,) a9 X100PZ P, 12) 0
n=1 (c) M-step: Find the optimak , via
is the total log-likelihood for iteratiok andK is the \,=arg ma@(fz \y). (18)

maximum number of iterations. A

3) Assi dic states to all the syllables usi .
(3) Assign prosodic states to all the syllables using &) (d) Termination test: IfL(k)—L(k—1)<e or k=K,

2. Training the pitch shape model then stop, where

N
The pitch shape model is trained using the same EM L(K)= >, 10gP(ZA1,\2) (19
algorithm. An auxiliary function with a global constraint was n=1
first defined as follows: is the total log-likelihood for iteratiork.
- N P o (3) Assign prosodic state by means of
AN = Z,,N)logp(Z,,qnN)+LT N
Q(AN) n§=)l P P(nlZn M10gP(Z,,0nlN) o — arg masp(p.|Zy Auhs). 20
Pn
N
> (p+by +1; +bg +bg +bg)—Nptz |, After performing the above_ procedure, we can deriye the two
n=1 noon n nooon speaker CFs for each testing speaker and determine the pro-

(15) sodic state of each syllable.

where L is a 3X1 Lagrange multiplier vector anch

={m,R,byc,b; by ,by,bg} is the set of parameter vectors to _ . .
be estimated. Based on the assumption that the normalized i In ;[heﬂ:estmgk] phase, a 3|m|tlar pr?iﬁduri 'ﬁ err]nployed (;Ol
pitch shape vectoK, is normally distributedp(Z,,q,/\) ;as 'mg]et e-t_un C;lotwn ptara_r::]e ?Ir?ho K € pitch s apfr m% €
can be expressed as rom the testing data set, with all the known parameters be-

ing fixed. Here, the unknown parameters are the CF vector of
P(Zn,0n|N) =MVN(Z; putbye +b; +Dbg +bg +bs \R), the speaker affecting factor and the prosodic state of each
(16)  syllable. In_this case, the fixed parameter sk

where MVN(Z:a,B) denotes a multivariate normal distribu- =14 R,bc,0; b, by} and the unknown parameter sk
tion of Z with mean vector and covariance matri8. By ~ ={bs} are used in the testing procedure.

maximizing the auxiliary function, we can get the optimal

parameter set. The training procedure is similar to that fotll. EXPERIMENTAL RESULTS

the pitch mean model.

2. Testing the pitch shape model

A. Databases

The effectiveness of the proposed syllable pitch model-
ing method was examined through simulations on two data-
bases. The first database was a high-quality, reading-style,
microphone speech database, which was recorded in a

Although we obtain CFs for all affecting factors through sound-proof booth. It is referred to as the TL database. It was
the above training procedure, some information still must beyenerated by five native Chinese speakers, including two
discovered in the testing phase. This includes the CFs of themales and three females; among these five, two were profes-

E. Testing the pitch models

1. Testing the pitch mean model
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TABLE Il. TL database statistics. TABLE IV. The mean andco)variance statistics dff) the observed antb)

the normalized mean and shape of the syllable log-pitch contour with 16

Data Set Speaker Sentence Paragraph Syllableprosodic states for the TCC databdseit of pitch period: mg
Tra?n?ng Male A 1-455 1-200 34670 mean (covariance RMSE
Training Female B 1-455 1-50 12 945
Training Male C 1-455 1-100 20748 (@
Training Female D 1-455 1-200 34166 Pitch meana, 1.840 0.0209
Testing Female E None 201-300 22109 Pitch shape 2.797 32.392 0.341 —2.680

[a; ap a3]” ~0.593

- 0.341  9.740 —0.199
Lo -o0018 2680 —0.199 328
. . . -2. -0.1 .

sional radio announcers. The database consisted of two types
of data. The first type of data comprised sentential utterances (b)
with texts belonging to a well-designed, phonetic-balanced’!‘cﬂ ”;]eamo 1.842 0.000 739 0.0275
corpus of 455 sentences. The lengths of these sentencpc'lécaS‘OZ""']C’Te 2.810 7.037  —0.561 -1791) [2.653
ranged from 3 to 75 syllables with an average of 13 syl-, 100 :gg;g —0561  3.657 —0.403 ijﬁ
lables. The other types of data were longer utterances with ' -1.791 —-0.403 2.16 ’

texts belonging to a corpus of 300 paragraphs, which cov-
ered a wide range of topics, including news, primary school

textbooks, literature, essays, etc. The lengths of these para-

graphs ranged from 24 to 529 syllables with an averagejtch contours. The statistics for the observed mean and
length of 170 syllables. The database was divided into tWahape of the syllable log-pitch contour can be found in Table
parts: a training set and a test set. Table Il shows the databagg ).

statistics. The training set contained, in total, 102529 syl-  The second database was a 100-speaker, microphone
lables, and the test set contained 22 109 syllables. The Speaéﬁieech data set, which was a subset of TCC-300, provided by

ers and text content in the test set were different from thos%e Association of Computational Linguistics and Chinese
in the training set. . Language Processing. It is referred to as the TCC database.

eI:he database was generated by 50 males and 50 females.
pling rate. They were then manually segmented initial nEach speaker uttered several paragraphs of differing content.

andfinal subsyllables. The phonetic transcription was gener:rhe speec_h data were al! d.|rectly, digitally recorded in a
ated automatically by a linguistic processor, with an 80 goplaboratory in 16-kHz, 16-bit linear PCM. The total number
word lexicon. All the transcription errors were manually cor- ©f syllables in the database was 141 991. After recording was
rected. The pitch period was then automatically detected b§ompleted, all the speech signals were automatically seg-
the ESPS software, with large errors being detected by thElented, using 10@ritial and 39final HMM models. Then,
program and corrections made by hand. A four-step preprothe pitch period was automatically detected by WaveSurfer
cessing procedure was then applied to extract the four modgoftware, the large errors being excluded by the program.
eling parameters. The four steps included frame-basedihe same four-step preprocessing procedure was then ap-
speaker normalization, frame-based logarithm operation, diplied to extract the four modeling parameters. In Tablé)y
viding the utterances’ log-pitch contours into syllable seg-the statistics for the observed mean and shape of the syllable
ments, and performing orthogonal expansion of syllable logiog-pitch contour are shown.

database were converted into 16-bit data at a 20-kHz sa

TABLE Ill. The mean andco)variance statistics &) the observed anth) the normalized mean and shape of the syllable log-pitch contour with 16 prosodic
states for the TL databagenit of pitch period: ms

(@

Training set Test set
Mean (Co)variance Mean (Co)variance
Pitch meana, 1.949 0.0372 1.948 0.0345
Pitch shapTe 3.545 58.550 3.229 —5.140 4.012 49.489  3.653 —4.007
[ay @ as] —0.982 3229 9671 —0.106 —0.749 3.653 12460  0.27
(X100 ~0.056 ~0.142
—5.140 -0.106 2.90 —4.007 0.276 4.35
(b)
Training set Test set
Mean (Co)variance RMSE Mean (Co)variance RMSE
Pitch meana, 1.948 0.000 402 0.0203 1.948 0.000 344 0.0183
Pitch ShapTe 3.660 9.865 -—0.354 -—-0.076 3.143 3.861 12.885 0.955 1.07 3.603
Lay a; as] —0.996 0354  1.907  0.23 1.381 —0.906 0.955 3.101 0.80 1.762
(X100 —0.104 1.120 —0.085 1.505]
—0.076 0.232 1.25 1.073 0.808 2.26
914  J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005 Chen et al.: Pitch contour model for Mandarin speech
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(b) Iteration

B. Experimental results of pitch modeling reconstructed pitch mean and shape, we could reconstruct the
The effect of the proposed pitch modeling method WaSoitch contour for each syllable. The RMSEs of the recon-
estructed pitch contour were 0.362 and 0.373 ms/frame for the

examined first, with the number of prosodic states set to 163 - ]
Table 1li(b) shows the experimental results of pitch meanclosed and open tests, respectively. Notice that these two

and shape modeling. It can be seen from the third and sixtMalués included RMSEs of 0.17 and 0.19 ms/frame, which
columns of Table Ii{b) that the(cojvariances of the normal- resulted from applying orthogonal transformation to the
ized mean and shape of the syllable log-pitch contour werélosed and open test data sets, respectively.

greatly reduced for both the closed and open tests, when Figure 2a) shows a plot of the total log-likelihood(k)
compared with those shown in Table(8l. The RMSEs of ~Versus the iteration numbér It can be seen from Fig.(3)

the reconstructed mean and shape of the syllable log-pitctat the EM algorithm quickly converged in the first several
contour are shown in the fourth and seventh columns ofterations. The histograms of the observed and normalized
Table 1li(b). Here, the reconstructed meéshapée was cal-  syllable log-pitch mean for the training set are plotted in
culated based on the well-trained pitch méahap¢ model  Figs. 3a) and 3b). It can be seen from these two figures that
by assigning the most probable prosodic state to each sythe variation of the syllable log-pitch mean was greatly re-
lable and setting the normalized me@hapée paramete(s) duced after the influence of the affecting factors considered
to its (their) mean valués). By combining the results of the in the model was eliminated. Based on the above results, we
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FIG. 3. The histograms df) the observed antb) the normalized pitch means for the training set of the TL database and the histograznghefobserved
and (d) the normalized pitch means for the TCC database.

concluded that the proposed pitch mean modeling methoend the reconstructed pitch contours, were presented to the
was effective. listeners involved in the tests. The inside/outside test could
We then examined a case in which the number of proshow whether test sentences are from the training or testing
sodic states changed. The resulting variance of the normaset. In the inside test, the original and reconstructed pitch
ized syllable log-pitch mean is shown in Figa#k As can be contours of utterances of speaker(¢ee Table I, a male
seen, the variance of the normalized pitch mean decreased pofessional announcer, were used, while in the outside test,
the number of prosodic states increased. This implies that thile utterances of speaker E, a female speaker, were used. All
pitch mean model became more accurate as the number tife testing utterances were generated by the PSOLA algo-
prosodic states increased. The improvement reached saturdhm using two acoustic inventories containing the wave-
tion when the number of prosodic states was greater than 16rm templates of 414 monosyllables. These two acoustic
Similar findings were observed for the corresponding RM-inventories were generated by speakers A and B for the in-
SEs of the reconstructed pitch mean shown in Fig).4 side and outside tests, respectively. It should be noted that
Figure 5 shows two typical examples of reconstructedthe acoustic inventory of speaker B, who is a professional
pitch contours of two utterances based on the pitch mean arfémale announcer, was used in the outside test because the
shape models with 16 prosodic states. It can be seen fromcoustic inventory of speaker E was lacking. All the other
these two figures that all the reconstructed syllable pitch conprosodic parameters, including the syllable duration, syllable
tours closely resembled their original counterparts. ActuallyJog-energy level, and intersyllabic pause duration, were esti-
they were the smoothed versions of the originals as threanated from the training database using a regression model.
order orthogonal polynomial transformation was used. Furfive different long test sentences were used in both the in-
ther evaluation of the performance of the reconstructed pitclside and outside tests. Combined with the two kinds of syn-
contours was conducted by means of two subjective tests: thbesized speech, there were, in total, 20 test sample utter-
AB test and the mean opinion scdiiOS) test. The synthe- ances. Sixteen listeners, university students, were involved in
sized speech recordings, with both the original pitch contourshe two tests. In the AB test, each listener was given a pair of
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0.01 — mean model and the speaker affecting factor used in the pitch

0.0094 _ shape model, was conducted. RMSEs of 0.362 and 0.372 ms
were obtained in the closed and open tests, respectively.
These results were almost the same as those for the previous
0.007 - 1 cases, which used these three speaker affecting factors in the
pitch mean and shape models. This showed that rough
speaker normalization was good enough to eliminate the
0.005 1 speaker’s influence.

We then checked whether the pitch mean and shape
models could share the same set of prosodic states. An ex-
periment, in which the prosodic state of every syllable in the
0.002- T pitch shape model was forced to be the same as that in the
0.001 & i pitch mean model, was then conducted. RMSEs of 0.504 and
® 0.478 ms were obtained in the closed and open tests, respec-
2 4 8 18 32 tively. These results were worse than those obtained using
@ State Number separate sets of prosodic states in the pitch mean and shape
1 models. Figure 6 shows the 16 patterns of unified prosodic
states. The patterns are plotted from left to right in increasing
09l . order of the prosodic state index. The vertical axis is pitch
period (ms). Sixteen syllable pitch contour patterns were
08l . formed using the CFs of the prosodic states, and the average
values of the normalized syllable log-pitch mean and shape
can be found in this figure. It can also be found in Fig. 6 that
D the lower-indexed states had a lower pitch mean and smaller
pitch slope; they represented the beginning part of a prosodic
phrase. On the other hand, the higher-indexed states had a

0.008'F

0.006 -

8
®

0.003 -

Variance of Normalized Pitch Mean
O+

o
o
T

RMSE of Pitch
o
o
T

0.5 o ; higher pitch mean and larger pitch slope; they represented
5 the ending part of a prosodic phrase.
0.4 1 Finally, we examined the effectiveness of pitch model-
¢ 5 ® ing via the TCC database. The same training procedure used
03 1 5 I 3 64 with the TL database was applied. The number of prosodic
(b) State Number states was set to 16. Table (Y shows the experimental

FIG. 4. Plots of(a) the variance of the normalized pitch mean versus the reSUItS. obtained for the mean r Jvariance of the normal-

number of prosodic states, ar) the RMSE of the reconstructed pitch ized pItCh. mean and shape, and the RMSEs of the recon-

mean versus the number of prosodic states. structed pitch mean and shape. It can be seen from the third
column in Tables I¥a) and(b) that the variance of the nor-

synthesized utterances, along with the original and rec:onmallzed pitch mean and the covariance of the normalized

structed pitch contours for each testing sentence, and ask& (t::: shqu vvler(_at ghreatly reduge?], whegcompz?)r_e(_j W'EE those
to vote for the better one. Experimental results showed thay' € original pitch mean and shape. By combining the re-

41.25%(22.5% of the synthesized speech recordings, Withsults for the recqnstructed pitch mean and shape, we could
the original pitch contours, were found by the listeners toreconstruct the pitch contour of each syllable. The RMSEs of

sound better: 25%27.5% of the synthesized speech record- _the reconstructed pitch contours were 0.384 ms/frame, which

ings, with the reconstructed pitch contours, were found tdnCIUded the RMSEs of 0.172 ms that resulted from applying

) thogonal transformation. A plot of the total log-likelihood
sound better; and 33.75%0%) of the two speech record- or . ) : I
ings were found to sound equivalent for the insidatside L (k) versus the iteration numbis shown in Fig. ). The

test, respectively. In the MOS test, absolute category ratinﬁjiStOgramS of the observed_ ano_l normalized syllable log-pitch
was conducted on a scale fron{*bad” ) to 5 (“excellent”). ean for TCC are plotted in Figs(Q and (d). The results

Experimental results showed that average MOSs of 3.94€re still quite promising even though the pitch variation,
(3.349 and 3.68(3.4) were obtained for the synthesized due to the large population of speakers, was very high, and

speech recordings with the original and reconstructed pitcitnhe atm;:_uracy cfn‘ the gti)setr;]/edH?\‘/l’:llt\?, dug tlo the autotmauch.sig-
contours, respectively, in the insideutside test. From the mentation performed by the models, was not as hig

results of these two subjective tests, we concluded that thsztglsésaechleved by applying manual segmentation to the TL

reconstructed pitch contours functioned almost as well a
their original counterparts.

We then checked whether it was necessary to include th%{&
speaker affecting factors in both pitch mean and shape mod-
els, besides frame-based speaker normalization, which was We then analyzed, in detail, the inferred model param-
performed in the preprocessing stage. An experiment, whickters in order to gain a better understanding of the effects of
excluded the two speaker affecting factors used in the pitclthe affecting factors. Before discussing this, we will briefly

ANALYSES OF THE INFERRED MODEL
RAMETERS
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FIG. 5. Examples of reconstructed pitch contours(®@ran inside test utterance: “tzai-4 guo-2 ren-2 shiau-1 fei-4 shi-2 guan-4 gai-3 bian-4, guo-2 min-2
suo-3 de-2 ti-2 gau-1, shin-4 yung-4 dai-4 kuan-3 shr-4 chang-2, cheng-2 wei-2 chian-2 li-4 shr-4 changd®’ amautside test utterance: “tzai-4 yi-4
guo-2 jeng-4 jing-1 huen-4 luan-4 jung-1 lin-2 wei-2 shou-4 ming-4 de-5 chi-2 an-1 pei-2, wei-4 lai-2 tzai-4 jeng-4 jing-1 liang-3 fang-1 midny®adu-
bu-4 shau-3 jian-1 kuen-4 ren-4 wu-4 dai-4 wan-2 cheng-2.”

introducea priori knowledge of tone patterns in Mandarin has a relatively arbitrary pitch contour pattern. The FO con-
speech. As reported in Ref. 16, tone 1 is a high-level tondgour of each of the first four tones can be represented by a
that starts in a speaker’s high FO range and remains higtsimple single standard pattern, as shown in Fig. 7. However,
tone 2 is a mid-rising tone that starts in the speaker’s mid F@yllable pitch contour patterns in continuous speech vary
range, remains level or drops slightly during the first half ofhighly and can deviate dramatically from their canonical
the vowel, and then rises to a high-level tone at the end; tonforms.
3 is a low-falling tone that starts in the speaker’s mid range  Table V shows the CFs of the affecting factors of the
and falls to the low range; tone 4 is a high-falling tone thatprevious, current, and following tones in the pitch mean
usually peaks around the vowel onset and then falls to thenodel. As can be seen in Table V, the CFs of the affecting
low FO range at the end; and tone 5 is a low-energy tone thdtactors of the current tone had negative values for tones 1
and 4, and a positive value for the other three tones. Due to
11 the fact that the effect of a positivenegative CF was to

ol | decreasdincreasg the FO mean, the CFs of the affecting
factors of the current tone were well matched with the
or 1 riori phonologic knowledge discussed above. It was also
p p g g
8t //'/ . reported in Ref. 34 that all tones, preceding a tone 3, had a
7l /, / i
0
g /7 :
3 57 //// ] I Tone 1
2 5L p 1 5
S g Tone 2
‘a 4F 1 E
) | i
— Tone 3 Tone 4
| - 5
E [
0 <
0 | | .
FIG. 6. The effect on the syllable pitch contour of the 16 unified prosodic Time
states of the pitch mean and shape models. Patterns are plotted from left to
right in increasing order of the prosodic state index. FIG. 7. Standard FO contour patterns of the first four tones.
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TABLE V. The inferred CFs for the affecting factors of the current, preced- well-known sandhirule for a 33-tone pair, which says that a

ing and following tones in the pitch mean modehit of pitch period: ms

Tone 1 2 3 4 5
B —0.154 0.054 0.160 —0.035 0.128
CF of current tone
Bpt —0.022 -0.034 0.018 0.024 0.029
CF of previous tone
Bt 0.022 —-0.003 -—0.047 0.011 0.013

CF of following tone

tone 3 will change to a tone 2 when it precedes a tone 3. In
addition, these six patterns also show their dependence on
the preceding tone. Roughly, their beginning parts were ad-
justed in order to be more smoothly concatenated with the
patterns of the preceding tones. Figue)&isplays the re-
constructed patterns for tone combinations of 044, 144, 244,
344, 444, 544, and 040; it shows that all six patterns of tone
4 following tone 4(i.e., 044, 144, 244, 344, 444, and 344
have a smaller slope and lower ending point, which agrees
with a previous finding. These six patterns also show that

much higher FO level than they did when they preceded othethey depend on the preceding tone.

tones, and all tones had a slightly lower FO level when they

We then examined the effects of thwtial andfinal of

preceded a tone 1. In addition, all tones following tone 1 orthe current syllable. We divided all 2@itials into seven
2 had a higher FO level than they did when they followedbroad classes, and 4alsinto seven broad classes, accord-
tone 3 or 4. These phenomena corroborated the results showry to the manner of articulationnitial classes includetl,

in Table V. Specifically, the effect of the relatively large ={nullinitial},

I,={b,d,g, I,={fs,shsshih I;

negative CF ;= —0.047) forft=3 greatly increased the ={m,n,,i}, |,={ts,ch,ch}, Is={p,t,K, andlg={tz,j,ji}. Fi-

FO level of the current syllable when it preceded a tone 3nal

classes included Fy={lowvowelg, F;={middle

while the positive CF B;,=0.022) forft=1 decreased the vowelg, F,={highvowel$, F;={compoundvowels F,
FO level of the current syllable when it preceded a tone 1={vowels with nasal endilg Fs={retroflexior}, and Fg

Similarly, = —0.022 forpt=1 and 8= —0.034 forpt

={nullvowelg. Table Vi@a shows the CFs for these seven

=2 increased the FO level of the current syllable when itinitial classes and sevefinal classes in the pitch mean

followed a tone 1 or 2, while the positive CFsB4;

model. It can be found in Table \4) that the positive CFs

=0.018,0.024,0.029) decreased the FO level of the curreribr {b,d,g, {f,s,sh,shi,l {ts,ch,chi, and{tz,j,ji} lowered the

syllable when it followed a tone 3, 4, or 5.

syllable FO mean, while all the others raised the syllable FO

An advantage of the proposed pitch modeling method isnean. As for thdinals the positive CFs of the low vowels,
that it provides a quantitative and more complete descriptio@ompound vowels, and null vowels lowered the syllable FO
of the coarticulation effect of neighboring tones rather thanmean, while the negative CFs of the middle vowels, high

conventional qualitative descriptions of some of gandhi

vowels, nasal endings, and retroflexion raised the syllable FO

rules. This can be illustrated by reconstructing the pitch conmean. However, all these 14 CFs were relatively small, com-
tour patterns using the CFs of tone-related affecting factorpared to the CFs of the other affecting factors. This shows
and the average values of the pitch mean and shape modejrat theinitial andfinal of the current syllable were not ma-
while ignoring the CFs of all the other affecting factors. Spe-jor factors affecting the syllable pitch level. Table (W)

cifically, the pitch contour pattern of the current tapewith

the preceding tong, and the following toné; can be calcu-

shows the CFs of these sevigitial classes and sevdimal
classes in the pitch shape model. It can also be seen that all

lated, based on the proposed pitch mean and shape modejise CFs are relatively small, so they also are not major fac-

as follows:
~[ i -
f(_):ef“’”), 0=i=M, (21)
M
where
i3 i
f(m):j; ar%‘(m)’ o<i=M, 22
&o:M+,3pt:tp+ﬂt:tc+,3ft:tf: (23
a;
@2 :IL"'ﬂtc:tptctf- (24)
ag

Figure 8 shows two examples. Figuréagdisplays the

tors affecting the syllable pitch shape.

Table VII shows the estimated CFs of the three affecting
factors for the four training speakers. As observed in Table
VIl (a), the four CFs of the dynamic range scaling factor in
the pitch mean model were all close to 1 for the four speak-
ers, while the four CFs of level shift were all close to 0. In
addition, all the CFs of shape shift shown in Table (]I
were relatively small. This shows that the use of additional
speaker affecting factors, other than the frame-based speaker
normalization performed in the preprocessing stage, had
little effect on the improvement of the pitch mean and shape
models. Actually, we have already shown in Sec. Il B. that
the RMSEs of the reconstructed pitch contour, formed by the
proposed pitch mean and shape models, were almost the
same when we excluded these three speaker affecting fac-

reconstructed patterns for the current tones in tone combinders.

tions of 033, 133, 233, 333, 433, 533, 030, and 020. It should

We then examined the prosodic states of the pitch mean

be noted that 0 denotes a case in which the effect of thenodel, labeled by the EM algorithm, in more detail. As men-
previous or following tone is ignored. It can also be seen thationed in Sec. |, the prosodic state is conceptually defined as

all six patterns of tone 3 following tone(8e., 033, 133, 233,

333, 433, and 533more closely resemble a pure toné¢ 2.,

the state of the current syllable in a prosodic phrase. From
this definition, one can expect the prosodic phrase structure

020 than a pure tone 3i.e., 030. This corroborates the of an utterance to be characterized by its prosodic state se-
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guence. First, a brief description of the characteristics of prowhile some had large zigzag variations. To eliminate the tone
sodic phrases will be given here. It is well known that theeffect, we formed a reconstructed pitch mean sequence of the
global downtrend tendency of FO is to decline over theutterance by calculating the sum of the CFs of the prosodic
course of an utteranéé.It is also known that a slight pitch state sequence and the mean value of the normalized pitch
reset of the bottom line of intonation will occur at a prosodicmean. The reconstructed pitch mean sequence is also dis-
word boundary, and that a significant pitch reset of the botplayed in Fig. 9, where it is clearly shown that the recon-
tom line of intonation will occur at an intonational phrase structed pitch mean sequence was a better representation of
boundary® The pitch mean sequence of an utterance will.the smooth repeating uptrend patterns of the prosodic
therefore, show repeating patterns of smooth uptrend curvephrases than the original pitch mean sequence was, because
starting with lower pitch levels and ending at higher pitchthe large zigzag variations caused by the tone effect had been
levels, representing the prosodic phrase structure of the utargely eliminated. Figure 10 shows the autocorrelation func-
terance. With interference due to the tone effect, howevelttons of the original and reconstructed pitch mean sequences.
the prosodic phrase patterns are not as apparent as they arge higher autocorrelation values shown in Fig. 10 imply
when they are observed based on the original pitch meathat the uptrend prosodic phrase patterns, represented by the
sequence of an utterance. A typical example is displayed ineconstructed pitch mean sequence, were smoother. The fig-
Fig. 9, where one can see that the original pitch mean saire also shows that the lowest autocorrelation value occurred
guence of the utterance exhibited a repeating uptrend patterat the 6-syllable lag. This agrees with the fact that the aver-
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TABLE VI. The inferred CFs for the affecting factors ofifitial and 7final classes in théa) pitch mean andb) pitch shape model&nit of pitch period:
ms).

(@

Class {null initial } {b,d,g {f,s,sh,shi,h {m,n,I,} {ts,ch,chj {p,t,k {tz,j,ji}
Bi —0.008 0.004 0.011 —-0.013 0.003 -0.014 0.003
B 0.011 —0.001 —0.004 0.008 —0.005 —0.019 0.004
(b)
{low {middle {high {compound {vowelswith {null
Class vowelg vowelg vowelg vowelg nasal ending {retroflexior} vowels
b; —-0.971 0.522 0.509 —0.520] —1.270 —-0.111 0.722
(X100 1.125 0.015] —0.440 0.506 —0.666) —0.627| —0.161
—0.548 —-0.020 0.321 —0.697 0.648 0.389 0.075
by 0.224 0.641 -0.278 0.978 —0.640] —1.266 —0.354
(X100 -0.131 0.280 0.865 —0.017] —0.703 0.891 0.696
0.182 —0.095 —0.076 —0.094 0.166 —0.080 —-0.291

age length of prosodic phrases is 6.14 syllables, as evaluatéd Fig. 11, almost all the location of PMg§unctuation
based on a 1743-syllable subset of the TL database, wittnarkg were marked with major or minor prosodic phrase
major and minor breaks labeled manually. Based on théoundaries. This closely agrees with prior knowledge that a
above evidence, the validity of the prosodic state definitionrPM is a good location for a break in the pronunciation of a
was confirmed. long text. It can also be seen in Fig. 11 that some major and
Table VIlI(a) shows the inferred CFs of the 16 prosodic minor prosodic phrase boundaries were detected at non-PM
states in the pitch mean model. It should be noted that thedatersyllable locations. From detailed analyses, we found that
16 CFs are sorted in increasing order, with state 0 having thmost of those locations were boundaries of long words. Table
smallest CF value and state 15 having the largest. Thus, tHX shows the prosodic labeling statistics. As shown, 80.7%
lower-indexed states correspond to the beginning part of af the location of major PMs belonging to the §eobmma,
prosodic phrase, while the higher-indexed states corresporukriod, exclamation mark, semicolon, question rheakd
to the ending part of a prosodic phrase. From detailed analys9.5% of the location of the secondary major PMs belonging
ses, we found that the prosodic states of syllables in a prao the set{pause—mark in Chinese punctuation used to set
sodic phrase generally varied from small to large and wereff items in a series, colgrwere marked with major or mi-
reset when they crossed prosodic phrase boundaries. Thi®r prosodic phrase boundaries. On the other hand, only
means that a change of the state’s index, from large to smak2.3% of the location of the minor PMs belonging to the set
indicated a possible prosodic phrase boundary. We, thereforéhrace, bracket, dbtand 10.8% of the location of the non-
set the following rules to detect minor and major prosodicPMs were marked with major or minor prosodic phrase
phrase boundaries: boundaries. From detailed analyses, we found that most of
the major/minor prosodic phrase boundaries occurring at
non-PM locations were breathing breaks or long-phrase
major boundary if 1&p,—p,:1=15, boundaries; most of the major and secondary major PMs
labeled with nonboundaries occurred at the ends of very
) short sentences, at locations near other breaks, or at the ends
nonboundary otherwise. of sentences whose pronunciation exhibited relatively flat

Figure 11 shows some examples of prosodic labeling perpitch_vgriation. These phenomena closely matched our prior
formed using the above rules, with = representing a major linguistic knowledge. In order to more accurately evaluate

boundary and “&” representing a minor boundary. As shownthe performance of automatic prosodic labeling, we manu-
ally processed a small data set containing 1743 syllables in

TABLE VII. The inferred CFs for the four training speakers in tlag pitch order to determine whether each intersyllable location was a
mean andb) pitch shape model@init of pitch period: ms nonbreak, a minor break, or a major break. Table X shows a
comparison of the two prosodic labeling methods, where it

location following syllablen

=<¢ minor boundary if 4&<p,—p,.1<9, (25

Speaker A B c b can be seen that the accuracy of the automatic prosodic la-
@ beling method was 94.1%. If we combine these two classes
¥s 1.014 0.971 1.026 0.981 of minor and major breaks into one break class, the accuracy
Bs ~0.030 0.049 ~0.044 0.041 rate increases to 97.2%. The automatic prosodic labeling
(b) method is, therefore, promising.
bs 0.291 0.324 -0.216 -0.301]
(X100 { 0.134} { 0.302} { 0.349} [0.472} V. AN APPLICATION TO PREDICT PITCH FOR TTS
-0.012 -0.125 0.348 -0.152

A hybrid method, incorporating the above pitch mean
and shape models with a linear regression method to predict
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2.4 |

gn-1 jiv4 gutJ—Z nei4d  |wei-4 lai-é ke-3 neng-2 fu-2 he-2| jung-1, ren—2|shu—4 ye-3 |tzai-4 g'|lm-2 ren-2 | guo-2 mi.nl-z shin-4 yung-4 da.i£4 kuan-3 shr-4
hua-1 chi-2 wu-3 bai-3  [tsz-3 shiang-4 juan-1 an-4 dai-4 | gau-1 jie-1 | you-3 ji-3 wan-4 |shiau-1 fei-4 shi-2 |suo-3 de-2 | chang-2, cheng-2 wei-2 chian-2
yin-2hang2 ' da-4 gmg-l kuan-3 ji-4 hua-4 de-5 ji-2ju3  ren-2 tzuo-3 guan-4 gai-3 ti-2 gaw-1, = li-4 shr-4 chang-2

gl ji-4, sz-1 guan-3, you4, bian-4,

—+— original pitch mean
2ol | —= ndrmalized piIEh mean
+|prosodic state CF

oL
1.81-
1.6

1.4 | | | | [ [ [
0 10 20 30 40 50 80 70 80

Syllable

Log Pitch Mean

FIG. 9. A comparison between the original pitch mean sequence and the reconstructed pitch mean sequence formed by adding the mean value of the
normalized pitch mean and prosodic state CFs. The sentence is “gen-1 jiu-4 hua-1 chi-2 yin-2 hang-2 gu-1 ji-4, guo-2 nei-4 wu-3 bai-3 da-4 gueigdl sz-1

lai-2 ke-3 neng-2 fu-2 he-2 tsz-3 shiang-4 juan-1 an-4 dai-4 kuan-3 ji-4 hua-4 de-5 jung-1, gau-1 jie-1 ji-2 ju-3 guan-3, ren-2 shu-4 ye-3 yon-3 jef-\Ra

tzuo-3 you-4, tzai-4 guo-2 ren-2 shiau-1 fei-4 shi-2 guan-4 gai-3 bian-4, guo-2 min-2 suo-3 de-2 ti-2 gau-1, shin-4 yung-4 dai-4 kuan-3 shr-éheimang-2

wei-2 chian-2 li-4 shr-4 chang-2.”

the syllable pitch contour for Mandarin TTS, was developedsion included1) current word length{1,2,3>3}; (2) current
Figure 12 shows a block diagram of the proposed method. kyllable position in word{first, intermediate, lakt (3) sen-
first estimates the prosodic state CF of each syllable frontence length{1]2,5],[6,10],[11,15,[16,20,>20}; (4) current
inputs of linguistic features using the linear regression techsyllable position in sentence{lst, 2nd, 3rd,[4th,5th),
nique. The linguistic features used here for this linear regreg-6th,7th, [8th,11tH, last, 2nd last, 3rd las{,5th last, 4th
last], [7th last, 6th lagt [11th last, 8th lagt and otherg
———— . where the smaller count from the beginning or the end wins,
_+~ onginal pitch mean with the count from the end breaking the t{&) punctuation

—e— reconstructed pitch mean

03F 1 mark after the current syllabl@2 types-null); and (6) part

of speech(53 types. This method then combines the pre-
0251 1 dicted prosodic state CFs with the CFs of other affecting
factors to form estimates of four orthogonal transform coef-
02r 1 ficients of the log-pitch contour for each syllable using the
pitch mean and shape models. Here, the CFs of the tone- and
0151 1 syllable-related affecting factors were obtained directly by
looking-up the corresponding CF tables constructed in the
01 1 training phase. On the other hand, the three CFs of the
speaker could be directly specified as additional inputs to

0.35 T T T T

Autocorrelation

0.05- 3 control the dynamic range of pitch contour. In this study, in
order to disregard the effect of the speaker’s variability, the
o 2 4 8 8 10 12 14 18 1 20 values of the three CFs of the speaker were assigned to the
Lag(syllabe) values obtained by the EM algorithm in training. In addition,
FIG. 10. Autocorrelation functions of the original pitch mean sequence anc}he values _Of the normalized pItCh mean and shape param-
the reconstructed pitch mean sequence formed by adding the mean value %]eers_, _requ'r_ed to calculate the output orthogonal transform
the normalized pitch mean and the prosodic state CFs. coefficients in Eqs(6) and (7), could be obtained through

He
He
3

0
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TABLE VIII. The inferred CFs for the 16 prosodic states in tlag pitch mean andb) pitch shape models. The

CFs in(a) are sorted from small to larg@nit of pitch period: ms

State 0 1 2 3 4 5 6 7
By —0.400 —0.225 -0.159 -—0.113 -0.081 -0.047 —0.016 0.014
State 8 9 10 11 12 13 14 15
Bo 0.039 0.073 0.102 0.130 0.161 0.196 0.265 0.348

(b)

State 0 1 2 3 4 5 6 7
by [—3.662] 0.047] [-1.167] [-2.297] [-2.245 [-1558 [-4.033 [—1.167
(X100 | _4832] | -0.179] |-3.221 4218 | —0.591 1.194 0.582| | —1.550

|-0.108 | -1.535 | -0.436] 0.346] | —0.267] | —0.466 0.961] 0.248

State 8 9 10 11 12 13 14 15
bq 9.354] [ —0.164] 3.707] [-1.340 [0.849 0.094] 1.550] [-0.279]
(X100 | 1249 0.479 0.205| | —0.798 |2.249 1.469 | —2.455 |-0.289

| —1.476] 0.304] | -0.773 1.164] |0.184 1.603 0.684| 0.106]

(@

similar linear regressive estimation. However, because of thehown in Table XI, where it can be clearly found that the
fact that their variance was very small, we simply set theirhybrid method, with 16 prosodic states, outperformed the
values to the means of these two models. Lastly, we genefinear regression method. RMSEs of 0.996 and 0.865 ms/
ated the reconstructed syllable pitch contour by performindgrame between the predicted and observed pitch periods were
orthogonal polynomial expansion and frame-based speakeabtained in the closed and open tests, respectively. The re-
denormalization. Notice that the linguistic features used hersults were better than those, 1.511 and 1.179 ms/frame,
were extracted from the input text by an automatic wordachieved using the linear regression method. Notice that the
tokenization algorithm, with an 80 000-word lexicon and aRMSEs resulting from orthogonal transformation were 0.17
manual postcheck. and 0.19 ms for the closed and open test data sets, respec-
For a performance comparison, the conventional lineatively.
regression method was also implemented. It uses a linear Lastly, an AB test and an MOS perceptual test, similar to
combination of weighted input linguistic features to generatehose discussed in Sec. Il B, were employed to evaluate the
the four orthogonal transform parameters of the log-pitchperformance of the proposed hybrid method and the conven-
contour for each syllable. To ensure a fair comparison, théional linear regression method. Synthesized speech record-
input linguistic features used in the method comprised all thengs, with syllable pitch contours estimated using these two
above features and some other syllable-level features, includrethods, were compared. The same 16 listeners were in-
ing the lexical toneg5x3 types of the preceding, current, volved in these two tests. The experimental results of the AB
and succeeding syllables; tivgtials (21 types-null) of the  test showed that 98.75%400% of the hybrid synthesized
current and succeeding syllables; thedials(3 typestnull) speech was found to sound better in the indmlgside test,
of the current syllable; and thignals (14 types of the pre-  while 1.25% (0%) of the linear regression synthesized
ceding and current syllables. speech was found to sound better. The experimental results
Experimental results obtained using the TL database aref the MOS test showed that average MOSs 0f(3.48 and

je-4 wei-4 yue-1 han-4 huo-4 pu-3 jin-1 sz-1 da-4 shiue-2 ming-2 yu-4 jiay-4 shou-4 * tzai-4
di-4 yi-1 jie-4 guo-2 ji-4 & shing-4 gau-1 chau-2 huei-4 yi-4 jung-1 shuo-1 * , ta-1 duei-4 je-4
yi-4 shr-3 yu-2 & yi-1 jiou-3 ba-1 ling-2 nian-2 dai-4 de-5 shing-4 chiu-1 shr-4 & gan-3 dau-
4.

je-4 chang-3 bi-3 sai-4 * jiang-1 yu-2 jin-1 r-4 shia-4 wu-3 er-4 shr-2 & tzai & tai-2 bei-3 &
shr-4 1i-4 bang-4 chiou-2 chang-3 jiu-3 shing-2 * ,hei-1 ying-1 tzu-3 jr-1 & suo-3 shu-3 & san-
1 ji-2 bang-3 chiou-2 duei-4 * ,bau-1 gua-1 tai-2 nan-2 liou-4 shin-4 * ,tai-2 dung-1 nung-2
gung-1 & ,ping-2 dung-1 he-4 sheng-1 guo-2 jung-1 * tai-2 dung-1 lu-4 ye-3 guo-2 jung-1 &
ji-1 tai-2 nan-2 shan-4 hua-4 guo-2 shiau-3 deng-3 duei-4 * ,jiang-1 ge-4 juo-2 chiou-2 duei-4
fu-2 juang-1 & daun-4 chang-2 jia-1 you-2 * ,yu-4 ji-4 ren-2 shu-4 you-3 jin-4 chian-1 ren-2 yi-
3 shang-4 * hei-1 ying-1 liang-3 wei-4 jiau-4 lian-4 * huang-2 yung-3 yu-4 ji-2 & jiang-1 tai-4
chiuan-2 * ,duei-4 yu-2 tsz-3 chang-3 bi-3 sai-4 * bu-4 gan-3 diau-4 yi-3 ching-1 shin-1

* chu-2 le-5 pai-2 chu-1 tzuan-4 shr-2 jen-4 rung-2 wai-4, ye-3 yau-4 chin-1 tz-4 shang-4
chang-3 * hei-1 ying-1 suo-3...

shang-1 ren-2 fei-1 fa-3 tuen-2 ji-1 & da-4 liang-4 bau-4 ju-2 * ,wan-4 yi-1 fa-1 sheng-1 bau-4
ja-4 shr-4 jian-4 * bu-2 dan-4 huei-4 tzan-4 cheng-2 sz-3 shang-1 chan-3 jiu-4 * tz-4 ji-3 ye-3
ke-3 neng-2 cheng-2 wei-2 & shou-4 hai-4 tzuei-4 da-4...

shr-4 jie-4 shing-4 de-5 huan-2 bau-3 chau-2 liou-2 & ,shr-3 ren-2 men-5 r-4 yi-4 jung-4 shr-4
huan-2 jing-4 wu-1 ran-3 de-5 wen-4 ti-2 * jer-2 guan-1 guang-1 liu-3 you-2 & je-4 ge-5 wu-2
yan-1 chung-1 gung-1 ye-4 * “jeng-4 hau-3 wen-3 he-2 tsz-3 yi-4 * jian-4 kang-1 su-4 chiou-2
* yin-1 tsz-3 ke-3 yu-4 chi-2 & jin-1 nian-2 jiang-1 shr-4 you-2 le-4 chiu-1...

FIG. 11. Examples of labeling ming&) and major(*)
prosodic phrase boundaries using rules based on the
prosodic state differences of the pitch mean model.
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TABLE IX. Prosodic labeling statistics generated by E2f). Here major
PM={comma, period, exclamation mark, semicolon, question maec-
ondary major PM={pause, colop and minor PM={brace, bracket, dpt

Break
Minor Major
PM Nonboundary boundary boundary
Non-PM 89.18% 9.80% 1.02%
Minor PM 57.73% 33.48% 8.80%
Secondary Major PM 30.52% 44.65% 24.83%
Major PM 19.31% 31.66% 49.02%

TABLE X. A comparison between the prosodic phrase boundaries automatic
cally generated by the rules based on stated differences of the pitch mean
model and the manually labeled ones using a 1743-syllable subset of the TL

databaseunit: syllable.

Automatic
Minor Major
Manual Nonboundary boundary boundary
Nonboundary 1463 34 2
Minor boundary 10 94 38
Major boundary 3 16 83
ltext
Text Analysis
llinguistic features
Repression Model
lpmsodic state CF
mean of normalized pitch
Pitch Model W narameters and CFs of
tone, initial class, final

recenstructed pitch class and speaker

contour

FIG. 12. A block diagram of the proposed hybrid method for syllable pitch

contour prediction.

TABLE XI. The RMSEs of the hybrid method, with 16 prosodic states, and

the linear regression methddnit: ms/frame.

RMSEs Closed test Open test
Hybridregression 0.996 0.865
Regression 1.511 1.179

924  J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005

1.34(1.3) were obtained using the hybrid method and linear
regression method, respectively, in the insidatside test.
Based on the results of these two subjective tests, the pro-
posed hybrid method was obviously better.

VI. CONCLUSION AND FUTURE WORKS

This paper has presented a new statistics-based syllable
pitch contour modeling method for Mandarin speech. Ex-
perimental results confirmed its effectiveness at separating
several main factors that seriously affect the mean and shape
of the syllable log-pitch contour of Mandarin utterances. All
the inferred CFs of the affecting factors conformed well with
our prior linguistic knowledge. In addition, the prosodic
states labeled by the EM algorithm were linguistically mean-
ingful, and the repeating uptrend pitch patterns of the pro-
sodic phrase structure of an utterance were well represented
by its prosodic state sequence. The proposed pitch contour
modeling method is, therefore, extremely promising.

Some future work is well warranted. First, as discussed
in Sec. |, only the first subtask of the complicated pitch mod-
eling procedure was undertaken in the current study; this
involved modeling the relationship between the syllable
pitch contour features and some affecting factors, including
local phonetic features, the speaker, and the prosodic state.
The second subtask, which would explore the relationship
between the prosodic state and high-level linguistic cues, is
still untouched. We will undertake this second phase of re-
search in the near future, using a tree-bank database. Second,
by taking advantage of pitch modeling performed using only
acoustic and simple phonetic features, we can apply the syl-
lable pitch mean and shape models in such applications as
tone recognition and prosodic labeling, which do not naed
priori high-level linguistic information, such as word tokeni-
zation or syntactic features.

ACKNOWLEDGMENTS

This work was supported in part by the MOE under
Contract No. EX-92-E-FA06-4-4 and in part by the NSC
under Contract No. NSC91-2219-E-009-038.

IA. 1. C. Monaghan and D. R. Ladd, “Manipulating Synthetic Intonation
for Speaker Characterisation,” ICASSP991), S7.11, pp. 453—456.

2L.-S. Lee, C.-Y. Tseng, and C.-J. Hsieh, “Improved Tone Concatenation
Rules in a Formant-Based Chinese Text-to-Speech System,” IEEE Trans.
Speech Audio Proces$(3), 287—-294(1993.

3L.-S. Lee, C.-Y. Tseng, and M. Ouh-young, “The Synthesis Rules in a
Chinese Text-to-speech System,” IEEE Trans. Acoust., Speech, Signal
Process37(9), 1309-13191989.

4B. Ao, C. Shih, and R. Sproat, “A Corpus-Based Mandarin Text-To-
Speech Synthesizer,” ICSLA994), S29, 8.1-8.4, pp. 1771-1774.

5S. H. Chen, S. H. Hwang, and Y. R. Wang, “An RNN-based prosodic
information synthesizer for Mandarin text-to-speech,” IEEE Trans.
Speech Audio Proces§(3), 226—-239(1998.

6N.-H. Pan, W.-T. Jen, S.-S. Yu, M.-S. Yu, S.-Y. Huang, and M.-J. Wu,
“Prosody Model in a Mandarin Text-to-Speech System Based on a Hier-
archical Approach,” IEEE International Conference on Multimedia and
Expo (2000, Vol. 1, pp. 448—-451.

7S.-H. Kim and J.-Y. Kim, “Efficient Method of Establishing Words Tone
Dictionary for Korean TTS system,” Eurospeech, 1997.

8M. Dong and K.-T. Lua, “Pitch Contour Model for Chinese Text-to-
Speech using CART and Statistical Model,” ICSKP002, pp. 2405—
2408.

%Y. Ishikawa and T. Ebihara, “On the Global FO Shape Model using a

Chen et al.: Pitch contour model for Mandarin speech



Transition Network for Japanese Text-to-Speech Systems,” Eurospeeci®A. Ljolje and F. Fallside, “Synthesis of Natural Sounding Pitch Contours
1997. in Isolated Utterances Using Hidden Markov Models,” IEEE Trans.
105.-H. Chen and Y.-R. Wang, “Tone Recognition of Continuous Mandarin Acoust., Speech, Signal ProceASSP-345), 1074—-10801986).
Speech Based on Neural Networks,” IEEE Trans. Speech Audio Process4; R Bellegarda, K. E. A. Silverman, K. Lenzo, and V. Anderson, “Sta-
3(2), 146—150(1995.
1W.-J. Yang, J.-C. Lee, Y.-C. Chang, and H.-C. Wang, “Hidden Markov
Model for Mandarin Lexical Tone Recognition,” IEEE Trans. Acoust.

tistical Prosodic Modeling: From Corpus Design to Parameter Estima-
tion,” IEEE Trans. Speech Audio Proce$%1), 52—66(2002).

Speech, Signal Proces35(7), 988-992(1988 " 25J.-H. Ni, R.-H. Wang, and K. Hirose, “Quantitative Analysis and Formu-
e W \;Vightman and M. 6stendorf “Autorﬁatic Labeling of Prosodic lation of Tone Concatenation in Chinese FO Contours,” EUROSPEECH,
Patterns,” IEEE Trans. Speech Audio ProceXd), 469—481(1994). 1997.

3A. Batliner, R. Kompe, A. Kiebling, H. Niemann, and E. Noth, 26M. Abe and H. Sato, “Two-stage FO Control Model Using Syllable Based
“Syntactic-Prosodic Labeling of Large Spontaneous Speech Data-Bases,” FO Units,” ICASSP(1992, pp. 11-53-11-56.
ICSLP (1996, pp. 1720-1723. 27D, T. Chappell and J. H. L. Hansen, “Speaker-Specific Pitch Contour
14X, Lin, Y. Chen, S. Lim, and C. Lim, “Recognition of Emotional State  Modeling and Modification,” ICASSP, 1998.
from Spoken Sentences,” IEEE 3rd Workshop on Multimedia Signal Pro-28¢ shih, “Declination in Mandarin, Intonation: Theory, Models and Ap-

. cessing(1999, pp. 469-473. o o plications Proceedings of an ESCA Workshop, Athens, Gre@@97),
SM. V. Chan, X. Feng, J. A. Heinen, and R. J. Niederjohn, “Classification pp. 293-296

of Speech Accents with Neural NetworkdEEE International Confer- 59 P P ) )
ence on Neural Networkd.994, Vol. 7, pp. 4483—4486. ; Auuhn:’ SChme;]sg Pro;od;log;d Prosodic Labeling of Spontaneous
16C.-L. Shih, “Tone and Intonation in Mandarin\Working Papers of the peech,” speech Frosody, ’

Cornell Phonetics LaboratoryNo. 3, pp. 83—109, June 1988. 30W.-J. Wang, Y.-F. Liao, and S.-H. Chen, “Prosodic Modeling of Mandarin
177.-3. Wu, “Can Poly-Syllabic Ton&andhiPatterns be the Invariant Units ~ SPeech and Its Application to Lexical Decoding,” Eurospeech 99, Vol. 2,

of Intonation in Spoken Standard Chinese,” ICS(1990, pp. 12.10.1— pp. 743-746.

12.10.4. 31H.-Y. Hsieh, Ren-Y. Lyu, and L.-S. Lee, “Use of Prosodic Information to
18p, Taylor, “Analysis and synthesis of intonation using the tilt model,” J.  Integrate Acoustic and Linguistic Knowledge in Continuous Mandarin

Acoust. Soc. Am107, 1697-17142000. Speech Recognition with Very Large Vocabulary,” ICS[F996, Vol. 2,

19C. shih, G. Kochanski, and E. Fosler-Lussier, “Implications of Prosody pp. 809-812.
Modeling for Prosody Recognition,Proceedings of the ISCA Tutorial 325 ge Tournemire, “Identification and Automatic Generation of Prosodic

and Research Workshop on Prosody in Speech Recognition and Under-contours for a Text-To-Speech Synthesis System in French,” Eurospeech,
standing(2002), pp. 133-138. 1097,

20 h u I ) ) i
N. M. Veilleux and M. Ostendorf, “Probabilistic Parse Scoring with Pro BE-C. Chou, C.-Y. Tseng, K.-J. Chen, and L.-S. Lee, *A Chinese Text-to-

sodic Information,” ICASSR1993, pp. II-51-11-54. . ) .
21K, Iwano and K. Hirose, “Prosodic Word Boundary Detection Using Sta- Speech Based on Part-of-Speech Analysis, Prosodic Modeling and Non-

tistical Modeling of Moraic Fundamental Frequency Contours and Its Use34“”'forrn Units,” 'CASSP(}%D' pp. 923-926. »

for Continuous Speech Recognition,” ICASSE999, pp. 133-136. C. Wang and S. Seneff, “Improved Tone Recognition by Normalizing for
22X Sun, “Predicting Underlying Pitch Targets for Intonation Modeling,”  Coarticulation and Intonation Effects,” ICSLP, 2000.

Proc. of the 4th ISCA Tutorial and Research Workshop on Speech Syn®Y. Yufang and W. Bei, “Acoustic Correlates of Hierarchical Prosodic

thesis, Perthshire, Scotlarid001), pp. 143-148. Boundary in Mandarin,” Speech Prosody, 2002.

J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005 Chen et al.: Pitch contour model for Mandarin speech 925



