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A statistics-based syllable pitch contour model for Mandarin speech is proposed. This approach
takes the mean and the shape of a syllable log-pitch contour as two basic modeling units and
considers several affecting factors that contribute to their variations. The affecting factors include
the speaker, prosodic state~which essentially represents the high-level linguistic components of F0
and will be explained more clearly in Sec. I!, tone, andinitial and final syllable classes. The
parameters of the two modeling units were automatically estimated using the
expectation-maximization~EM! algorithm. Experimental results showed that the root mean squared
errors~RMSEs! obtained in the closed and open tests in the reconstructed pitch period were 0.362
and 0.373 ms, respectively. This model provides a way to separate the effects of several major
factors. All of the inferred values of the affecting factors were in close agreement with our prior
linguistic knowledge. It also gives a quantitative and more complete description of the coarticulation
effect of neighboring tones rather than conventional qualitative descriptions of the tonesandhirules.
In addition, the model can provide useful cues to determine the prosodic phrase boundaries,
including those occurring at intersyllable locations, with or without punctuation marks. ©2005
Acoustical Society of America.@DOI: 10.1121/1.1841572#

PACS numbers: 43.72.Ar@DDO# Pages: 908–925
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I. INTRODUCTION

Prosody is an inherent supra-segmental feature of hu
speech. It carries stress, intonation patterns, and timing s
tures of continuous speech which, in turn, determine
naturalness and understandability of an utterance. How
automatically generate, analyze, and recognize prosod
speech is one of the unresolved problems confronting
searchers who study speech synthesis and recognition
though it is known that prosody is affected by many facto
such as the phonetic context, sentence type, syntactical s
ture, semantics, and the emotional status of the speaker
relationship between these affecting factors and prosody
not totally understood.

Among all the features known to carry prosodic info
mation, pitch is the most important one. It has been repo
that the F0 contour characterizes the speaking style
speaker.1 Therefore, pitch plays a role in many speech rela
applications, like text-to-speech ~TTS!,2–9 tone
recognition,10,11 prosodic labeling,12,13 emotional state
recognition,14 speaker accent identification,15 and so on. Ad-
equate pitch control is very important for synthetic speech
be natural in TTS. If a TTS system generates a tone sh
matching only the lexical expectation of each individual s
lable, the lack of consideration of contextual tone variatio

a!Author to whom correspondence should be addressed. Electronic
lwh@cht.com.tw
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will result in underarticulation of tones and lead to the ge
eration of unnatural speech.

Pitch modeling is even more critical for Mandar
speech processing, as Mandarin is a tonal language and
information related to the tonality of a syllable appears,
the most part, on its pitch contour. Although there are o
five lexical tones and a previous study16 has concluded tha
the pitch contour of each of the first four tones can be sim
represented by a single standard pattern, syllable pitch c
tour patterns in continuous speech vary highly and can d
ate dramatically from their canonical forms~i.e., high-level
tone, mid-rising tone, low-falling tone, high-falling tone, an
low-energy tone!. Many factors have been shown to have
major influence on the pitch contour of a tone. They inclu
the effects of neighboring tones, referred to assandhirules,17

coarticulation, stress, intonation type, semantics, emotio
status, and so on. In addition, the pronunciation of tone 5
usually highly context dependent and is relatively arbitra
Thus, pitch modeling is not a trivial research issue for Ma
darin speech processing.

Pitch modeling has been the subject of many recent
search studies on various languages. The general goa
pitch modeling is to derive a computational model that d
scribes the relationship between a set of affecting factors
pitch contour patterns. The related literature has been c
cerned with finding perceptual cues and intonational lingu
tic representations.18,19The pitch contour generation rules fo
synthesizing intelligible and natural-sounding speech,2–9 and
the automatic pitch or tone analysis for the purposes
il:
117(2)/908/18/$22.50 © 2005 Acoustical Society of America
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FIG. 1. An example of prosodic states
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speech recognition,10,11 speech understanding20 and word
finding,21 have also been studied. Pitch modeling can be p
formed using two approaches that are rule based2–4 or data
driven.5–8,22,23The former approach is conventional; it us
linguistic expertise to manually infer some phonologic ru
of pitch contour generation, based on observation of a la
set of utterances. A prevalent method in the approach app
to TTS uses sequential rules to initially assign the pitch c
tour of a segment with an intrinsic value and then succ
sively applies rules to modify it.2–4 There are three main
disadvantages to this approach. First, manually exploring
effect of mutual interaction among several linguistic featu
at different levels is highly complex. Second, the ru
inference process usually involves a controlled experim
in which only a limited number of contextual factors is e
amined. The resulting inferred rules may, therefore, not
general enough for unlimited texts. Third, the rule-inferen
process is cumbersome. As a result, it is generally very
ficult to collect enough rules without expending a great d
of effort.

The data-driven approach tries to construct a pi
model from a large speech corpus, usually by means of
tistical methods6,23 or artificial neural network ~ANN!
techniques.5,22 It first designs a computational model to d
scribe the relationship between pitch contour patterns
some affecting factors and then trains the model, using
speech corpus. The training goals are to automatically de
phonologic rules from the speech corpus and to implic
incorporate them into the model’s parameters or into
ANN’s weights. The primary advantage of this approach
that the rules can be automatically established based on
training data set during the training process, without the h
of linguistic experts. The recurrent neural network~RNN!-
based method5,22 is a popular method which uses an RNN
learn the mapping between the pitch parameters and s
linguistic features. The main criticism raised against t
method is the difficulty of interpreting the hidden structur
of the model. Other methods include the hidden Mark
model ~HMM !,23 regression analysis,6 vector quantization,7

and the tree-based approach.8 In addition, an approach tha
adopts the concept of separating an utterance’s pitch con
into a global trend and a locally variational term has be
applied in recent pitch modeling studies, e.g., those on
perpositional modeling24,25 and two-stage modeling.9,26

In this paper, a new pitch modeling approach for Ma
darin speech is proposed. It takes the mean and shape
syllable log-pitch contour as two basic modeling units a
uses statistical methods to model them separately while
sidering several affecting factors that control their variatio
The reason for using parameters of the syllable pitch con
as modeling units lies in the fact that the syllable is the ba
pronunciation unit of Mandarin speech and each syllable
J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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lexically marked with a lexical tone, which is a factor th
strongly affects pitch in Mandarin. But it is well known tha
the prosody of an utterance is better modeled with an inte
that is much longer than a syllable. Therefore, we use
neighboring tones and the prosodic states to measure
impact. The affecting factors used include the speaker, p
sodic state, tone, and initial and final syllable classes. H
the prosodic state is conceptually defined as the state
syllable in a prosodic phrase. In continuous speech, spea
tend to group words into phrases whose boundaries
marked by durational and intonational cues. Those phra
are usually referred to as prosodic phrases. Many phonol
cal rules limit their operation within prosodic phrases. Wh
it is generally agreed that the prosodic structure of an ut
ance has some relationship with its syntactic structure,
two are not isomorphic. In the model, the prosodic state
used as a substitute for high-level linguistic information, li
a word, phrase, or syntactic boundaries. Our purpose in u
the prosodic state to replace conventional high-level lingu
tic information is to divide the complicated pitch modelin
task into two subtasks. The first one involves modeling
pitch parameters by considering the effects of some lo
level linguistic features and the prosodic state. The sec
subtask involves exploring the relationship between the p
sodic state and high-level linguistic cues. Through this tw
stage pitch modeling approach, some unsolved problems
be avoided. Problems such as the inconsistency of pros
and syntactic structures, the ambiguity of word-segmenta
and word-chunking for Mandarin Chinese, and the difficu
of performing automatic syntactic analysis on unlimit
natural texts can be prevented in the first subtask. In
second subtask, the researcher can focus on modeling
global effect of mapping high-level linguistic features to t
prosodic state, since interference caused by low-level
guistic features has already been removed in the first subt
In this paper, we attack the first subtask only, leaving
second subtask to be dealt with in the future. Due to the
that the prosodic state of a syllable is not explicitly given
has been treated as a hidden variable and expecta
maximization~EM! algorithms have been applied to estima
all the parameters of the two pitch models based on a la
training set. A by-product of the EM algorithm is the dete
mination of the hidden prosodic states of all the syllables
the training set. This is an additional advantage because
sodic labeling has recently become an interesting rese
topic.12 An example is given as Fig. 1. This example sho
that the term prosodic state could be made more underst
able. Figure 1 shows the phonetic transcription, tone~after
dash!, and the prosodic states~in parentheses! of each syl-
lable, which are assigned automatically by our model. F
each syllable, in our experiment, 1 of 16 prosodic states
assigned. From the sequence of prosodic states, some
909Chen et al.: Pitch contour model for Mandarin speech
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level linguistic phenomenon could be observed, like the p
sible prosodic phrase boundaries. The prosodic state es
tially represents the high-level linguistic components of F
so the results reported in this paper apply to the predictio
the low-level linguistic component~tone, initial/final class,
and speaker factors in our model! given the prediction of
high-level linguistic components of F0~the second subtas
mentioned above!.

This paper is organized as follows. Section II discuss
in detail, the proposed pitch modeling approach for Man
rin speech. Section III presents the experimental results.
tailed analyses of the inferred affecting factors are given
Sec. IV. An application of the proposed syllable pitch co
tour model to pitch prediction of TTS is given in Sec. V.
the last section, we offer concluding remarks and suggest
for future research.

II. THE PROPOSED PITCH MEAN AND SHAPE
MODELS

In the proposed pitch modeling approach, we first p
form rough speaker normalization to the pitch period. O
purpose is to adjust the pitch levels and dynamic range
all the speakers so that they are approximately the sam
order to improve the efficiency of the subsequent sylla
log-pitch contour modeling. In Ref. 27, a Gaussian norm
ization was used to perform a mapping from the refere
pitch values to the desired frequencies, and the authors fo
that pitch contour moved in the proper direction. We use
same idea to normalize the pitch period of a speaker as
lows:

f ~ t !5
f 8~ t !2mk

sk
•sall1mall , ~1!

where f 8(t) and f (t) are the original and normalized pitc
periods of framet; mk and sk are the mean and standa
deviation of the pitch period distribution of speakerk; and
mall and sall are the average mean and average stand
deviation of the pitch period distribution of all the trainin
speakers. We then take the logarithm of the normalized p
period, and the resulting log-pitch contour of each uttera
is subsequently divided into a sequence of syllable log-p
contours. Each syllable log-pitch contour was then deco
posed into two parts, the mean and the shape, using a t
order orthogonal polynomial expansion, with the zero
order coefficient representing the mean and the other t
higher order coefficients representing the shape. We t
take the syllable’s pitch mean and shape as basic mode
units and employ the two separate statistical models to c
sider several major affecting factors. Some parts of the p
modeling approach are discussed in detail in the followin

A. Discrete orthogonal polynomial expansion

Since all syllable log-pitch contours are smooth curv
a third-order orthogonal polynomial expansion is employ
to represent them. Actually, in some previous studies,2,5 or-
thogonal polynomials, up to the third order, were shown
be good enough to represent Mandarin syllable pitch c
tours. The four basis polynomials used are normalized
length, to@0,1# and can be expressed as follows:5
910 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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M12G1/2

•F i

M
2

1

2G ,
~2!
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M D
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~M21!~M22!
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for 0< i<M , whereM11 is the length of the current syl
lable log-pitch contour andM>3. They are, in fact, discrete
Legendre polynomials. A syllable log-pitch contour,f ( i /M ),
can then be approximated by

f̂ S i

M D5(
j 50

3

a j•f j S i

M D , 0< i<M , ~3!

where

a j5
1

M11 (
i 50

M

f S i

M D •f j S i

M D . ~4!

B. Affecting factors

In naturally spoken Mandarin Chinese, pitch varies co
siderably, depending on various linguistic/nonlinguistic fa
tors. In this study, we considered some factors that may h
major effects on control of the variation of the pitch conto
The specific affecting factors chosen for the pitch mean
shape models are discussed in the following.

1. Affecting factors for the pitch mean model

The pitch mean is mainly affected by intonation, whi
the pitch shape is affected mainly by lexical tones. A br
summary of the major factors affecting intonation contou
was given in Ref. 28. They include declination, downste
final lowering, accents and tones, segmental effects, and
tonation type. In our pitch mean model, the affecting fact
considered include the tones of the previous, current,
following syllables; theinitial andfinal classes of the curren
syllable; the prosodic state of the current syllable; and
speaker’s level shift and dynamic range scaling factors. Th
influence on the syllable pitch mean is discussed below.

Mandarin Chinese is a tonal and syllable-based l
guage. The syllable is the basic pronunciation unit. Ea
character is pronounced as a syllable. Only about 1300 p
netically distinguishable syllables, comprising the set of
legal combinations of 411 base-syllables and five tones,
ist. The tonality of a syllable is mainly characterized by
Chen et al.: Pitch contour model for Mandarin speech
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pitch contour, loudness, and duration. We, therefore, cons
the tone of the current syllable as an affecting factor. Co
ticulations from the neighboring tones, which are known
sandhi rules, also exist. Thus, the tones of the previous
following syllables are also chosen as affecting factors.

Mandarin base-syllables have a very regular phon
structure. Each base-syllable is composed of an optionalcon-
sonant initial and afinal. The final can be further broken
down into an optionalmedial, a vowel nucleus, and an op-
tional nasal ending. As discussed in Refs. 28 and 29, ma
types of observed F0 movement are caused by these seg
tal effects. We, therefore, consider the broadinitial andfinal
classes of the current syllable as affecting factors and in
tigate their effects on pitch mean variation.

Aside from the linguistic factors mentioned above, oth
high-level linguistic components, such as word-level a
syntactic-level features, can also seriously affect the p
contour of an utterance. As discussed in Sec. I, the pros
state is in our approach used to account for the influenc
all high-level linguistic features. Here, the prosodic st
simply means the state of the syllable in a prosodic phra
The pitch level of a syllable can vary drastically in differe
parts of a prosodic phrase. The declination effect of the g
bal downtrend, referring to the tendency of F0 to decl
over the course of an utterance, is a well-known exam
There are two advantages of using the prosodic state to
place high-level linguistic features. First, pitch information
a kind of prosodic feature, so the variation of the syllab
pitch contour should better match the prosodic phrase st
ture than the syntactic phrase structure. Second, as m
tioned above, some unsolved problems, such as the amb
ity of word-segmentation and word-chunking in Manda
Chinese and the difficulty of performing automatic syntac
analysis on unlimited natural texts, can be avoided in
current pitch modeling approach. This prevents us from
ing improper or incomplete high-level linguistic informatio
The main problem with using the prosodic state is the lack
large speech corpora with prosodic tags that have been p
erly labeled. Thus, we have to treat the prosodic state
syllable as a hidden or unknown variable. Fortunately, we
able to solve this problem by using the expectatio
maximization~EM! algorithm, which is a technique of max
mum likelihood ~ML ! estimation from incomplete data. A
by-product of the approach is the automatic determination
prosodic states for all the syllables in the training set. Thi
an additional advantage because prosodic labeling has
cently become an interesting research topic.12,13 In addition,
such prosodic phrasal information provides clues for reso
ing syntactic ambiguity in automatic speec
understanding20,21,30,31and for improving the naturalness o
TTS.32,33

Lastly, the pitch contour of an utterance is also sign
cantly affected by the speaker. Speakers have different p
levels and dynamic ranges. Rough speaker normalizatio
performed in the preprocessing stage in order to suppres
speaker effect and allow the pitch period distributions of
the speakers to have the same mean and standard devi
However, we also use two speaker affecting factors in
pitch mean model to examine whether the Gauss
J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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normalized syllable log-pitch contour is still speaker depe
dent.

2. Affecting factors for the pitch shape model

Pitch shapes are relatively tone determined. Produc
studies of Chinese tones have shown that tone shape
natural continuous speech often deviate from their canon
shapes. They suffer from large deformations due to to
coarticulation, also known as tonesandhi. This situation is
particularly common in conversation, where the boundar
among tonal categories are blurred. It has been suggest
Ref. 17 thatsandhicontour patterns of poly-tonal groups a
rather invariant and can be treated as the basic units of p
contour analysis/generation. Therefore, lexical tone com
nations are used here to consider the effect of tone coar
lation. To give further consideration to the couplin
noncoupling effect of neighboring syllables, we consider
one-, two-, and three-syllable tone combinations as affec
factors in the pitch shape model.

Other affecting factors chosen for the pitch shape mo
includ theinitial andfinal classes of the current syllable fo
the segmental effect, the prosodic state of the current sylla
for the effects of high-level linguistic features, and the pit
level shifting effect of speakers.

C. The pitch models

In pitch modeling, we take the mean and shape of
syllable log-pitch contour as basic modeling units and u
two separate models to exploit their variations. Because
complicated high-level linguistic components of F0 are re
resented by prosodic states, only acoustic factors are con
ered. Therefore, simple additive models are adopted in
study. They are discussed in detail in the following.

1. The pitch mean model

The pitch mean model was constructed by first cons
ering the two affecting factors of the speaker, expressed

Zn5~Yn1bsn
!gsn

, ~5!

whereZn is the observed mean~i.e., the zeroth-order coeffi
cienta0 of the orthogonal polynomial transform! of the log-
pitch contour of thenth ~current! syllable;bsn

andgsn
are the

companding~compressing-expanding! factors ~CFs! of the
two affecting factors of the speaker, representing, resp
tively, the effects of level shift and dynamic range scaling
Zn ; and Yn is the speaker effect-compensated pitch me
Here, CF means the effect of a factor on the expansion~in-
crease! or compression~reduction! of the pitch mean. The
model goes on to further consider other affecting facto
expressed as

Yn5Xn1b tn
1bptn

1b f tn
1b i n

1b f n
1bpn

, ~6!

whereXn is the normalized pitch mean of thenth syllable
and is modeled as a normal distribution with meanm and
variancen; b r is the CF for affecting factorr; tn , ptn , and
f tn represent the lexical tones of the current, previous,
following syllables, respectively;i n and f n are broadinitial
andfinal classes of the current syllable; andpn represents the
911Chen et al.: Pitch contour model for Mandarin speech
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prosodic state of the current syllable. Note thattn ranges
from 1 to 5, while bothptn and f tn range from 0 to 5 with 0
denoting cases with punctuation marks or the nonexiste
of a preceding or succeeding syllable. The affecting fact
for ptn50 and f tn50 are simply set to zero because we
not want to include the effect of tone across punctuat
marks. All the affecting factors in the pitch mean model a
their notations are summarized in Table I~a!.

2. The pitch shape model

The pitch shape model is expressed as

Zn5Xn1btcn
1bqn

1bsn
1bi n

1bf n
, ~7!

whereZn is the observed pitch shape vector@a1 a2 a3#T for
the nth syllable;Xn is the normalized pitch shape vector
the nth syllable and is modeled as a multivariate norm
distribution with mean vectorm and covariance matrixR; br

is the CF vector for affecting factorr; tcn represents a lexica
tone combination of the current syllable and its two near
neighbors; andqn represents the pitch-shape prosodic st
of the current syllable. Here, a lexical tone combination,
stead of individual tones, is used because we want to c
sider the aggregative influence of the current tone and its
nearest neighboring tones. The invoking of the preceding
succeeding tones in the tone combination depends
whether or not long intersyllable pauses exist before an
after the current syllable, respectively. In a case where b
the pre- and postpauses of the current syllable are not l
we consider the effects of both the preceding and succee
tones, and use a tri-tone combination. When the prepa
and/or the postpause are equal to or longer than a pred
mined threshold~513 frames or 65 ms in this study!, we
ignore the influence of the preceding and/or succeeding
lables, and use a single-tone/bi-tone combination. All the
fecting factors in the pitch shape model and their notati
are summarized in Table I~b!.

TABLE I. ~a! CFs of the affecting factors in the pitch mean model.~b! CF
vectors of the affecting factors in the pitch shape model.

~a!
gsn

CF of the dynamic range scaling of the speakers
bsn

CF of the level shift of speakers
b tn

CF of the current lexical tone
bptn

CF of the previous lexical tone
b f tn

CF of the following lexical tone
b i n

CF of the initial class
b f n

CF of the final class
bpn

CF of the pitch-mean prosodic state

~b!
bsn

CF vector of the speakers
btcn

CF vector of the lexical tone combination of the current
syllable and its two neighbors

bi n
CF vector of the initial class

bf n
CF vector of the final class

bqn
CF vector of the pitch-shape prosodic state
912 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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D. Training the pitch models

1. Training the pitch mean model

To estimate the parameters of the pitch mean model
EM algorithm is adopted. The derivation of the EM alg
rithm is based on treating the prosodic state as an unkn
variable. An auxiliary function is first defined in the expe
tation step~E-step! as follows:

Q~ l̄,l!5 (
n51

N

(
pn51

P

p~pnuZn ,l̄!log p~Zn ,pnul!, ~8!

whereN is the total number of training samples,P is the total
number of prosodic states,p(pnuZn ,l̄) and p(Zn ,pnul) are
conditional probabilities,l5$m,n,b t ,bpt ,b f t ,b i ,b f ,bp ,
bs ,gs% is the set of parameters to be estimated, andl and l̄
are the new and old parameter sets, respectively. Base
the assumption that the normalized pitch meanXn is nor-
mally distributed,p(Zn ,pnul) can be derived from the as
sumed model given in Eqs.~5! and ~6! and expressed as

p~Zn ,pnul!5N~Zn ;~m1b tn
1bptn

1b f tn
1b i n

1b f n

1bpn
1bsn

!gsn
,ngsn

2 !, ~9!

where N(Z;a,b) denotes a normal distribution ofZ with
meana and varianceb. Similarly, p(pnuZn ,l̄) can be ex-
pressed as

p~pnuZn ,l̄!5
p~Zn ,pnul̄!

(p
n851

P
p~Zn ,pn8ul̄!

. ~10!

Then, sequential optimizations of these parameters can
performed in the maximization step~M-step!.

A drawback of the above EM algorithm is that it ma
produce a nonunique solution. To solve this problem,
modify each optimization procedure in the M-step to co
strained optimization by introducing a global constraint. T
auxiliary function is then changed to

Q~ l̄,l!5 (
n51

N

(
pn51

P

p~pnuZn ,l̄!log p~Zn ,pnul!

1hS (
n51

N

~m1b tn
1bptn

1b f tn
1b i n

1b f n

1bpn
1bsn

!gsn
2NmZD , ~11!

wheremZ is the average ofZn andh is a Lagrange multiplier.
The constrained optimization is finally solved via th
Newton–Raphson method.

To execute the EM algorithm, initializations of the p
rameter setl̄ are needed. This is done by estimating ea
individual parameter independently. Specifically, the init
multiplicative/additive CF for a specific value of an affectin
factor is assigned to be the ratio/difference of the mean ofZn

with the affecting factor equaling the value to the mean of
Zn . Notice that, in the initialization of the CFs for the affec
ing factors of the prosodic states, each syllable is preassig
a prosodic state by means of vector quantization. Followi
Chen et al.: Pitch contour model for Mandarin speech

/content/terms. Download to IP:  140.113.38.11 On: Thu, 01 May 2014 03:09:09



tio

t.

EM
s

to
liz

-

a
fo

h
b
t

ach
ate

w-

or-
rm

wo
pro-

to
odel
be-
r of
ach

el-
ta-

tyle,
n a
as

two
fes-

 Redistr
all the parameters are sequentially updated in each itera
The iterative procedure is continued until convergence
reached. The prosodic state can, finally, be assigned as

pn* 5arg max
pn

p~pnuZn ,l!. ~12!

The EM algorithm is summarized below:

~1! Compute the initial values ofl by independently esti-
mating each individual parameter from the training se

~2! Do this for each iterationk:

~a! Updatel̄5l.

~b! E-step: Use Eqs.~9!–~11! to calculateQ(l̄,l).

~c! M-step: Find the optimall as follows:

l5arg max
l

Q~ l̄,l!. ~13!

~d! Termination test: IfL(k)2L(k21),« or k>K,
then stop, where

L~k!5(
n51

N

log p~Znul! ~14!

is the total log-likelihood for iterationk andK is the
maximum number of iterations.

~3! Assign prosodic states to all the syllables using Eq.~12!.

2. Training the pitch shape model

The pitch shape model is trained using the same
algorithm. An auxiliary function with a global constraint wa
first defined as follows:

Q~ l̄,l!5 (
n51

N

(
qn51

P

p~qnuZn ,l̄!log p~Zn ,qnul!1LT

3S (
n51

N

~m1btcn
1bi n

1bf n
1bqn

1bsn
!2NmZD ,

~15!

where L is a 331 Lagrange multiplier vector andl
5$m,R,btc ,bi ,bf ,bq ,bs% is the set of parameter vectors
be estimated. Based on the assumption that the norma
pitch shape vectorXn is normally distributed,p(Zn ,qnul)
can be expressed as

p~Zn ,qnul!5MVN ~Zn ;m1btcn
1bi n

1bf n
1bqn

1bsn
,R!,

~16!

where MVN~Z;a,B! denotes a multivariate normal distribu
tion of Z with mean vectora and covariance matrixB. By
maximizing the auxiliary function, we can get the optim
parameter set. The training procedure is similar to that
the pitch mean model.

E. Testing the pitch models

1. Testing the pitch mean model

Although we obtain CFs for all affecting factors throug
the above training procedure, some information still must
discovered in the testing phase. This includes the CFs of
J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005

ibution subject to ASA license or copyright; see http://acousticalsociety.org
n.
is

ed

l
r

e
he

two speaker-affecting factors and the prosodic state of e
syllable. The following testing procedure is used to estim
these unknown parameters:

~1! Initialization:

~a! Freeze the CFs for the current, previous, and follo
ing tones, for theinitial andfinal classes, and for the
prosodic state, the mean, and variance of the n
malized pitch mean to their trained values, and fo
a parameter setl̄15$m̄,n̄,b̄ t ,b̄pt ,b̄ f t ,b̄ i ,b̄ f ,b̄p%.

~b! Compute the initial CFs for the parameter setl2

5$bs ,gs%.

~2! Do this for each iterationk:

~a! Updatel̄25l2 .

~b! E-step: Calculate

Q~l̄2 ,l2!5 (
n51

N

(
pn51

P

p~pnuZn ,l̄1 ,l̄2!

3 log p~Zn ,pnul̄1 ,l2!. ~17!

~c! M-step: Find the optimall2 via

l25arg max
l2

Q~l̄2 ,l2!. ~18!

~d! Termination test: IfL(k)2L(k21),« or k>K,
then stop, where

L~k!5(
n51

N

log p~Znul̄1 ,l2! ~19!

is the total log-likelihood for iterationk.

~3! Assign prosodic state by means of

pn* 5arg max
pn

p~pnuZn ,l̄1 ,l2!. ~20!

After performing the above procedure, we can derive the t
speaker CFs for each testing speaker and determine the
sodic state of each syllable.

2. Testing the pitch shape model

In the testing phase, a similar procedure is employed
estimate the unknown parameters of the pitch shape m
from the testing data set, with all the known parameters
ing fixed. Here, the unknown parameters are the CF vecto
the speaker affecting factor and the prosodic state of e
syllable. In this case, the fixed parameter setl̄1

5$m̄,R̄,b̄tc ,b̄i ,b̄f ,b̄q% and the unknown parameter setl2

5$bs% are used in the testing procedure.

III. EXPERIMENTAL RESULTS

A. Databases

The effectiveness of the proposed syllable pitch mod
ing method was examined through simulations on two da
bases. The first database was a high-quality, reading-s
microphone speech database, which was recorded i
sound-proof booth. It is referred to as the TL database. It w
generated by five native Chinese speakers, including
males and three females; among these five, two were pro
913Chen et al.: Pitch contour model for Mandarin speech
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sional radio announcers. The database consisted of two t
of data. The first type of data comprised sentential utteran
with texts belonging to a well-designed, phonetic-balanc
corpus of 455 sentences. The lengths of these sente
ranged from 3 to 75 syllables with an average of 13 s
lables. The other types of data were longer utterances
texts belonging to a corpus of 300 paragraphs, which c
ered a wide range of topics, including news, primary sch
textbooks, literature, essays, etc. The lengths of these p
graphs ranged from 24 to 529 syllables with an aver
length of 170 syllables. The database was divided into
parts: a training set and a test set. Table II shows the data
statistics. The training set contained, in total, 102 529 s
lables, and the test set contained 22 109 syllables. The sp
ers and text content in the test set were different from th
in the training set.

After recording was completed, all speech signals in
database were converted into 16-bit data at a 20-kHz s
pling rate. They were then manually segmented intoinitial
andfinal subsyllables. The phonetic transcription was gen
ated automatically by a linguistic processor, with an 80 0
word lexicon. All the transcription errors were manually co
rected. The pitch period was then automatically detected
the ESPS software, with large errors being detected by
program and corrections made by hand. A four-step prep
cessing procedure was then applied to extract the four m
eling parameters. The four steps included frame-ba
speaker normalization, frame-based logarithm operation,
viding the utterances’ log-pitch contours into syllable se
ments, and performing orthogonal expansion of syllable l

TABLE II. TL database statistics.

Data Set Speaker Sentence Paragraph Sylla

Training Male A 1-455 1–200 34 670
Training Female B 1-455 1–50 12 945
Training Male C 1-455 1–100 20 748
Training Female D 1-455 1–200 34 166
Testing Female E None 201–300 22 10
914 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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pitch contours. The statistics for the observed mean
shape of the syllable log-pitch contour can be found in Ta
III ~a!.

The second database was a 100-speaker, microph
speech data set, which was a subset of TCC-300, provide
the Association of Computational Linguistics and Chine
Language Processing. It is referred to as the TCC datab
The database was generated by 50 males and 50 fem
Each speaker uttered several paragraphs of differing con
The speech data were all directly, digitally recorded in
laboratory in 16-kHz, 16-bit linear PCM. The total numb
of syllables in the database was 141 991. After recording w
completed, all the speech signals were automatically s
mented, using 100-initial and 39-final HMM models. Then,
the pitch period was automatically detected by WaveSu
software, the large errors being excluded by the progr
The same four-step preprocessing procedure was then
plied to extract the four modeling parameters. In Table IV~a!,
the statistics for the observed mean and shape of the syll
log-pitch contour are shown.

le

TABLE IV. The mean and~co!variance statistics of~a! the observed and~b!
the normalized mean and shape of the syllable log-pitch contour with
prosodic states for the TCC database~unit of pitch period: ms!.

mean ~co!variance RMSE

~a!
Pitch meana0 1.840 0.0209
Pitch shape
@a1 a2 a3#T

~3100! F 2.797
20.593
20.018

G F 32.392 0.341 22.680

0.341 9.740 20.199

22.680 20.199 3.289
G

~b!
Pitch meana0 1.842 0.000 739 0.0275
Pitch shape
@a1 a2 a3#T

~3100! F 2.810
20.577
20.020

G F 7.037 20.561 21.791

20.561 3.657 20.403

21.791 20.403 2.165
G F 2.653

1.912
1.471

G

odic

3

TABLE III. The mean and~co!variance statistics of~a! the observed and~b! the normalized mean and shape of the syllable log-pitch contour with 16 pros
states for the TL database~unit of pitch period: ms!.

~a!
Training set Test set

Mean ~Co!variance Mean ~Co!variance

Pitch meana0 1.949 0.0372 1.948 0.0345
Pitch shape
@a1 a2 a3#T

~3100! F 3.545
20.982
20.056

G F 58.550 3.229 25.140

3.229 9.671 20.106

25.140 20.106 2.900
G F 4.012

20.749
20.142

G F 49.489 3.653 24.007

3.653 12.460 0.276

24.007 0.276 4.356
G

~b!
Training set Test set

Mean ~Co!variance RMSE Mean ~Co!variance RMSE

Pitch meana0 1.948 0.000 402 0.0203 1.948 0.000 344 0.018
Pitch shape
@a1 a2 a3#T

~3100! F 3.660
20.996
20.104

G F 9.865 20.354 20.076

20.354 1.907 0.232

20.076 0.232 1.251
G F 3.143

1.381
1.120

G F 3.861
20.906
20.085

G F 12.885 0.955 1.073

0.955 3.101 0.808

1.073 0.808 2.263
G F 3.603

1.762
1.505

G

Chen et al.: Pitch contour model for Mandarin speech
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FIG. 2. The plot of the total log-likelihood versus th
iteration number for the training of the pitch mea
model of~a! the TL database and~b! the TCC database
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B. Experimental results of pitch modeling

The effect of the proposed pitch modeling method w
examined first, with the number of prosodic states set to
Table III~b! shows the experimental results of pitch me
and shape modeling. It can be seen from the third and s
columns of Table III~b! that the~co!variances of the normal
ized mean and shape of the syllable log-pitch contour w
greatly reduced for both the closed and open tests, w
compared with those shown in Table III~a!. The RMSEs of
the reconstructed mean and shape of the syllable log-p
contour are shown in the fourth and seventh columns
Table III~b!. Here, the reconstructed mean~shape! was cal-
culated based on the well-trained pitch mean~shape! model
by assigning the most probable prosodic state to each
lable and setting the normalized mean~shape! parameter~s!
to its ~their! mean value~s!. By combining the results of the
J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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reconstructed pitch mean and shape, we could reconstruc
pitch contour for each syllable. The RMSEs of the reco
structed pitch contour were 0.362 and 0.373 ms/frame for
closed and open tests, respectively. Notice that these
values included RMSEs of 0.17 and 0.19 ms/frame, wh
resulted from applying orthogonal transformation to t
closed and open test data sets, respectively.

Figure 2~a! shows a plot of the total log-likelihoodL(k)
versus the iteration numberk. It can be seen from Fig. 2~a!
that the EM algorithm quickly converged in the first seve
iterations. The histograms of the observed and normali
syllable log-pitch mean for the training set are plotted
Figs. 3~a! and 3~b!. It can be seen from these two figures th
the variation of the syllable log-pitch mean was greatly
duced after the influence of the affecting factors conside
in the model was eliminated. Based on the above results
915Chen et al.: Pitch contour model for Mandarin speech
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FIG. 3. The histograms of~a! the observed and~b! the normalized pitch means for the training set of the TL database and the histograms of~c! the observed
and ~d! the normalized pitch means for the TCC database.
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concluded that the proposed pitch mean modeling met
was effective.

We then examined a case in which the number of p
sodic states changed. The resulting variance of the norm
ized syllable log-pitch mean is shown in Fig. 4~a!. As can be
seen, the variance of the normalized pitch mean decrease
the number of prosodic states increased. This implies tha
pitch mean model became more accurate as the numb
prosodic states increased. The improvement reached sa
tion when the number of prosodic states was greater than
Similar findings were observed for the corresponding R
SEs of the reconstructed pitch mean shown in Fig. 4~b!.

Figure 5 shows two typical examples of reconstruc
pitch contours of two utterances based on the pitch mean
shape models with 16 prosodic states. It can be seen f
these two figures that all the reconstructed syllable pitch c
tours closely resembled their original counterparts. Actua
they were the smoothed versions of the originals as th
order orthogonal polynomial transformation was used. F
ther evaluation of the performance of the reconstructed p
contours was conducted by means of two subjective tests
AB test and the mean opinion score~MOS! test. The synthe-
sized speech recordings, with both the original pitch conto
916 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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and the reconstructed pitch contours, were presented to
listeners involved in the tests. The inside/outside test co
show whether test sentences are from the training or tes
set. In the inside test, the original and reconstructed p
contours of utterances of speaker A~see Table II!, a male
professional announcer, were used, while in the outside
the utterances of speaker E, a female speaker, were used
the testing utterances were generated by the PSOLA a
rithm using two acoustic inventories containing the wav
form templates of 414 monosyllables. These two acou
inventories were generated by speakers A and B for the
side and outside tests, respectively. It should be noted
the acoustic inventory of speaker B, who is a professio
female announcer, was used in the outside test becaus
acoustic inventory of speaker E was lacking. All the oth
prosodic parameters, including the syllable duration, sylla
log-energy level, and intersyllabic pause duration, were e
mated from the training database using a regression mo
Five different long test sentences were used in both the
side and outside tests. Combined with the two kinds of s
thesized speech, there were, in total, 20 test sample u
ances. Sixteen listeners, university students, were involve
the two tests. In the AB test, each listener was given a pai
Chen et al.: Pitch contour model for Mandarin speech
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synthesized utterances, along with the original and rec
structed pitch contours for each testing sentence, and a
to vote for the better one. Experimental results showed
41.25%~22.5%! of the synthesized speech recordings, w
the original pitch contours, were found by the listeners
sound better; 25%~27.5%! of the synthesized speech recor
ings, with the reconstructed pitch contours, were found
sound better; and 33.75%~50%! of the two speech record
ings were found to sound equivalent for the inside~outside!
test, respectively. In the MOS test, absolute category ra
was conducted on a scale from 1~‘‘bad’’ ! to 5 ~‘‘excellent’’ !.
Experimental results showed that average MOSs of 3
~3.34! and 3.68 ~3.4! were obtained for the synthesize
speech recordings with the original and reconstructed p
contours, respectively, in the inside~outside! test. From the
results of these two subjective tests, we concluded that
reconstructed pitch contours functioned almost as well
their original counterparts.

We then checked whether it was necessary to include
speaker affecting factors in both pitch mean and shape m
els, besides frame-based speaker normalization, which
performed in the preprocessing stage. An experiment, wh
excluded the two speaker affecting factors used in the p

FIG. 4. Plots of~a! the variance of the normalized pitch mean versus
number of prosodic states, and~b! the RMSE of the reconstructed pitc
mean versus the number of prosodic states.
J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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mean model and the speaker affecting factor used in the p
shape model, was conducted. RMSEs of 0.362 and 0.372
were obtained in the closed and open tests, respectiv
These results were almost the same as those for the prev
cases, which used these three speaker affecting factors i
pitch mean and shape models. This showed that ro
speaker normalization was good enough to eliminate
speaker’s influence.

We then checked whether the pitch mean and sh
models could share the same set of prosodic states. An
periment, in which the prosodic state of every syllable in t
pitch shape model was forced to be the same as that in
pitch mean model, was then conducted. RMSEs of 0.504
0.478 ms were obtained in the closed and open tests, res
tively. These results were worse than those obtained u
separate sets of prosodic states in the pitch mean and s
models. Figure 6 shows the 16 patterns of unified proso
states. The patterns are plotted from left to right in increas
order of the prosodic state index. The vertical axis is pi
period ~ms!. Sixteen syllable pitch contour patterns we
formed using the CFs of the prosodic states, and the ave
values of the normalized syllable log-pitch mean and sh
can be found in this figure. It can also be found in Fig. 6 th
the lower-indexed states had a lower pitch mean and sm
pitch slope; they represented the beginning part of a pros
phrase. On the other hand, the higher-indexed states h
higher pitch mean and larger pitch slope; they represen
the ending part of a prosodic phrase.

Finally, we examined the effectiveness of pitch mod
ing via the TCC database. The same training procedure u
with the TL database was applied. The number of proso
states was set to 16. Table IV~b! shows the experimenta
results obtained for the mean and~co!variance of the normal-
ized pitch mean and shape, and the RMSEs of the rec
structed pitch mean and shape. It can be seen from the
column in Tables IV~a! and ~b! that the variance of the nor
malized pitch mean and the covariance of the normali
pitch shape were greatly reduced, when compared with th
of the original pitch mean and shape. By combining the
sults for the reconstructed pitch mean and shape, we c
reconstruct the pitch contour of each syllable. The RMSEs
the reconstructed pitch contours were 0.384 ms/frame, wh
included the RMSEs of 0.172 ms that resulted from apply
orthogonal transformation. A plot of the total log-likelihoo
L(k) versus the iteration numberk is shown in Fig. 2~b!. The
histograms of the observed and normalized syllable log-p
mean for TCC are plotted in Figs. 3~c! and ~d!. The results
were still quite promising even though the pitch variatio
due to the large population of speakers, was very high,
the accuracy of the observed data, due to the automatic
mentation performed by the HMM models, was not as h
as that achieved by applying manual segmentation to the
database.

IV. ANALYSES OF THE INFERRED MODEL
PARAMETERS

We then analyzed, in detail, the inferred model para
eters in order to gain a better understanding of the effect
the affecting factors. Before discussing this, we will brie
917Chen et al.: Pitch contour model for Mandarin speech
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FIG. 5. Examples of reconstructed pitch contours for~a! an inside test utterance: ‘‘tzai-4 guo-2 ren-2 shiau-1 fei-4 shi-2 guan-4 gai-3 bian-4, guo-2 m
suo-3 de-2 ti-2 gau-1, shin-4 yung-4 dai-4 kuan-3 shr-4 chang-2, cheng-2 wei-2 chian-2 li-4 shr-4 chang-2’’ and~b! an outside test utterance: ‘‘tzai-4 yi-4
guo-2 jeng-4 jing-1 huen-4 luan-4 jung-1 lin-2 wei-2 shou-4 ming-4 de-5 chi-2 an-1 pei-2, wei-4 lai-2 tzai-4 jeng-4 jing-1 liang-3 fang-1 mian-4 dou-1 you-3
bu-4 shau-3 jian-1 kuen-4 ren-4 wu-4 dai-4 wan-2 cheng-2.’’
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introducea priori knowledge of tone patterns in Mandar
speech. As reported in Ref. 16, tone 1 is a high-level to
that starts in a speaker’s high F0 range and remains h
tone 2 is a mid-rising tone that starts in the speaker’s mid
range, remains level or drops slightly during the first half
the vowel, and then rises to a high-level tone at the end; t
3 is a low-falling tone that starts in the speaker’s mid ran
and falls to the low range; tone 4 is a high-falling tone th
usually peaks around the vowel onset and then falls to
low F0 range at the end; and tone 5 is a low-energy tone

FIG. 6. The effect on the syllable pitch contour of the 16 unified proso
states of the pitch mean and shape models. Patterns are plotted from
right in increasing order of the prosodic state index.
918 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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has a relatively arbitrary pitch contour pattern. The F0 co
tour of each of the first four tones can be represented b
simple single standard pattern, as shown in Fig. 7. Howe
syllable pitch contour patterns in continuous speech v
highly and can deviate dramatically from their canonic
forms.

Table V shows the CFs of the affecting factors of t
previous, current, and following tones in the pitch me
model. As can be seen in Table V, the CFs of the affect
factors of the current tone had negative values for tone
and 4, and a positive value for the other three tones. Du
the fact that the effect of a positive~negative! CF was to
decrease~increase! the F0 mean, the CFs of the affectin
factors of the current tone were well matched with thea
priori phonologic knowledge discussed above. It was a
reported in Ref. 34 that all tones, preceding a tone 3, ha

c
t to

FIG. 7. Standard F0 contour patterns of the first four tones.
Chen et al.: Pitch contour model for Mandarin speech
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much higher F0 level than they did when they preceded o
tones, and all tones had a slightly lower F0 level when th
preceded a tone 1. In addition, all tones following tone 1
2 had a higher F0 level than they did when they follow
tone 3 or 4. These phenomena corroborated the results sh
in Table V. Specifically, the effect of the relatively larg
negative CF (b f t520.047) for f t53 greatly increased the
F0 level of the current syllable when it preceded a tone
while the positive CF (b f t50.022) for f t51 decreased the
F0 level of the current syllable when it preceded a tone
Similarly, bpt520.022 for pt51 andbpt520.034 for pt
52 increased the F0 level of the current syllable when
followed a tone 1 or 2, while the positive CFs (bpt

50.018,0.024,0.029) decreased the F0 level of the cur
syllable when it followed a tone 3, 4, or 5.

An advantage of the proposed pitch modeling metho
that it provides a quantitative and more complete descrip
of the coarticulation effect of neighboring tones rather th
conventional qualitative descriptions of some of thesandhi
rules. This can be illustrated by reconstructing the pitch c
tour patterns using the CFs of tone-related affecting fac
and the average values of the pitch mean and shape mo
while ignoring the CFs of all the other affecting factors. Sp
cifically, the pitch contour pattern of the current tonetc with
the preceding tonetp and the following tonet f can be calcu-
lated, based on the proposed pitch mean and shape mo
as follows:

f̃ S i

M D5ef̂ ~ i /M !, 0< i<M , ~21!

where

f̂ S i

M D5(
j 50

3

â j•f j S i

M D , 0< i<M , ~22!

â05m1bpt5tp
1b t5tc

1b f t5t f
, ~23!

F â1

â2

â3

G5m1btc5tptct f
. ~24!

Figure 8 shows two examples. Figure 8~a! displays the
reconstructed patterns for the current tones in tone comb
tions of 033, 133, 233, 333, 433, 533, 030, and 020. It sho
be noted that 0 denotes a case in which the effect of
previous or following tone is ignored. It can also be seen t
all six patterns of tone 3 following tone 3~i.e., 033, 133, 233,
333, 433, and 533! more closely resemble a pure tone 2~i.e.,
020! than a pure tone 3~i.e., 030!. This corroborates the

TABLE V. The inferred CFs for the affecting factors of the current, prec
ing and following tones in the pitch mean model~unit of pitch period: ms!.

Tone 1 2 3 4 5

b t

CF of current tone
20.154 0.054 0.160 20.035 0.128

bpt

CF of previous tone
20.022 20.034 0.018 0.024 0.029

b f t

CF of following tone
0.022 20.003 20.047 0.011 0.013
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well-knownsandhirule for a 33-tone pair, which says that
tone 3 will change to a tone 2 when it precedes a tone 3
addition, these six patterns also show their dependence
the preceding tone. Roughly, their beginning parts were
justed in order to be more smoothly concatenated with
patterns of the preceding tones. Figure 8~b! displays the re-
constructed patterns for tone combinations of 044, 144, 2
344, 444, 544, and 040; it shows that all six patterns of to
4 following tone 4~i.e., 044, 144, 244, 344, 444, and 54!
have a smaller slope and lower ending point, which agr
with a previous finding.3 These six patterns also show th
they depend on the preceding tone.

We then examined the effects of theinitial andfinal of
the current syllable. We divided all 22initials into seven
broad classes, and 40finals into seven broad classes, accor
ing to the manner of articulation.Initial classes includedI 0

5$null init ial %, I 15$b,d,g%, I 25$f,s,sh,shi,h%, I 3

5$m,n,l,r%, I 45$ts,ch,chi%, I 55$p,t,k%, andI 65$tz,j,ji%. Fi-
nal classes included F05$ low vowels%, F15$middle
vowels%, F25$high vowels%, F35$compound vowels%, F4

5$vowels with nasal ending%, F55$retroflexion%, and F6

5$null vowels%. Table VI~a! shows the CFs for these seve
initial classes and sevenfinal classes in the pitch mea
model. It can be found in Table VI~a! that the positive CFs
for $b,d,g%, $f,s,sh,shi,h%, $ts,ch,chi%, and $tz,j,ji% lowered the
syllable F0 mean, while all the others raised the syllable
mean. As for thefinals, the positive CFs of the low vowels
compound vowels, and null vowels lowered the syllable
mean, while the negative CFs of the middle vowels, h
vowels, nasal endings, and retroflexion raised the syllable
mean. However, all these 14 CFs were relatively small, co
pared to the CFs of the other affecting factors. This sho
that theinitial andfinal of the current syllable were not ma
jor factors affecting the syllable pitch level. Table VI~b!
shows the CFs of these seveninitial classes and sevenfinal
classes in the pitch shape model. It can also be seen tha
the CFs are relatively small, so they also are not major f
tors affecting the syllable pitch shape.

Table VII shows the estimated CFs of the three affect
factors for the four training speakers. As observed in Ta
VII ~a!, the four CFs of the dynamic range scaling factor
the pitch mean model were all close to 1 for the four spe
ers, while the four CFs of level shift were all close to 0.
addition, all the CFs of shape shift shown in Table VII~b!
were relatively small. This shows that the use of additio
speaker affecting factors, other than the frame-based spe
normalization performed in the preprocessing stage,
little effect on the improvement of the pitch mean and sha
models. Actually, we have already shown in Sec. III B. th
the RMSEs of the reconstructed pitch contour, formed by
proposed pitch mean and shape models, were almost
same when we excluded these three speaker affecting
tors.

We then examined the prosodic states of the pitch m
model, labeled by the EM algorithm, in more detail. As me
tioned in Sec. I, the prosodic state is conceptually defined
the state of the current syllable in a prosodic phrase. Fr
this definition, one can expect the prosodic phrase struc
of an utterance to be characterized by its prosodic state

-
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FIG. 8. ~a! A comparison of the patterns of tone 3 pre
ceding another tone 3 with the canonical patterns
tone 2 and tone 3.~b! A comparison of the patterns o
tone 4 preceding another tone 4 with the canonical p
tern of tone 4.
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quence. First, a brief description of the characteristics of p
sodic phrases will be given here. It is well known that t
global downtrend tendency of F0 is to decline over t
course of an utterance.28 It is also known that a slight pitch
reset of the bottom line of intonation will occur at a prosod
word boundary, and that a significant pitch reset of the b
tom line of intonation will occur at an intonational phra
boundary.35 The pitch mean sequence of an utterance w
therefore, show repeating patterns of smooth uptrend cur
starting with lower pitch levels and ending at higher pit
levels, representing the prosodic phrase structure of the
terance. With interference due to the tone effect, howe
the prosodic phrase patterns are not as apparent as the
when they are observed based on the original pitch m
sequence of an utterance. A typical example is displaye
Fig. 9, where one can see that the original pitch mean
quence of the utterance exhibited a repeating uptrend pat
920 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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while some had large zigzag variations. To eliminate the to
effect, we formed a reconstructed pitch mean sequence o
utterance by calculating the sum of the CFs of the proso
state sequence and the mean value of the normalized p
mean. The reconstructed pitch mean sequence is also
played in Fig. 9, where it is clearly shown that the reco
structed pitch mean sequence was a better representati
the smooth repeating uptrend patterns of the proso
phrases than the original pitch mean sequence was, bec
the large zigzag variations caused by the tone effect had b
largely eliminated. Figure 10 shows the autocorrelation fu
tions of the original and reconstructed pitch mean sequen
The higher autocorrelation values shown in Fig. 10 imp
that the uptrend prosodic phrase patterns, represented b
reconstructed pitch mean sequence, were smoother. The
ure also shows that the lowest autocorrelation value occu
at the 6-syllable lag. This agrees with the fact that the av
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TABLE VI. The inferred CFs for the affecting factors of 7initial and 7final classes in the~a! pitch mean and~b! pitch shape models~unit of pitch period:
ms!.

~a!
Class $null initial % $b,d,g% $f,s,sh,shi,h% $m,n,l,r% $ts,ch,chi% $p,t,k% $tz,j,ji%

b i 20.008 0.004 0.011 20.013 0.003 20.014 0.003
b f 0.011 20.001 20.004 0.008 20.005 20.019 0.004

~b!

Class
$low

vowels%
$middle

vowels%
$high

vowels%
$compound

vowels%
$vowelswith

nasal ending% $retroflexion%
$null

vowels%

bi

~3100! F20.971
1.125

20.548
G F 0.522

0.015
20.020

G F 0.509
20.440

0.321
G F20.520

0.506
20.697

G F21.270
20.666

0.648
G F20.111

20.627
0.389

G F 0.722
20.161

0.075
G

bf

~3100! F 0.224
20.131

0.182
G F 0.641

0.280
20.095

G F 20.278
0.865

20.076
G F 0.978

20.017
20.094

G F20.640
20.703

0.166
G F21.266

0.891
20.080

G F20.354
0.696

20.291
G
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dict
age length of prosodic phrases is 6.14 syllables, as evalu
based on a 1743-syllable subset of the TL database,
major and minor breaks labeled manually. Based on
above evidence, the validity of the prosodic state definit
was confirmed.

Table VIII~a! shows the inferred CFs of the 16 prosod
states in the pitch mean model. It should be noted that th
16 CFs are sorted in increasing order, with state 0 having
smallest CF value and state 15 having the largest. Thus
lower-indexed states correspond to the beginning part o
prosodic phrase, while the higher-indexed states corresp
to the ending part of a prosodic phrase. From detailed an
ses, we found that the prosodic states of syllables in a
sodic phrase generally varied from small to large and w
reset when they crossed prosodic phrase boundaries.
means that a change of the state’s index, from large to sm
indicated a possible prosodic phrase boundary. We, there
set the following rules to detect minor and major proso
phrase boundaries:

location following syllablen

5H major boundary if 10<pn2pn11<15,

minor boundary if 4<pn2pn11<9,

nonboundary otherwise.

~25!

Figure 11 shows some examples of prosodic labeling p
formed using the above rules, with ‘‘* ’’ representing a major
boundary and ‘‘&’’ representing a minor boundary. As show

TABLE VII. The inferred CFs for the four training speakers in the~a! pitch
mean and~b! pitch shape models~unit of pitch period: ms!.

Speaker A B C D

~a!
gs 1.014 0.971 1.026 0.981
bs 20.030 0.049 20.044 0.041

~b!
bs

~3100! F 0.291
0.134

20.012
G F 0.324

0.302
20.125

G F20.216
0.349
0.348

G F20.301
20.472
20.152

G
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in Fig. 11, almost all the location of PMs~punctuation
marks! were marked with major or minor prosodic phra
boundaries. This closely agrees with prior knowledge tha
PM is a good location for a break in the pronunciation o
long text. It can also be seen in Fig. 11 that some major
minor prosodic phrase boundaries were detected at non
intersyllable locations. From detailed analyses, we found
most of those locations were boundaries of long words. Ta
IX shows the prosodic labeling statistics. As shown, 80.7
of the location of major PMs belonging to the set$comma,
period, exclamation mark, semicolon, question mark% and
69.5% of the location of the secondary major PMs belong
to the set$pause—mark in Chinese punctuation used to
off items in a series, colon% were marked with major or mi-
nor prosodic phrase boundaries. On the other hand, o
42.3% of the location of the minor PMs belonging to the s
$brace, bracket, dot% and 10.8% of the location of the non
PMs were marked with major or minor prosodic phra
boundaries. From detailed analyses, we found that mos
the major/minor prosodic phrase boundaries occurring
non-PM locations were breathing breaks or long-phr
boundaries; most of the major and secondary major P
labeled with nonboundaries occurred at the ends of v
short sentences, at locations near other breaks, or at the
of sentences whose pronunciation exhibited relatively
pitch variation. These phenomena closely matched our p
linguistic knowledge. In order to more accurately evalua
the performance of automatic prosodic labeling, we ma
ally processed a small data set containing 1743 syllable
order to determine whether each intersyllable location wa
nonbreak, a minor break, or a major break. Table X show
comparison of the two prosodic labeling methods, where
can be seen that the accuracy of the automatic prosodic
beling method was 94.1%. If we combine these two clas
of minor and major breaks into one break class, the accur
rate increases to 97.2%. The automatic prosodic labe
method is, therefore, promising.

V. AN APPLICATION TO PREDICT PITCH FOR TTS

A hybrid method, incorporating the above pitch me
and shape models with a linear regression method to pre
921Chen et al.: Pitch contour model for Mandarin speech
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FIG. 9. A comparison between the original pitch mean sequence and the reconstructed pitch mean sequence formed by adding the mean v
normalized pitch mean and prosodic state CFs. The sentence is ‘‘gen-1 jiu-4 hua-1 chi-2 yin-2 hang-2 gu-1 ji-4, guo-2 nei-4 wu-3 bai-3 da-4 gung-1wei-4
lai-2 ke-3 neng-2 fu-2 he-2 tsz-3 shiang-4 juan-1 an-4 dai-4 kuan-3 ji-4 hua-4 de-5 jung-1, gau-1 jie-1 ji-2 ju-3 guan-3, ren-2 shu-4 ye-3 you-3 ji-3 wan-4 ren-2
tzuo-3 you-4, tzai-4 guo-2 ren-2 shiau-1 fei-4 shi-2 guan-4 gai-3 bian-4, guo-2 min-2 suo-3 de-2 ti-2 gau-1, shin-4 yung-4 dai-4 kuan-3 shr-4 chang-, cheng-2
wei-2 chian-2 li-4 shr-4 chang-2.’’
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the syllable pitch contour for Mandarin TTS, was develop
Figure 12 shows a block diagram of the proposed metho
first estimates the prosodic state CF of each syllable fr
inputs of linguistic features using the linear regression te
nique. The linguistic features used here for this linear reg

FIG. 10. Autocorrelation functions of the original pitch mean sequence
the reconstructed pitch mean sequence formed by adding the mean va
the normalized pitch mean and the prosodic state CFs.
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m
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sion included~1! current word length:$1,2,3,.3%; ~2! current
syllable position in word:$first, intermediate, last%; ~3! sen-
tence length:$1,@2,5#,@6,10#,@11,15#,@16,20#,.20%; ~4! current
syllable position in sentence:$1st, 2nd, 3rd, @4th,5th#,
@6th,7th#, @8th,11th#, last, 2nd last, 3rd last,@5th last, 4th
last#, @7th last, 6th last#, @11th last, 8th last#, and others%,
where the smaller count from the beginning or the end wi
with the count from the end breaking the tie;~5! punctuation
mark after the current syllable~12 types1null!; and ~6! part
of speech~53 types!. This method then combines the pr
dicted prosodic state CFs with the CFs of other affect
factors to form estimates of four orthogonal transform co
ficients of the log-pitch contour for each syllable using t
pitch mean and shape models. Here, the CFs of the tone-
syllable-related affecting factors were obtained directly
looking-up the corresponding CF tables constructed in
training phase. On the other hand, the three CFs of
speaker could be directly specified as additional inputs
control the dynamic range of pitch contour. In this study,
order to disregard the effect of the speaker’s variability,
values of the three CFs of the speaker were assigned to
values obtained by the EM algorithm in training. In additio
the values of the normalized pitch mean and shape par
eters, required to calculate the output orthogonal transfo
coefficients in Eqs.~6! and ~7!, could be obtained through

d
of
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TABLE VIII. The inferred CFs for the 16 prosodic states in the~a! pitch mean and~b! pitch shape models. The
CFs in ~a! are sorted from small to large~unit of pitch period: ms!.

~a!
State 0 1 2 3 4 5 6 7

bp 20.400 20.225 20.159 20.113 20.081 20.047 20.016 0.014

State 8 9 10 11 12 13 14 15
bp 0.039 0.073 0.102 0.130 0.161 0.196 0.265 0.348

~b!
State 0 1 2 3 4 5 6 7

bq

~3100! F23.662
24.832
20.108

G F 0.047
20.179
21.535

G F21.167
23.221
20.436

G F22.297
4.218
0.346

G F22.245
20.591
20.267

G F21.558
1.194

20.466
G F24.033

0.582
0.961

G F21.167
21.550

0.248
G

State 8 9 10 11 12 13 14 15
bq

~3100! F 9.354
1.249

21.476
G F20.164

0.479
0.304

G F 3.707
0.295

20.773
G F21.340

20.798
1.164

G F 0.849
2.249
0.184

G F 0.094
1.469
1.603

G F 1.550
22.455

0.684
G F20.279

20.289
0.106

G
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similar linear regressive estimation. However, because of
fact that their variance was very small, we simply set th
values to the means of these two models. Lastly, we ge
ated the reconstructed syllable pitch contour by perform
orthogonal polynomial expansion and frame-based spe
denormalization. Notice that the linguistic features used h
were extracted from the input text by an automatic wo
tokenization algorithm, with an 80 000-word lexicon and
manual postcheck.

For a performance comparison, the conventional lin
regression method was also implemented. It uses a lin
combination of weighted input linguistic features to gener
the four orthogonal transform parameters of the log-pi
contour for each syllable. To ensure a fair comparison,
input linguistic features used in the method comprised all
above features and some other syllable-level features, inc
ing the lexical tones~533 types! of the preceding, current
and succeeding syllables; theinitials ~21 types1null! of the
current and succeeding syllables; themedials~3 types1null!
of the current syllable; and thefinals ~14 types! of the pre-
ceding and current syllables.

Experimental results obtained using the TL database
, Vol. 117, No. 2, February 2005
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shown in Table XI, where it can be clearly found that t
hybrid method, with 16 prosodic states, outperformed
linear regression method. RMSEs of 0.996 and 0.865
frame between the predicted and observed pitch periods w
obtained in the closed and open tests, respectively. The
sults were better than those, 1.511 and 1.179 ms/fra
achieved using the linear regression method. Notice that
RMSEs resulting from orthogonal transformation were 0.
and 0.19 ms for the closed and open test data sets, res
tively.

Lastly, an AB test and an MOS perceptual test, similar
those discussed in Sec. III B, were employed to evaluate
performance of the proposed hybrid method and the conv
tional linear regression method. Synthesized speech rec
ings, with syllable pitch contours estimated using these t
methods, were compared. The same 16 listeners were
volved in these two tests. The experimental results of the
test showed that 98.75%~100%! of the hybrid synthesized
speech was found to sound better in the inside~outside! test,
while 1.25% ~0%! of the linear regression synthesize
speech was found to sound better. The experimental res
of the MOS test showed that average MOSs of 3.5~3.18! and
the

FIG. 11. Examples of labeling minor~& ! and major~* !
prosodic phrase boundaries using rules based on
prosodic state differences of the pitch mean model.
923Chen et al.: Pitch contour model for Mandarin speech
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FIG. 12. A block diagram of the proposed hybrid method for syllable pi
contour prediction.

TABLE IX. Prosodic labeling statistics generated by Eq.~25!. Here major
PM5$comma, period, exclamation mark, semicolon, question mark%; sec-
ondary major PM5$pause, colon%, and minor PM5$brace, bracket, dot%.

PM

Break

Nonboundary
Minor

boundary
Major

boundary

Non-PM 89.18% 9.80% 1.02%
Minor PM 57.73% 33.48% 8.80%
Secondary Major PM 30.52% 44.65% 24.83%
Major PM 19.31% 31.66% 49.02%

TABLE X. A comparison between the prosodic phrase boundaries autom
cally generated by the rules based on stated differences of the pitch
model and the manually labeled ones using a 1743-syllable subset of th
database~unit: syllable!.

Manual

Automatic

Nonboundary
Minor

boundary
Major

boundary

Nonboundary 1463 34 2
Minor boundary 10 94 38
Major boundary 3 16 83

TABLE XI. The RMSEs of the hybrid method, with 16 prosodic states, a
the linear regression method~unit: ms/frame!.

RMSEs Closed test Open test

Hybridregression 0.996 0.865
Regression 1.511 1.179
924 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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1.34 ~1.3! were obtained using the hybrid method and line
regression method, respectively, in the inside~outside! test.
Based on the results of these two subjective tests, the
posed hybrid method was obviously better.

VI. CONCLUSION AND FUTURE WORKS

This paper has presented a new statistics-based syl
pitch contour modeling method for Mandarin speech. E
perimental results confirmed its effectiveness at separa
several main factors that seriously affect the mean and sh
of the syllable log-pitch contour of Mandarin utterances. A
the inferred CFs of the affecting factors conformed well w
our prior linguistic knowledge. In addition, the prosod
states labeled by the EM algorithm were linguistically mea
ingful, and the repeating uptrend pitch patterns of the p
sodic phrase structure of an utterance were well represe
by its prosodic state sequence. The proposed pitch con
modeling method is, therefore, extremely promising.

Some future work is well warranted. First, as discuss
in Sec. I, only the first subtask of the complicated pitch mo
eling procedure was undertaken in the current study;
involved modeling the relationship between the syllab
pitch contour features and some affecting factors, includ
local phonetic features, the speaker, and the prosodic s
The second subtask, which would explore the relations
between the prosodic state and high-level linguistic cues
still untouched. We will undertake this second phase of
search in the near future, using a tree-bank database. Se
by taking advantage of pitch modeling performed using o
acoustic and simple phonetic features, we can apply the
lable pitch mean and shape models in such application
tone recognition and prosodic labeling, which do not neea
priori high-level linguistic information, such as word token
zation or syntactic features.
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