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Abstract: The conventional multiple stack algo- 
rithm (MSA) is an efficient approach for 
solving erasure problems in sequential decoding. 
However, the requirements of multiple stacks and 
large memory make its implementation difficult. 
Furthermore, the MSA allows only one stack to 
be in use at a time: the other stacks will stay idle 
until the process in that stack is terminated. Thus 
it seems difficult to implement the MSA with 
parallel processing technology. A two-stack 
scheme is proposed to achieve similar effects to 
the MSA. The scheme greatly reduces the loading 
for data transfer and 1/0 complexity required in 
the MSA, and makes parallel processing possible. 
An erasure-free sequential decoding algorithm for 
convolutional codes, the compressed multiple- 
queue algorithm (CMQA), is introduced, based on 
systolic priority queue technology, which can 
reorder the path metrics in a short and constant 
time. The decoding speed will therefore be much 
faster than in traditional sequential decoders using 
sorting methods. In the CMQA, a systolic priority 
queue is divided into two queues by adding control 
signals, thereby simplifying implementation. Com- 
puter simulations show that the CMQA out- 
performs the MSA in bit error rate, with about 
one-third the memory requirement of the MSA. 

1 Introduction 

Convolutional coding is a powerful error-correcting tech- 
nique for communications over noisy channels [ 13. 
Among the decoding algorithms for convolutional codes, 
the suboptimal sequential decoding algorithm and the 
optimal Viterbi decoding algorithm are most commonly 
used. The primary difference between these is that the 
Viterbi decoder uses an exhaustive trellis search in a code 
tree, whereas the sequential decoder searches only parts 
of this. Thus, the complexity of a Viterbi decoder grows 
exponentially in proportion to the constraint length of 
the convolutional code, and becomes infeasible for codes 
with long constraint lengths [l-31. The sequential 
decoder, however, can cope with convolutional codes of 
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any constraint length, and is therefore especially useful in 
applications where long ones are required [4, 51. 

Among the several sequential decoding algorithms, the 
stack or ZJ algorithm [6,  71 is quite popular. Here the 
decoder always moves along the path visited with the 
largest metric until it reaches the end of the code tree. A 
large storage area, called the ‘stack’, is required to store 
all of the paths that have been visited by the decoder. 
Before paths can be further extended, those in the stack 
must be sorted to find the best one. This operation is very 
time-consuming, especially when a large stack is used, 
and so the decoding speed of the stack algorithm is 
limited [SI. Chang and Yao [8, 101 proposed an efficient 
approach to alleviate this. The stack memory is replaced 
by an array of processors known as a ‘systolic priority 
queue’, where the reordering of nodes is completed when 
they pass through. Although the metrics of nodes in such 
a queue are not in decreasing order, the node with largest 
metric can always be delivered quickly in a contant time, 
regardless of the queue size. Recently, Lavoie et al. [ 111 
developed a new type of systolic priority queue, which 
can operate twice as fast as the standard one. 

With systolic priority technology the speed of a stack 
algorithm will be much faster. Another problem for a 
stack algorithm is erasure due to input-buffer overflow, 
which is caused by long searches in the code tree [l]. 
Chevillat and Costello [9] proposed a multiple stack 
algorithm (MSA) to alleviate this problem, using, a large 
first stack and many higher-rank stacks. The decoding is 
started in the first stack; when this is full the top nodes 
will be transferred to a higher-rank stack, where decoding 
continues. Higher-rank stacks are usually much smaller 
than the first stack, and so when decoding continues in 
higher-rank stacks, the decoder can soon reach the end of 
the code tree and obtain a tentative decision, which will 
avoid the possibility of erasure. Although the MSA is a 
powerful algorithm for erasure-free sequential decoding, 
its implementation is not as easy as that of the traditional 
stack sequential decoding algorithm. 

In this paper we present an algorithm which can be 
easily implemented with a systolic priority queue with 
properties and performances similar to those of the MSA. 
Systolic priority queue technology and the operations of 
a queue are briefly reviewed. As directly mapping the 
multiple stacks in the MSA to multiple queues will pose 
many challenges, such as unbounded complexity require- 
ment in memory and IjO, a compressed multiple queue 
algorithm (CMQA) is proposed. This may be seen as a 
modification of the MSA. The systolic priority queue is 
suitable for implementing the CMQA, and its operating 
principle is introduced here. Comparisons of the bit error 
rate (BER) performance for both the MSA and CMQA 
by computer simulations are also given. 

IEE Proc -Commun., Vol. 141, No. 4 ,  August 1994 



2 Systolic priority queue technology 

One reason for the stack sequential decoder to be less 
popular than the Viterbi decoder is that the very time- 
consuming node reordering operation often slows down 
its speed. Because of this, most practical stack sequential 
decoders are implemented using the modified algorithm 
proposed by Jelinek, which is called the stack-bucket 
algorithm ['I]. Although this algorithm can remedy the 
problem of low and variable speed in metrics reordering, 
the BER performance is also degraded [I]. 

To avoid the sorting operation without degrading the 
performance of the stack algorithm, Chang and Yao pro- 
posed an approach in 1986 [S, lo] whereby the stack 
memory is replaced by an array of processors. These pro- 
cessors, called a systolic priority queue [lS, 191 are 
arranged so as to deliver the node with maximum metric 
quickly within a constant time interval. Fig. 1 shows a 
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Example for the operation of the shift register scheme of a 

linear systolic priority queue and an example of its oper- 
ations in a shift register scheme [SI. For comparison with 
the new systolic priority queue described below, the 
mechanism of the shift-register (SR) systolic priority 
queue is repeated here. 

2. I Linear systolic priority queue [8] 
The result of these operations is the insertion of one new 
node X into the queue, and the delivery of the best node 
in the queue. This is performed as follows 

(a )  Insertion of a new node X 
(i) A, c X 
(ii) A i + I  t A i ,  i.e. shifting all nodes one position 

(iii) rearrange the nodes so that A Z i + l  > A , i + z ,  for 
down 

i > 0. 
(b) Deletion of the best node 

i.e. shifting all nodes one position up, 
and A, will contain the best node for deletion. (Note 
that A, is an 1/0 port.) 

> A 2 i + 2  for 
i > 0. 

As these operations are completed simultaneously when 
nodes travel through the processors, the time to obtain 

(i) Ai  c Ai+ 

(ii) rearrange the nodes so that 
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the top node is always constant, no matter how many 
processors are used. This structure efficiently remedies 
the speed problem in searching for the best node. 
However, this linear systolic priority queue permits only 
one node at a time to go into the queue. To achieve a 
faster processing speed, Lavoie et al. [11] developed a 
new type of systolic priority queue, and have realised it 
using a full-custom VLSI chip. Apart from a novel circuit 
design for more concise operations, the processors in the 
queue are rearranged so that the queue can receive two 
nodes at a time and complete all operations in a single 
clock cycle, thus saving much more time. An example of 
the operations of this new systolic priority queue is given 
in Fig. 2e. The processors in one chip are divided into 
many 'slices', each consisting of three processors. Based 
on the basic operations, the connections between pro- 
cessors can be plotted as shown in Fig. 2a. Lines with 
double arrows represent those paths which should be 
able to transmit data in both directions, and will be more 
complex than lines with a single arrow. To make the 
mechanism of this queue clearer, each basic operation is 
explained step by step as follows, with the relevant cir- 
cuits shown in Figs. 2b, 2c and 2d. 

2.2 New systolic priority queue [ I  I ] 
The result of these operations is the simultaneous inser- 
tion of two new nodes N o  and NI into the queue, and 
delivery of the best node it contains. This is achieved by 

(i) Insert two nodes simultaneously into the queue and 
shift all nodes two positions down, as shown in Fig. 2b, 
i.e. 

insertion: N o  + P o ,  NI + P I ;  then, 

shifting:P,i+P,i+2,P2i+, + P Z i + , , i > O .  

(ii) At the same time, rearrangement is conducted in 
each triplet of processors, move the best node in each 
triplet to its local top position. The positions of the other 
two nodes are trivial, as shown in Fig. 2c, i.e. 

P3i-1 + best{P,i-,, P , i ,  P3i+l} ,  i > 1. 

P , i ,  P3 i+  + the other two nodes. 
(iii) Extract the top node from the queue. At the same 

time shift the other nodes one position up, as shown in 
Fig. 2d, i.e. 

P ,  + P o ,  Pi+l  + P i ,  i 2 2, Po extract out. 

(Note that from (i) and (iii), Po and PI are treated as 1 /0  
ports.) 

(iv) At the same time, rearrange each triplet of pro- 
cessors again, as shown in Fig. 2c, i.e. 

P3i- l  t best{P3i-,, P , i ,  P3i+l}, i 2 1. 

P , ; ,  P 3 i +  e the other two nodes. 
Although this mechanism consists of many steps, with 
some circuit design tricks they can all be merged into 
two. The first consists of insertion, shifting down two 
positions and triplet sorting. The second consists of 
triplet sorting and shifting up one position. Thus with a 
two-phase clocking scheme these steps can be completed 
in one single clock cycle [ll]. 

In the linear systolic priority queue only a single node 
is permitted to enter or exit the queue; it would therefore 
require three clock cycles to retrieve the best node and 
insert two succeeding nodes. Although each clock cycle 
for the original queue is shorter than the new queue, the 
total time required is longer because only one compari- 
son instead of two is performed in a cycle. The timing 
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schemes of these two versions of systolic priority queue 
were shown in Reference 11. As illustrated there, the new 
type of queue can be twice as fast as the original queue 
when completing the same jobs. This new systolic pri- 
ority queue is well defined, so that it can be easily 
extended to an N-input systolic priority queue. For prac- 
tical purpose, N is usually equal to 2*, with b 2 0. The 
generalised systolic priority queue is shown in Fig. 3. In 

. . . . .  
'N-1 

Fig. 3 
In each stage, the b s t  node among (N + I )  nodes should reside at the first place, 
e.g.atP,,+ ,,,.,, wheninstagei 

Generalised (N-input) systolic priority queue 

this scheme, the former ith processors, where 
0 < i < N - 1, are treated as the 1/0 ports, and N nodes 
are inserted at a time. All nodes are shifted N positions 
down and the best node in each group of (N + 1) nodes 
is kept in the first place, among the (N + 1) positions. 
That is, the best node in positions (N + l)i - 1 to 
(N + 1Xi + 1) - 2 should reside at position (N + l)i - 1, 
fori  > 1. 

The assertion that the single-input queue always deliv- 
ers the best node is examined in Reference 8, where it is 
generalised here to any N-input queue whose mechanism 
is similar to the linear or the new systolic priority queue. 

Theorem I :  In the SR systolic priority queue, after any 
number of insertion or deletion operations, the ith good 
node is stored in some register A,, where 1 Q k < 2i - 1 
C81. 

Theorem 2:  For an N-input systolic priority queue, after 
any number of insertion or deletion operations, the ith 

Fig. 2 Systolic priority queue 
a Block diagram 
b Insertion and shifting down two positions (only relevant parts arc shown) 
e Triplet sorting (only relevant parts are shown) 
d Extract the k t  node and shift up one position (only relevant parts are shown) 

Purposes of this step 

Fig. 2b 
Insert two new nodes 
Shih down two wsitions 

Corresponding operations 

No - Po, N, - P,; and 
P,. - P ,,., , P3,*. - P.. .-; i B 0 

Fig. 2c 
Node rearrangement 
(Triplet soning) 

P,,., c best(P,,., , P,, , P,,,,}, i b 1 
Pa,, P,,,, + t h e  other smaller two nodes 

Fig. W 
Enract best node 
Shift up one position 

P, - Po, P,,, - P, ,  i b 2. Po extracted out 

e Example of operations in a systolic priority queue 
In ((1, b) Insert a and b 
S-D Shift two positions down 
SLU Shift one position up 
E Extract best node 
TS Triplet sorting 
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good node is stored in some processor P,, where 
N 6 k < (N + l)i - 1. 

Proof of Theorem 2: This theorem is proved by induction 
as follows. The first several steps can be easily checked by 
observation, and so we may assume that after m steps of 
operation the ith good node resides in processor P,, 
where N < k 6 ( N  + 1)i - 1. We must then prove that it 
is still true at the (m + 1)th step. 

A Assume that the (m + 1)th operation is an insertion. 
It can be seen that, although N new nodes are inserted, 
the best node in the queue will still appear at P,. Now 
consider the position for the ith good node, where i 3 2. 
At first, if the ith good node before operation resides in 
P, ,  where N < k < (N + 1Xi - 1) - 1, then after the new 
N nodes have been inserted this node will still reside 
somewhere before the ((N + 1)i - 1)th position; this is a 
legal position no matter what nodes are inserted (it 
should be noted that when i = 2, the present case will not 
occur). On the other hand, if the ith good node resides in 
PI, with (N + l)(i - 1) Q k < ( ( N  + l)i - l), then after N 
new nodes having been inserted and node-rearranging 
having been completed, this node will reside at position 
P,, with k equal to (N + l)i - 1. This is because the 
other nodes to be compared with this previous ith good 
node all have ranks higher than i, otherwise Theorem 2 is 
violated at the mth step. As the new rank of this node will 
not be lower than i, this is again a legal position. 

B Assume that the (m + 1)th operation is a deletion. 
By the property of Theorem 2, it is easily seen that when 
the previous best node is deleted and the nodes are 
rearranged, the new best node will certainly appear at the 
first position P,. As the previous second good node is 
originally at P, with N + 1 ,< k 6 ( N  + 1)2 - 1, after 
shifting all nodes one position up this node will appear 
somewhere among the first (N + 1) positions, i.e. at some 
P, with N < k < ( N  + 1)2 - 2. Thus after rearranging 
nodes, this new best node will certainly reside at P ,  . 

Now consider the position for the ith good node. As 
above, we assume that Theorem 2 holds for the previous 
m steps, and wish to prove that it still holds at the 
(m + 1)th step. At first, if the previous ith (i 3 3) good 
node resides at P ,  with N < k < (N + l)(i - 1)  - 1, then 
after shifting one position up and rearranging nodes, it 
can still reside at a legal position. This is because index k 
of the new position P ,  is always less than 
(N + l)(i - 1) - 1, which is the largest legal position for 
the (i - 1)th good node (new rank for that node). On the 
other hand, if the previous ith (i 2 3) good node resides 
at Pk with (N + 1Xi - 1) - 2 < k < ( N  + l)i - 1, then 
after shifting one position up and rearranging nodes, that 
node will appear at P, with k equal to (N + 1)(i - 1) - 1. 
This is because, in the rearrangement the nodes to be 
compared with the previous ith good node are exactly 
those nodes located originally at some P ,  with 
(N + 1)(i - 1) - 2 < k < (N + l)i - 1. According to the 
property of Theorem 2, their ranks are all higher than i. 

From A and B, it can be seen that Theorem 2 still 
holds at the (m + 1)th step. By induction, Theorem 2 is 
always true after any number of steps of the algorithm. 

The linear systolic priority queue [8] and the new 
systolic priority queue [11] may be viewed as special 
cases of Theorem 2, with N being 1 and 2, respectively. 
The structure of the case with N equal to 2 will be 
adopted to implement the algorithm developed in this 
paper. It is also found that the node arrangement is the 
key for good nodes to go forwards and the bad nodes to 
go backwards. If the node rearrangement is inhibited 
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somewhere in the queue for each other cycle, then the 
data flow there will be controlled to allow only backward 
transmission. This is important for implementing the 
algorithm introduced here. 

3 Erasure-free decoding 

In the decoding process, the stack seqential decoder goes 
back and forth in the code tree to search for the correct 
path, and so the received sequence must be stored in an 
input buffer for later processing. If very long searches 
occur the input buffer will overflow, causing erasure to 
take place because the data are lost [l]. The decoding 
effort of a seqential decoder is a random variable with a 
Pareto distribution, i.e. the probability P(C > N) that the 
number of computations C exceeds N decreases for large 
N is proportional to N -?, i.e. 

(1) 
where cp depends on the channel and the rate R only, and 
C,, is a constant [9, 12, 1.31. Because of this property, no 
matter how large the computation effort and the input 
buffer, there are always some code words that cannot be 
decoded completely, and so the erasure problem due to 
buffer overflow always exists. In fact, the erasure prob- 
ability becomes the major limitation on the performance 
of the code, because the error probability of sequential 
decoding can be made arbitrarily low [14]. 

Several methods have been proposed to reduce the 
erasure probability [7, 161, but the BER performances 
associated with these methods are also degraded. On the 
other hand, the generalised stack algorithm (GSA) pro- 
posed by Haccoun and Ferguson [15] is a method that 
reduces the erasure problem with no side effects. Further- 
more, the MSA proposed by Chevillat and Costello [9] is 
also successful in conquering the problem. It is found 
that, by using GSA, lower bit error probability and 
erasure probability can be achieved by extending several 
nodes at the top of the stack simultaneously. Also, the 
variability of computation distribution is reduced. Thus 
better performance is achieved by multiprocessing, using 
less computation time and less memory. However, the 
erasure probability can not be completely alleviated with 
GSA, because the required computation effort is still 
Pareto-distributed [15]. 

The MSA is a method for completely erasure-free 
decoding. Unlike the stack algorithm, it requires a large 
first stack and many smaller stacks. Furthermore, during 
the decoding process many tentative results may be 
reached and be stored in a special register, which always 
keeps the best decision up to date. The mechanism of the 
MSA is illustrated in Fig. 4 and briefly described below. 
3.1 Mechanism of the MSA 

Step 1:  The decoding begins in the first stack. As with 
the traditional stack sequential decoder, if a terminal 
node of the tree is reached before the first stack is full, the 
decoding is completed. However, if the first stack is full 
before the end of the tree is reached, the top T nodes are 
transformed to a stack of rank 2, and decoding continues 
there. 

Step 2: Assume that the present stack is of rank i, 
i 3 2. As decoding continues, two things may happen (it 
is important to note that the i is redeclared each time, 
and should not be confused with the rank of the previous 
operating stack). 

Case A:  If the stack is full before the end of the tree is 
reached, the top T nodes will be transferred to the stack 

P(C > N )  = C,,N-' 
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of rank (i + l), and decoding continues there. Go to step 
2. 

Case E: If a terminal node of the tree is reached, this 
node is treated as a tentative result. The tentative result 

extend top node in stack 
I 

decision top T nodes 

Output decision 
previous stack 

stack 

Fig. 4 Multiple-stack algorithm 

may be stored in a special register, if this result is better 
or if the register is empty. After that, the present stack 
will be cleared and decoding continue in the stack of 
rank ( i  - 1). Repeat step 2. 

Step 2 will be repeated until the present rank is 1 and 
a tentative result is obtained there. That is, a terminal 
node is reached in the first stack. The only other case to 
terminate the decoding process is when the computation 
limit is reached. 

In the MSA, every time a stack is full some nodes at 
the top are transferred to a higher-rank stack newly 
formed for further extension. Then only subsets of paths 
in the code tree, which are more likely to be correct, will 
be searched immediately. Thus, the decoder can go 
deeper and deeper into the tree after each transfer 
between stacks, so that the time needed to obtain a 
tentative decision is shortened. If U denotes the number of 
stacks formed before the first tentative decision is 
obtained, then the probability P(u > U) that U exceeds U 
will decrease exponentially for sufficiently large values of 
U. Then the number of computations C, executed before 
stack U overflows is given by [9] 

C” = z1 - 1 + (U - 1)(z - T )  (2) 
where 2 denotes the size of the higher-rank stack, Z ,  is 
the size of the first stack and T is the number of trans- 
ferred nodes. From these two properties, it follows that 
P(C > CO), i.e. the probability that the number of compu- 
tations C required for reaching the first tentative decision 
exceeds C,, will decrease exponentially with C,. 
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The MSA and the stack algorithm can be illustrated 
from another viewpoint, as shown in Fig. 5. In the stack 
algorithm, any proper node can be fetched for further 
extension, i.e. nodes at any place may ‘flow’ to the branch 

single slack 

0 
higher-rank 

stage I SlOge2 slage3 ..... stogen-l stogen 
b 

primary 
queue 

secondory queue 

I I I I I 
I I I I I 

I I I I I 
stage I stoge2 stage3 ..... stogen-l stogen 

C 

Fig. 5 
a Stack algorithm 
b Multiple-stack algorithm 
c Compressed multiple-queue algorithm 

Decoding trees for algorithms and the memory configuration 

extender. In the MSA, however, such flow direction will 
sometimes be inhibited. For example, when nodes are 
transferred to higher-rank stacks, decoding is continued 
there. Thus nodes not transferred will not be processed 
now, i.e. cannot ‘flow’ to the branch extender. Because of 
this, when the decoder goes through the decoding tree 
and reaches stages with fewer nodes (see Fig. 5), decoding 
in the MSA will become much faster, reaching the end of 
the tree quickly. Unlike most methods designed for 
remedying the erasure problem, the MSA can perform at 
least as well as the single-stack algorithm and be totally 
erasure-free [9]. However, it still has the problem of 
requiring too large a memory and using sorting to 
rearrange nodes. 

Systolic priority queue technology can remedy the 
sorting problem in the MSA but many queues will be 
required, thereby causing a serious problem. As every 
queue needs an 1/0 port of several tens of bit-lines per 
queue, multiple queues will require multiple 1/0 ports, 
thus leading to tremendous 1/0 bandwidth. For example 
[SI, if the size of the newly formed stack is chosen to 
contain 11 elements, the total stacks needed are about 
20-30, which means that about lo00 bit-lines will be con- 
nected between the memory and the branch extension 
unit. This requirement for many stacks will become even 
more serious if more information bits are to be trans- 
mitted in a frame. Such a result will make layout routeing 
unrealisable, or else a very complex 1/0 switching control 
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mechanism must be incorporated to implemeiit the algo- 
rithm. Furthermore, only one stack is active at a time for 
the MSA, and so it will make little difference when paral- 
lel processing techniques are adopted. The large memory 
size required in the MSA, usually in the range of 3000- 
5000 [SI, is another problem to implementing the algo- 
rithm with the systolic priority queue, because the result 
may become infeasible. 

4 ’ Compressed multiple queue algorithm 

Because the arrangement of 1/0 ports is very complicated 
and vast memory space is necessary for the MSA, it is 
impractical to implement it using a systolic priority 
queue. Here we present an algorithm that saves these two 
resources while still keeping the desirable performance of 
the MSA. This is called the compressed multiple queue 
algorithm (CMQA), as it uses only two queues to process 
the jobs traditionally processed by multiple stacks. 

4.1 Operating principle of CMQA 
The key requirement for the MSA to be erasure-free 
restricts the node searching operation to the deeper 
subtree, so that it can reach a terminal node quickly. 
Thus it seems unnecessary to keep the nodes visited for 
each searching iteration in so many separate stacks (Fig. 
5 4  that is, the nodes being processed now can be kept in 
a small stack, and all nodes already visited may be stored 
in a large stack. 

In the CMQA, when the small stack is full the worst 
nodes are shifted out and put into the large stack, so that 
decoding can continue in the small stack. Therefore, the 
multiple stacks required by the MSA are compressed into 
two, a small primary stack and a large secondary stack. 
In such a scheme, the primary stack always operates as 
the newest stack in the MSA, whereas the secondary 

stack always ‘absorbs’ the other stacks which are not cur- 
rently being used. 

Although an extra operation for stack compression is 
needed in CMQA, this algorithm will be more time- 
saving than the MSA. This is because, when implement- 
ing the CMQA with the systolic priority queue, the 
formation and compression of multiple stacks can be 
completed at the same time and at the same memory 
locations. The flowchart of the CMQA introduced below 
is shown in Fig. 6. For easy comparison with the MSA, 
the memory used in this algorithm is also referred to as a 
‘stack’; however, it is actually a systolic priority queue. 

4.2 Mechanism of the CMQA 
S t e p  1 : At the beginning the operation is conducted in 

a large stack. If a terminal node is reached before the 
stack is full, the decoding results are the same as the 
single-stack algorithm. If the stack is full, go to step 2. 

S t e p  2: Partition the original stack used in step 1 into 
two parts. Of these, the smaller stack is called the 
primary stack and contains the nodes from the top of the 
original stack. The other is called the secondary stack, 
and is usually much larger than the primary stack. 

S t e p  3 :  Extend the top nodes in the primary stack and 
then rearrange the extended new nodes and the nodes in 
the primary stack. At the same time, rearrange the nodes 
overflowed from the primary stack and the nodes in the 
secondary stack. If a tentive decision is obtained in the 
primary stack, go to step 4; otherwise, repeat step 3. 

S t e p 4 :  If a tentative decision is obtained in the 
primary stack, clear the primary stack and then merge 
the primary stack with the secondary stack. Now, the 
merged stack is the same as the original stack used in 
step 1. 

S t e p  5 :  If the stack is full again, go to step 2. Other- 
wise, decoding will continue in this stack. The only con- 

@ 

place root node In 

t I extend top nodes in queues I- 
1 

ond 
secondary queues 

secondary queues 
(to form the original queue) 

Fig. 6 
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dition for terminating the decoding procedure is when a 
tentative decision is obtained during step 5, or when it 
reaches the computation limit. 

Examining the procedures for obtaining the first 
tentative decision in the CMQA and the MSA, it is found 
that the major operations are conducted in the primary 
stack (or the highest-rank stack in the MSA). Because of 
this similarity, it is reasonable that properties 6 and 7 in 
Reference 9 and eqn. 2 hold for the CMQA (if U in eqn. 2 
is replaced by the number of stacks ‘absorbed’ by the sec- 
ondary stack). Thus the computation effort required by 
the CMQA to reach the first tentative decision is also 
exponentially distributed. 

4.3 Implementation of CMQA 
As the mechanisms in the above five steps are realised 
with the systolic priority queue, stacks will be referred to 
as queues in the following; for example, the primary 
queue and the multiple-queue algorithm (MSA imple- 
mented with the queues). 

At first, if the original stack is replaced by a queue in 
step 1, the algorithm will become a single-stack algorithm 
implemented with a queue as in Reference 11. In step 2, 
the original queue is partitioned into two parts. As all 
nodes still stay where they are in the original queue, no 
node transfer or other operations actually occur. There- 
fore no time or hardware redundancy will be required in 
the queue partition. The operations in step 2 are similar 
to the multiple-queue algorithm: that is, a new queue is 
formed and the top nodes are simultaneous transferred 
into it. However, the size of this new queue is usually 
smaller than those used in the multiple-queue algorithm. 

In step 3, two things are to be completed: the first is to 
extend the top node in the primary queue and then 
rearrange the newly extended nodes and the nodes in the 
primary queue; and the second is to reorder the nodes 
overflowed from the primary queue with those in the sec- 
ondary queue. 

Rearranging nodes simultaneously in the secondary 
queue is of crucial importance for this algorithm, as a 
terminal node may be obtained in the primary queue at 
any time and the primary queue will be cleared. Simul- 
taneously completing these two jobs is difficult for tradi- 
tional technology, but is easy with the parallel processing 
capability of the systolic priority queue. Furthermore, no 
compression or formation of queues actually happens, 
although some extra control signals are necessary. 

The arrangement of control signals and the partition 
of queues is illustrated in Fig. 7. At first, as shown in Fig. 
7a, to form the primary queue the nodes P ,  in the orig- 
inal queue (where k < 3i + 2, i may be 1 ,2  or some other 
small integer) are now declared to belong to the primary 
queue. The other nodes in the original queue then belong 
to the secondary queue. As the declaration is an abstract 
idea, the node positions for the primary queue will 
change with time. For example, when all elements are 
shifted two positions down, the primary queue is also 
shifted down, as shown in Fig. 76. Also, when all nodes 
are shifted one position up, the primary queue and the 
secondary queue are shifted up, as shown in Fig. 7c. The 
reason the index k for P ,  is at first chosen to be 
k = 3i + 2 is that, shifting two positions down, the 
primary queue contains exactly triplets of processors (see 
Fig. 7b), so that the node reordering operation can be 
conducted independently in both the primary queue and 
the secondary queue. 

However, after all nodes have been shifted up, if the 
node reordering operation is conducted everywhere as 
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usual it becomes meaningless to distinguish the primary 
queue from the secondary queue. This is because, at this 
time, if the reordering operation occurs on the boundary 
between these two queues, e.g. P,-P, in Fig. 7d, nodes in 
T - - - - - T - - - - - - - - - - - - - -  
,poo p 2 0  p 5 0 ,  o o o o o o 
l p l o  ~ 3 0  6 6 0 ’  o o o o o o ...... I 

prlmory queue secondary queue 
b 

- - - - - - - - 

poo pzo ~ 5 0 :  o o o o o o 
‘10 ‘ 3 0  ‘ 6 0 ;  o o o o o o 

p 4 0 ~ p 7 0  o o o o o o 
I 

- - - - J  
primary queue secondory queue 

C 

- - - - - - - lnhlblt signals 

poo p 2 0  p5 0 0 0 0 0 0 

plo p 3 0  p6 go 0 0 0 0 o.... 
p ~ o ; p 7 0  0 0 0 0 0 

- - - - - A  
primary queue secondary queue 

d 
Fig. 7 The queues 
a Division into primary and secondary queues 
b Shifting both queues two positions down 
e Shifting both queues one position up (bold line indicates the boundary between 
queues) 
d Adding the inhibit signals 

the secondary queue may go into the primary queue. 
Thus the decoding operations will not be confined within 
a certain subtree, and the decoder may no longer be 
erasure-free. 

To prevent the elements in the secondary queue from 
getting into the primary queue, the second node reorder- 
ing operation (i.e. the reordering operation immediately 
after the ‘shift one position up’ operation) should be 
inhibited on the boundary between two queues. Inhibit 
signals are used for blocking the paths for node exchang- 
ing on the boundaries of queues, as shown in Fig. 7d. By 
enabling or disabling the inhibit signals, the operations in 
step 2 and step 3 can be conducted on a systolic priority 
queue. With such inhibition, nodes in the primary queue 
can still flow to the secondary queue. (As can be seen, P ,  
in Fig. 7d belonging to the primary queue will belong to 
the secondary queue in Fig. 7c, i.e. in the next iteration.) 
However, nodes in the secondary queue can no longer get 
into the primary queue. To merge the queues, as required 
in steps 4 and 5, the inhibit signals are completely dis- 
abled and the original queue can work normally again. 
With these modifications, the CMQA can be easily 
implemented with the systolic priority queue. 

4.4 Memory considerations 
As in the MSA, the control of memory space is a problem 
for the CMQA. In general, the requirements of large 
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memory space are usually found in the traditional stack 
sequential decoders. However, in a practical stack 
sequential decoder, the control of memory space is 
simpler. The penetration depths of a correct path in 
stacks has been studied in Reference 17. It is found that 
the correct path usually stays near or at the top of a 
stack. Thus the possibility of correct node loss can be 
eliminated with moderate memory size. 

Because limited memory is used to implement the 
CMQA, overflow must be allowed in the original queue 
to achieve better performance. The original queue works 
until it is divided into two queues, and so its performance 
will be determined by the queue division time & . Differ- 
ent times to divide the original queue will result in quite 
different performances. For example, if the queue division 
time & is set too small, the probability of the correct 
path not being found will greatly increase and, worse, the 
correct node may be lost forever. On the other hand, if 
the orignal queue is maintained for a moderate duration 
even though it overflows, the BER performance will be 
better. However, because the computation time is also 
limited in the CMQA, too-late division of queues will 
increase the possibility of incomplete decoding. To mini- 
mise the probability of losing the correct node, and at the 
same time to avoid incomplete decoding, & should be 
chosen carefully so that it is large enough but below 
some upper bound. This upper bound is derived as 
follows. 

Every time the primary queue is formed, N nodes are 
transferred to the queue. Then, in the worst case, to make 
a possible correct path in this queue one branch deeper 
into the tree may require N computations. If nodes in the 
primary queue are all very close to the root at the begin- 
ning, then at a conservative estimate it will require 
N x (depth ofdecoding tree) iterations of computation to 
reach a tentative decision, i.e. to avoid incomplete decod- 
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Connections between Jour-processor C M Q A  for further com. 

ing. Accordingly, subtracting this estimated value from 
the computation limit Climi,, the upper bound of queue 
division time Td can be determined. For example, in the 
computer simulations shown later, N = 4 and depth of 
decoding tree = 500, so that & may be chosen to be (C,,,,, 
- 2000) or smaller. 

Multiprocessing is a way to improve memory usage 
efficiency and increase tree searching speed [lS]. 
However, it is not easy to adopt in the CMQA, because 
the systolic priority queue can extract only the best node, 
but it will require more than one node in a 
multiprocessor-type CMQA. Our approach to solving 
the problem is to use one queue for each processor. The 
multiprocessor-type CMQA is shown in Fig. 8A; four 
processors and four queues are used in this example. The 
double arrowed lines shown in the Figure indicate that 
further comparisons are required between queues. These 
are of crucial importance if better performance is desired. 
As illustrated in Fig. 8B, although not all of the best four 
nodes are obtained in each turn, the performance will be 
better than when no further comparisons are included. 
The reason is that good nodes usually fall into some 
queue, and without these further comparisons other good 
nodes may be buried under the best node in that queue. 
With further comparisons, these good nodes can appear 
at the top of other queues. A graphic example to illus- 
trate this idea is shown in Fig. 8C. Computer simulations 
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If further comparisons of top queue elements between queues are adopted, other 
better nodes can be found 
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Fig. 8C Example to illustrate the benefit offurther comparisons in the 
multiprocessor version oJCMQA 
The top example shows the wont case if no further comparison is used (where 
Ai > Aj, whenever i > j ) .  In this case, the top nodes selected for further extension 
are nodes of rank one, five, nine, and thirteen. This is because nodes of rank two, 
three, and four are 'buried' by that of rank one 
The lower example shows that if the simple configuration shown in Fig. l a  is used, 
the order of these nodes will become as above. Note that the nodes of rank one, 
two, three and four are all selected 
(The dashed line is used to illustrate the paths connected for comparison) 
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prove that good performance can be achieved with this 
scheme. 

4.5 Speed considerations 
The following compares the operation speeds of the 
CMQA and the MSA. As some circuit design tricks are 
adopted in the implementation of a systolic priority 
queue, and there is still no practical implementation for 
the MSA, some assumptions are necessary to make the 
following comparisons more fair. First the node reorder- 
ing operation is extracted from the integrated operation 
of a systolic priority queue. This is because the speed of 
this operation is crucial for the total speed of a single- 
stack algorithm and the MSA. However, it is important 
to note that, for a real VLSI circuit of a systolic priority 
queue, all node reordering and node shifting operations 
are conducted in parallel with the best-node retrieving 
(READ) and the new-node insertion (WRITE) oper- 
ations. That is, only the time delay for one READ and 
one WRITE is required during a decoding cycle for a 
systolic priority queue. Secondly, it is assumed that the 
sorting operation in the MSA is replaced by the best 
node searching operation. Furthermore, it is assumed 
that the comparators used in the MSA are as many as 
required, although in fact only one processor is usually 
used. Using the comparators to find the best of N nodes 
Dog, N1 iterations are required, where [a ]  is the 
minimum integer greater than a. Thus 2*rlog, 31 iter- 
ations are required for the CMQA. For the MSA, 
[log, Zi l  iterations are required, where Zi is the size of 
the ith rank stack that the MSA is working on. The oper- 
ations required for the CMQA and the MSA during one 
decoding cycle are shown in Table 1. It is found that the 

Table 1 : Operations for the CMOA and MSA during one 
decoding cycle 

CMQA CMQA MSA MSA 
(when the (when using (when using (when using 
queue is the high-rank the first the high-rank 
not divided) memory) stack) memory) 

1 READ l R E A D  lREAD 1 READ 
1 WRITE 1 WRITE 1 WRITE 1 WRITE 
4 comparisons 4 comparisons 10 comparisons 4 comparisons 

(size of the first (size of the high 
stack=l000) rank stack=ll)  
11 comparisons 
(size of the first 
stack = ZOO01 

MSA is slower than the CMQA even with similar imple- 
mentation technology. If the practical circuit is taken into 
account, the speed of the CMQA will be faster (only one 
READ and one WRITE). 

5 Computer simulations and discussion 

The performance of the CMQA is evaluted by computer 
simulation. The MSA was also simulated under identical 
conditions for comparison. A convolutional code with 
rate R equal to 1/2 and constraint length L equal to 15 
was used, where the generator polynomials were 

Gl(X) = 1 + X + X4 + X 6  + X7 + X 8  

+ X'O + X" + X I 3  + X I 5  

+ X I 2  + X14 + X'5 

G2(X)  = 1 + X 3  + X6 + X7 + X 8  + X I o  

All coded data sequences were transmitted through the 
same binary symmetric channel with white Gaussian 
noise; 500 bits per frame were transmitted. 
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The performances of the CMQA decoder with differ- 
ent queue division time & and memory size are illus- 
trated in Fig. 9A. Unlike most stack sequential decoders, 

10-2. 

P, 10-3. 

1 0 . ~ -  

Fig. 9A 
CMQA 
-a- curw 1 

-0- curve2 

Influence of queue division time Td on the performance of 

(SO0 elements; '& = n00) 
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(800 elements; q = 2100) 

(loo0 elements; '& = 2400) 

(800 elements; '& = 3200) 

-A- N N e 3  

-A- curve4 -.- curve5 

-0- curve6 

the CMQA decoder with a larger memory does not 
always perform better than those with a smaller memory. 
For example, the performance shown by curve 2, which 
corresponds to a decoder with lo00 queue elements, was 
poorer than those shown by curves 4 and 6, which 
correspond to the decoders with 800 queue elements. 
This illustrates that the queue division time '& will influ- 
ence the BER performance. In curve 2, queue division 
took place just after the queue overflowed. However, in 
curves 4 and 6, queue division took place after the queue 
had overflowed thousands of times. As shown in the pre- 
vious Section, the upper bound to ensure erasure-free 
decoding in these simulations was 2096(3 = Climit 
- N*Depth of the coding tree, where Climir was 4096, N 

was 4 and depth of the coding tree was 500). In curve 6, & 
was much larger than this, so that erasures sometimes 
occurred. In curve 5, although & was slightly larger than 
the bound, no erasure occurred during the simulation. 
This is because the bound was derived under the worst 
case; in most cases this would not happen. 

The performance of the multiprocessor-type CMQA is 
shown in Fig. 9B, where the performance of the single- 
processor CMQA shown by curves 4 and 5 in Fig. 9A is 
duplicated for comparison. A four-processor CMQA is 
used here. As each processor corresponds to one systolic 
priority queue, four systolic priority queues are used. 
Using the same the total memory, the size of each queue 
is one-quarter of that in the single-processor-type 
CMQA. In a multiprocessor type CMQA, the deter- 
mination of the queue division time is more important 
than in the single-processor CMQA. If the queue division 
time is selected to be equal to the queue overflow time, as 
shown by curve 1 in Fig. 9B, the performance will 
become very poor. The performances shown in curves 3 
and 5 are good, but erasures sometimes occurred because 
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single-processor-type CMQA, it is found that the multi- 
processor CMQA can achieve better BER performance 
with the same memory sizes. 

Comparisons between the performances of CMQA 
and MSA are illustrated in Fig. 9C. Curves 2 and 4 in 
Fig. 9B are chosen for these comparisons, because they 
are truly erasure-free. In the MSA simulated here, the 
first stack is chosen to contain either 1000 or 2000 ele- 

ments, and the size for each higher-rank stack is 11 ele- 
ments. The same computation limit as that in the CMQA 
(Climir = 4096) or larger (Climir = 8192) is used. It is seen 
in Fig. 9C that the size of the first stack in the MSA has a 
great influence on its performance. The performance of 
the MSA with the first stack size equal to 2000 is better 
than that of the MSA with the first stack size equal to 
1000. For example, when S / N  is at 6 dB, the MSA with 
its first stack equal to 2000 can achieve a bit error rate of 
7.35 x lo-*, but at the same S/N the MSA with its first 
stack equal to 1000 can only achieve 2.32 x lo4. 

From Fig. 9C it is obvious that the CMQA can 
achieve better performance than the MSA, using much 

t 
4 5 6 7 

SIN 

Fig. 9C 
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Table 2: Performance comparisons for CMOA VS. MSA on the AWGN channel with (2.1, 
12) convolutional code G = 142554.773041. d,,,, = 16 

C M Q A  C M Q A  M S A  M S A  M S A  M S A  
Z,=lOOO z , = 2 0 0 0  Z,=lOOO z , = 2 0 0 0  

Computation limit 4096 4096 4096 4096 81 92 81 92 
Maximum memory used 800 1000 3112 4035 3244 41 56 
S / N = 6 d B  6.7 10-5 3.7 x 10-5 9 x 10-4 9 x 10-5 7.2 x io-1 9.5 x 10-5 
SIN = 5.5 dB 8.5 10-4 7.3 x 10-4  5.2 x 10-3 1.6 x 10-3 3.66 x 10-3 1.3 x 10-3 
SIN = 5 dB 3.6 x 7.6 x 2.1 x 10.' 8.2 x 1.0 x l o - *  6.6 x 

SIN = 4.5 dB 1.3 x 1.0 x l o - *  7.0 x l o - *  3.0. 6.6 x 3.6 x 10.' 
S/N = 4  dB 6,0xlO- '  4 .8x lO- '  1.1 " l o - '  l .Ox lO- '  1.1 x10-l  l .OxlO- '  

Table 3: Performance comparisons for CMQA vs. MSA on the AWGN channel with (4,l. 12) 
convolutional code G = 144624,52374,66754,735341, d,,- = 33 

C M Q A  C M Q A  MSA M S A  M SA M SA 
z. = 1000 2. = 2000 z. = 1000 z. = 2000 

Computation limit 4096 4096 4096 4096 81 92 81 92 
Maximum memory used 800 1000 2980 3892 1352 2000 
SIN = 6 dB 4.0 x 3.4 x 4.4 x lo- '  2.66 x 4.0 X lo- '  2.83 x lo- '  
SIN = 5.5 dB 6.0 x 5.5 x 8.5 x lo-: 6.3 x lo-: 7.0 x 5.5 x 10.' 
SIN = 5 dB 1 . 2 7 ~ 1 0 - 5  9 . 4 ~ 1 0 - 6  1 . 3 3 ~ 1 0 -  1 . 1 6 ~ 1 0 -  1.21 . i o - 5  1.11 ~ 1 0 - 5  
SIN = 4.5 dB 2.0 10-5 1.9 x 10-5 2.6 x 10-5 2.3 x 10-5 2.45 x 10-5 1 . 9 5 ~  10-5 
S / N = 4 d B  4.57 10-5 2.9 x 10-5 1.1 x 10-4 8.75 x 10-5 3.2 x 10-5 2.15 x 10-5 
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Table 4: Performance comparisons for CMOA vs. MSA on the AWGN channel with (4. 3. 9) 
convolutional code 

CMQA CMQA M SA MSA M SA MSA 
Z.=lOOO z.=2OOo Z.=lOOo z.=2000 

Computation limit 4096 4096 4096 4096 81 92 81 92 
Maximum memory used 800 1000 241 9 3221 2375 3276 
S/N=7dB 7.8 x 7.25 x 2.33 x 1.67 x 2.3 x 10.’ 1 . 4 5 ~  
S/N = 6.5 dB 2.3 x l o - *  2.1 x 6.0 x l o - *  3.6 x l o - *  6.45 x l o - *  4.25 x 
SIN = 6 dB 5.7 x 5.2 x 1.3 x 10.’ 9 . 2 ~  10.: 1.27 x l o - ’  1.06 x l o - ’  
SIN = 5.5 dB 1 . 2 8 ~ 1 0 - ’  1 .22x lO- ‘  2 . 0 9 ~ 1 0 - ’  1 . 6 9 ~ 1 0 -  2 . 2 5 ~ 1 0 - ‘  1 . 7 7 x 1 0 - ’  

less memory For example, when S/N is equal to 6 dB, 
with only 800 queue elements, the CMQA can achieve a 
bit error rate of 5 x At the same S/N, with a first 
stack of size equal to 2000 and a total memory size equal 
to 4122, the MSA can only achieve a bit error rate of 

Some simulation results of the other three convolu- 
tional codes are included in Tables 2-4. The CMQA in 
all these tables are implemented in a four-processor 
scheme. In Table 2, a (2, 1, 12) convolutional code is used. 
It is found that, except for some degradation, the BER 
performances of the CMQA and the MSA are similar to 
those for a (2, 1, 15) convolutional code. This is because 
the possibility of using higher-rank memory (i.e. the 
possibility that erasure may occur in a single-stack 
algorithm) is similar for both codes at those S/N ratios. 
In Table 3, a (4, 1, 12) convolutional code is used. 
Because this is a powerful code, the BER performance is 
much better. Furthermore, the performances of the 
CMQA and the MSA are quite close. This is reasonable, 
as the possibility of using higher-rank memory is very 
low for this code at those S/N ratios. Under these condi- 
tions, both the CMQA and the MSA operate like a 
single-stack algorithm, and the minor different in BER 
performances are due to different memory size and 
number of processors used. In Table 4, a (4, 3, 9) convol- 
utional code is used. For this code at these S/N ratios the 
frequency of using higher-rank memory is quite high for 
both the CMQA and the MSA. From Table 4 it is found 
that the BER performance for the CMQA is half or one- 
third of that for the MSA. As the bit errors here are gen- 
erated mainly in those cases where higher-rank memories 
are used, the improvement that the CMQA can achieve 
over the MSA is clear. Thus the CMQA can achieve 
better BER with less memory than the MSA and is more 
I/O efficient. 

7.35 x 10-5. 

6 Conclusion 

The systolic priority queue has been shown to be a prom- 
ising technique for implementing a high-speed single- 
stack sequential decoder. A compressed multiple queue 
algorithm (CMQA) is introduced to implement an 
erasure-free decoder with the systolic priority queue. 
Owing to the two-stack scheme proposed for the CMQA, 
the 1/0 is much simpler than that required in the 
multiple-stack algorithm. Furthermore, except for some 

extra control signals required, the implementation for the 
CMQA with the systolic priority queue is as easy as that 
for the traditional single-stack algorithm. Computer 
simulations show that the CMQA can achieve similar 
performance to that of the MSA, using only one-quarter 
to one-third the memory space. 
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