
Sequential decoding of convolutional codes by a
compressed multiple queue algorithm

H.-C. KUO
C.-H. Wei

Indexing terms: Convolutional codes, Sequential decoding algorithms

Abstract: The conventional multiple stack algo-
rithm (MSA) is an efficient approach for
solving erasure problems in sequential decoding.
However, the requirements of multiple stacks and
large memory make its implementation difficult.
Furthermore, the MSA allows only one stack to
be in use at a time: the other stacks will stay idle
until the process in that stack is terminated. Thus
it seems difficult to implement the MSA with
parallel processing technology. A two-stack
scheme is proposed to achieve similar effects to
the MSA. The scheme greatly reduces the loading
for data transfer and 1/0 complexity required in
the MSA, and makes parallel processing possible.
An erasure-free sequential decoding algorithm for
convolutional codes, the compressed multiple-
queue algorithm (CMQA), is introduced, based on
systolic priority queue technology, which can
reorder the path metrics in a short and constant
time. The decoding speed will therefore be much
faster than in traditional sequential decoders using
sorting methods. In the CMQA, a systolic priority
queue is divided into two queues by adding control
signals, thereby simplifying implementation. Com-
puter simulations show that the CMQA out-
performs the MSA in bit error rate, with about
one-third the memory requirement of the MSA.

1 Introduction

Convolutional coding is a powerful error-correcting tech-
nique for communications over noisy channels [13.
Among the decoding algorithms for convolutional codes,
the suboptimal sequential decoding algorithm and the
optimal Viterbi decoding algorithm are most commonly
used. The primary difference between these is that the
Viterbi decoder uses an exhaustive trellis search in a code
tree, whereas the sequential decoder searches only parts
of this. Thus, the complexity of a Viterbi decoder grows
exponentially in proportion to the constraint length of
the convolutional code, and becomes infeasible for codes
with long constraint lengths [l-31. The sequential
decoder, however, can cope with convolutional codes of

0 IEE, 1994
Paper 12811 (ES), first received 16th August 1993 and in revised form
17th March 1994
The authors are at the Institute of Electronics and Centre for Telecom-
munications Research, National Chiao-Tung University, Hsinchu,
Taiwan, Republic of China

212

any constraint length, and is therefore especially useful in
applications where long ones are required [4, 51.

Among the several sequential decoding algorithms, the
stack or ZJ algorithm [6, 71 is quite popular. Here the
decoder always moves along the path visited with the
largest metric until it reaches the end of the code tree. A
large storage area, called the ‘stack’, is required to store
all of the paths that have been visited by the decoder.
Before paths can be further extended, those in the stack
must be sorted to find the best one. This operation is very
time-consuming, especially when a large stack is used,
and so the decoding speed of the stack algorithm is
limited [SI. Chang and Yao [8, 101 proposed an efficient
approach to alleviate this. The stack memory is replaced
by an array of processors known as a ‘systolic priority
queue’, where the reordering of nodes is completed when
they pass through. Although the metrics of nodes in such
a queue are not in decreasing order, the node with largest
metric can always be delivered quickly in a contant time,
regardless of the queue size. Recently, Lavoie et al. [111
developed a new type of systolic priority queue, which
can operate twice as fast as the standard one.

With systolic priority technology the speed of a stack
algorithm will be much faster. Another problem for a
stack algorithm is erasure due to input-buffer overflow,
which is caused by long searches in the code tree [l].
Chevillat and Costello [9] proposed a multiple stack
algorithm (MSA) to alleviate this problem, using, a large
first stack and many higher-rank stacks. The decoding is
started in the first stack; when this is full the top nodes
will be transferred to a higher-rank stack, where decoding
continues. Higher-rank stacks are usually much smaller
than the first stack, and so when decoding continues in
higher-rank stacks, the decoder can soon reach the end of
the code tree and obtain a tentative decision, which will
avoid the possibility of erasure. Although the MSA is a
powerful algorithm for erasure-free sequential decoding,
its implementation is not as easy as that of the traditional
stack sequential decoding algorithm.

In this paper we present an algorithm which can be
easily implemented with a systolic priority queue with
properties and performances similar to those of the MSA.
Systolic priority queue technology and the operations of
a queue are briefly reviewed. As directly mapping the
multiple stacks in the MSA to multiple queues will pose
many challenges, such as unbounded complexity require-
ment in memory and IjO, a compressed multiple queue
algorithm (CMQA) is proposed. This may be seen as a
modification of the MSA. The systolic priority queue is
suitable for implementing the CMQA, and its operating
principle is introduced here. Comparisons of the bit error
rate (BER) performance for both the MSA and CMQA
by computer simulations are also given.

IEE Proc -Commun., Vol. 141, No. 4 , August 1994

2 Systolic priority queue technology

One reason for the stack sequential decoder to be less
popular than the Viterbi decoder is that the very time-
consuming node reordering operation often slows down
its speed. Because of this, most practical stack sequential
decoders are implemented using the modified algorithm
proposed by Jelinek, which is called the stack-bucket
algorithm ['I]. Although this algorithm can remedy the
problem of low and variable speed in metrics reordering,
the BER performance is also degraded [I].

To avoid the sorting operation without degrading the
performance of the stack algorithm, Chang and Yao pro-
posed an approach in 1986 [S, lo] whereby the stack
memory is replaced by an array of processors. These pro-
cessors, called a systolic priority queue [lS, 191 are
arranged so as to deliver the node with maximum metric
quickly within a constant time interval. Fig. 1 shows a

A0 A, A, A3 A4 A,

insert 11
shift down
node reordering
shift up
extract 16
node reordering
insert 3
shift down
node reordering
shift up
extract 11
node reordering

:i 1 1 9

3 1 1
1 1 3

1 1 3 9
3 9
9 3

~ 7

Fig. 16
systolic priority queue

Example for the operation of the shift register scheme of a

linear systolic priority queue and an example of its oper-
ations in a shift register scheme [SI. For comparison with
the new systolic priority queue described below, the
mechanism of the shift-register (SR) systolic priority
queue is repeated here.

2. I Linear systolic priority queue [8]
The result of these operations is the insertion of one new
node X into the queue, and the delivery of the best node
in the queue. This is performed as follows

(a) Insertion of a new node X
(i) A, c X
(ii) A i + I t A i , i.e. shifting all nodes one position

(iii) rearrange the nodes so that A Z i + l > A , i + z , for
down

i > 0.
(b) Deletion of the best node

i.e. shifting all nodes one position up,
and A, will contain the best node for deletion. (Note
that A, is an 1/0 port.)

> A 2 i + 2 for
i > 0.

As these operations are completed simultaneously when
nodes travel through the processors, the time to obtain

(i) Ai c Ai+

(ii) rearrange the nodes so that

IEE Proc.-Commun., Vol. 141, No. 4, August 1994

the top node is always constant, no matter how many
processors are used. This structure efficiently remedies
the speed problem in searching for the best node.
However, this linear systolic priority queue permits only
one node at a time to go into the queue. To achieve a
faster processing speed, Lavoie et al. [11] developed a
new type of systolic priority queue, and have realised it
using a full-custom VLSI chip. Apart from a novel circuit
design for more concise operations, the processors in the
queue are rearranged so that the queue can receive two
nodes at a time and complete all operations in a single
clock cycle, thus saving much more time. An example of
the operations of this new systolic priority queue is given
in Fig. 2e. The processors in one chip are divided into
many 'slices', each consisting of three processors. Based
on the basic operations, the connections between pro-
cessors can be plotted as shown in Fig. 2a. Lines with
double arrows represent those paths which should be
able to transmit data in both directions, and will be more
complex than lines with a single arrow. To make the
mechanism of this queue clearer, each basic operation is
explained step by step as follows, with the relevant cir-
cuits shown in Figs. 2b, 2c and 2d.

2.2 New systolic priority queue [I I]
The result of these operations is the simultaneous inser-
tion of two new nodes N o and NI into the queue, and
delivery of the best node it contains. This is achieved by

(i) Insert two nodes simultaneously into the queue and
shift all nodes two positions down, as shown in Fig. 2b,
i.e.

insertion: N o + P o , NI + P I ; then,

shifting:P,i+P,i+2,P2i+, + P Z i + , , i > O .

(ii) At the same time, rearrangement is conducted in
each triplet of processors, move the best node in each
triplet to its local top position. The positions of the other
two nodes are trivial, as shown in Fig. 2c, i.e.

P3i-1 + best{P,i-,, P , i , P3i+l} , i > 1.

P , i , P3 i+ + the other two nodes.
(iii) Extract the top node from the queue. At the same

time shift the other nodes one position up, as shown in
Fig. 2d, i.e.

P , + P o , Pi+l + P i , i 2 2, Po extract out.

(Note that from (i) and (iii), Po and PI are treated as 1 /0
ports.)

(iv) At the same time, rearrange each triplet of pro-
cessors again, as shown in Fig. 2c, i.e.

P3i- l t best{P3i-,, P , i , P3i+l}, i 2 1.

P , ; , P 3 i + e the other two nodes.
Although this mechanism consists of many steps, with
some circuit design tricks they can all be merged into
two. The first consists of insertion, shifting down two
positions and triplet sorting. The second consists of
triplet sorting and shifting up one position. Thus with a
two-phase clocking scheme these steps can be completed
in one single clock cycle [ll].

In the linear systolic priority queue only a single node
is permitted to enter or exit the queue; it would therefore
require three clock cycles to retrieve the best node and
insert two succeeding nodes. Although each clock cycle
for the original queue is shorter than the new queue, the
total time required is longer because only one compari-
son instead of two is performed in a cycle. The timing

213

d

clock 1 r - - - - -
In(3,-1) I

LD;TS. [S-U;E;TS.

clock 2
I

I

I

1 3 !2i 1 7

L - - - - -
clock 3 code tree

In (3.4).

S-U:E;TS.

clock4
In(6.3).

clock 5
In (7.4).

SD;TS. r SJJ;E;E.

e

214

1
I
I
I

I
. J

schemes of these two versions of systolic priority queue
were shown in Reference 11. As illustrated there, the new
type of queue can be twice as fast as the original queue
when completing the same jobs. This new systolic pri-
ority queue is well defined, so that it can be easily
extended to an N-input systolic priority queue. For prac-
tical purpose, N is usually equal to 2*, with b 2 0. The
generalised systolic priority queue is shown in Fig. 3. In

.
'N-1

Fig. 3
In each stage, the b s t node among (N + I) nodes should reside at the first place,
e.g.atP,,+ ,,,.,, wheninstagei

Generalised (N-input) systolic priority queue

this scheme, the former ith processors, where
0 < i < N - 1, are treated as the 1/0 ports, and N nodes
are inserted at a time. All nodes are shifted N positions
down and the best node in each group of (N + 1) nodes
is kept in the first place, among the (N + 1) positions.
That is, the best node in positions (N + l)i - 1 to
(N + 1Xi + 1) - 2 should reside at position (N + l)i - 1,
fori > 1.

The assertion that the single-input queue always deliv-
ers the best node is examined in Reference 8, where it is
generalised here to any N-input queue whose mechanism
is similar to the linear or the new systolic priority queue.

Theorem I : In the SR systolic priority queue, after any
number of insertion or deletion operations, the ith good
node is stored in some register A,, where 1 Q k < 2i - 1
C81.

Theorem 2: For an N-input systolic priority queue, after
any number of insertion or deletion operations, the ith

Fig. 2 Systolic priority queue
a Block diagram
b Insertion and shifting down two positions (only relevant parts arc shown)
e Triplet sorting (only relevant parts are shown)
d Extract the k t node and shift up one position (only relevant parts are shown)

Purposes of this step

Fig. 2b
Insert two new nodes
Shih down two wsitions

Corresponding operations

No - Po, N, - P,; and
P,. - P ,,., , P3,*. - P.. .-; i B 0

Fig. 2c
Node rearrangement
(Triplet soning)

P,,., c best(P,,., , P,, , P,,,,}, i b 1
Pa,, P,,,, + t h e other smaller two nodes

Fig. W
Enract best node
Shift up one position

P, - Po, P,,, - P, , i b 2. Po extracted out

e Example of operations in a systolic priority queue
In ((1, b) Insert a and b
S-D Shift two positions down
SLU Shift one position up
E Extract best node
TS Triplet sorting

I E E Proc.-Commun., Vol. 141, No. 4, August 1994

good node is stored in some processor P,, where
N 6 k < (N + l)i - 1.

Proof of Theorem 2: This theorem is proved by induction
as follows. The first several steps can be easily checked by
observation, and so we may assume that after m steps of
operation the ith good node resides in processor P,,
where N < k 6 (N + 1)i - 1. We must then prove that it
is still true at the (m + 1)th step.

A Assume that the (m + 1)th operation is an insertion.
It can be seen that, although N new nodes are inserted,
the best node in the queue will still appear at P,. Now
consider the position for the ith good node, where i 3 2.
At first, if the ith good node before operation resides in
P, , where N < k < (N + 1Xi - 1) - 1, then after the new
N nodes have been inserted this node will still reside
somewhere before the ((N + 1)i - 1)th position; this is a
legal position no matter what nodes are inserted (it
should be noted that when i = 2, the present case will not
occur). On the other hand, if the ith good node resides in
PI, with (N + l)(i - 1) Q k < ((N + l)i - l), then after N
new nodes having been inserted and node-rearranging
having been completed, this node will reside at position
P,, with k equal to (N + l)i - 1. This is because the
other nodes to be compared with this previous ith good
node all have ranks higher than i, otherwise Theorem 2 is
violated at the mth step. As the new rank of this node will
not be lower than i, this is again a legal position.

B Assume that the (m + 1)th operation is a deletion.
By the property of Theorem 2, it is easily seen that when
the previous best node is deleted and the nodes are
rearranged, the new best node will certainly appear at the
first position P,. As the previous second good node is
originally at P, with N + 1 ,< k 6 (N + 1)2 - 1, after
shifting all nodes one position up this node will appear
somewhere among the first (N + 1) positions, i.e. at some
P, with N < k < (N + 1)2 - 2. Thus after rearranging
nodes, this new best node will certainly reside at P , .

Now consider the position for the ith good node. As
above, we assume that Theorem 2 holds for the previous
m steps, and wish to prove that it still holds at the
(m + 1)th step. At first, if the previous ith (i 3 3) good
node resides at P , with N < k < (N + l)(i - 1) - 1, then
after shifting one position up and rearranging nodes, it
can still reside at a legal position. This is because index k
of the new position P , is always less than
(N + l)(i - 1) - 1, which is the largest legal position for
the (i - 1)th good node (new rank for that node). On the
other hand, if the previous ith (i 2 3) good node resides
at Pk with (N + 1Xi - 1) - 2 < k < (N + l)i - 1, then
after shifting one position up and rearranging nodes, that
node will appear at P, with k equal to (N + 1)(i - 1) - 1.
This is because, in the rearrangement the nodes to be
compared with the previous ith good node are exactly
those nodes located originally at some P , with
(N + 1)(i - 1) - 2 < k < (N + l)i - 1. According to the
property of Theorem 2, their ranks are all higher than i.

From A and B, it can be seen that Theorem 2 still
holds at the (m + 1)th step. By induction, Theorem 2 is
always true after any number of steps of the algorithm.

The linear systolic priority queue [8] and the new
systolic priority queue [11] may be viewed as special
cases of Theorem 2, with N being 1 and 2, respectively.
The structure of the case with N equal to 2 will be
adopted to implement the algorithm developed in this
paper. It is also found that the node arrangement is the
key for good nodes to go forwards and the bad nodes to
go backwards. If the node rearrangement is inhibited

IEE Proc.-Commun., Vol. 141, No. 4, August 1994

somewhere in the queue for each other cycle, then the
data flow there will be controlled to allow only backward
transmission. This is important for implementing the
algorithm introduced here.

3 Erasure-free decoding

In the decoding process, the stack seqential decoder goes
back and forth in the code tree to search for the correct
path, and so the received sequence must be stored in an
input buffer for later processing. If very long searches
occur the input buffer will overflow, causing erasure to
take place because the data are lost [l]. The decoding
effort of a seqential decoder is a random variable with a
Pareto distribution, i.e. the probability P(C > N) that the
number of computations C exceeds N decreases for large
N is proportional to N -?, i.e.

(1)
where cp depends on the channel and the rate R only, and
C,, is a constant [9, 12, 1.31. Because of this property, no
matter how large the computation effort and the input
buffer, there are always some code words that cannot be
decoded completely, and so the erasure problem due to
buffer overflow always exists. In fact, the erasure prob-
ability becomes the major limitation on the performance
of the code, because the error probability of sequential
decoding can be made arbitrarily low [14].

Several methods have been proposed to reduce the
erasure probability [7, 161, but the BER performances
associated with these methods are also degraded. On the
other hand, the generalised stack algorithm (GSA) pro-
posed by Haccoun and Ferguson [15] is a method that
reduces the erasure problem with no side effects. Further-
more, the MSA proposed by Chevillat and Costello [9] is
also successful in conquering the problem. It is found
that, by using GSA, lower bit error probability and
erasure probability can be achieved by extending several
nodes at the top of the stack simultaneously. Also, the
variability of computation distribution is reduced. Thus
better performance is achieved by multiprocessing, using
less computation time and less memory. However, the
erasure probability can not be completely alleviated with
GSA, because the required computation effort is still
Pareto-distributed [15].

The MSA is a method for completely erasure-free
decoding. Unlike the stack algorithm, it requires a large
first stack and many smaller stacks. Furthermore, during
the decoding process many tentative results may be
reached and be stored in a special register, which always
keeps the best decision up to date. The mechanism of the
MSA is illustrated in Fig. 4 and briefly described below.
3.1 Mechanism of the MSA

Step 1: The decoding begins in the first stack. As with
the traditional stack sequential decoder, if a terminal
node of the tree is reached before the first stack is full, the
decoding is completed. However, if the first stack is full
before the end of the tree is reached, the top T nodes are
transformed to a stack of rank 2, and decoding continues
there.

Step 2: Assume that the present stack is of rank i,
i 3 2. As decoding continues, two things may happen (it
is important to note that the i is redeclared each time,
and should not be confused with the rank of the previous
operating stack).

Case A: If the stack is full before the end of the tree is
reached, the top T nodes will be transferred to the stack

P(C > N) = C,,N-'

215

of rank (i + l), and decoding continues there. Go to step
2.

Case E: If a terminal node of the tree is reached, this
node is treated as a tentative result. The tentative result

extend top node in stack
I

decision top T nodes

Output decision
previous stack

stack

Fig. 4 Multiple-stack algorithm

may be stored in a special register, if this result is better
or if the register is empty. After that, the present stack
will be cleared and decoding continue in the stack of
rank (i - 1). Repeat step 2.

Step 2 will be repeated until the present rank is 1 and
a tentative result is obtained there. That is, a terminal
node is reached in the first stack. The only other case to
terminate the decoding process is when the computation
limit is reached.

In the MSA, every time a stack is full some nodes at
the top are transferred to a higher-rank stack newly
formed for further extension. Then only subsets of paths
in the code tree, which are more likely to be correct, will
be searched immediately. Thus, the decoder can go
deeper and deeper into the tree after each transfer
between stacks, so that the time needed to obtain a
tentative decision is shortened. If U denotes the number of
stacks formed before the first tentative decision is
obtained, then the probability P(u > U) that U exceeds U
will decrease exponentially for sufficiently large values of
U. Then the number of computations C, executed before
stack U overflows is given by [9]

C” = z1 - 1 + (U - 1)(z - T) (2)
where 2 denotes the size of the higher-rank stack, Z , is
the size of the first stack and T is the number of trans-
ferred nodes. From these two properties, it follows that
P(C > CO), i.e. the probability that the number of compu-
tations C required for reaching the first tentative decision
exceeds C,, will decrease exponentially with C,.

216

The MSA and the stack algorithm can be illustrated
from another viewpoint, as shown in Fig. 5. In the stack
algorithm, any proper node can be fetched for further
extension, i.e. nodes at any place may ‘flow’ to the branch

single slack

0
higher-rank

stage I SlOge2 slage3 stogen-l stogen
b

primary
queue

secondory queue

I I I I I
I I I I I

I I I I I
stage I stoge2 stage3 stogen-l stogen

C

Fig. 5
a Stack algorithm
b Multiple-stack algorithm
c Compressed multiple-queue algorithm

Decoding trees for algorithms and the memory configuration

extender. In the MSA, however, such flow direction will
sometimes be inhibited. For example, when nodes are
transferred to higher-rank stacks, decoding is continued
there. Thus nodes not transferred will not be processed
now, i.e. cannot ‘flow’ to the branch extender. Because of
this, when the decoder goes through the decoding tree
and reaches stages with fewer nodes (see Fig. 5), decoding
in the MSA will become much faster, reaching the end of
the tree quickly. Unlike most methods designed for
remedying the erasure problem, the MSA can perform at
least as well as the single-stack algorithm and be totally
erasure-free [9]. However, it still has the problem of
requiring too large a memory and using sorting to
rearrange nodes.

Systolic priority queue technology can remedy the
sorting problem in the MSA but many queues will be
required, thereby causing a serious problem. As every
queue needs an 1/0 port of several tens of bit-lines per
queue, multiple queues will require multiple 1/0 ports,
thus leading to tremendous 1/0 bandwidth. For example
[SI, if the size of the newly formed stack is chosen to
contain 11 elements, the total stacks needed are about
20-30, which means that about lo00 bit-lines will be con-
nected between the memory and the branch extension
unit. This requirement for many stacks will become even
more serious if more information bits are to be trans-
mitted in a frame. Such a result will make layout routeing
unrealisable, or else a very complex 1/0 switching control

IEE Proc.-Commun., Vol. 141, No. 4, August 1994

mechanism must be incorporated to implemeiit the algo-
rithm. Furthermore, only one stack is active at a time for
the MSA, and so it will make little difference when paral-
lel processing techniques are adopted. The large memory
size required in the MSA, usually in the range of 3000-
5000 [SI, is another problem to implementing the algo-
rithm with the systolic priority queue, because the result
may become infeasible.

4 ’ Compressed multiple queue algorithm

Because the arrangement of 1/0 ports is very complicated
and vast memory space is necessary for the MSA, it is
impractical to implement it using a systolic priority
queue. Here we present an algorithm that saves these two
resources while still keeping the desirable performance of
the MSA. This is called the compressed multiple queue
algorithm (CMQA), as it uses only two queues to process
the jobs traditionally processed by multiple stacks.

4.1 Operating principle of CMQA
The key requirement for the MSA to be erasure-free
restricts the node searching operation to the deeper
subtree, so that it can reach a terminal node quickly.
Thus it seems unnecessary to keep the nodes visited for
each searching iteration in so many separate stacks (Fig.
5 4 that is, the nodes being processed now can be kept in
a small stack, and all nodes already visited may be stored
in a large stack.

In the CMQA, when the small stack is full the worst
nodes are shifted out and put into the large stack, so that
decoding can continue in the small stack. Therefore, the
multiple stacks required by the MSA are compressed into
two, a small primary stack and a large secondary stack.
In such a scheme, the primary stack always operates as
the newest stack in the MSA, whereas the secondary

stack always ‘absorbs’ the other stacks which are not cur-
rently being used.

Although an extra operation for stack compression is
needed in CMQA, this algorithm will be more time-
saving than the MSA. This is because, when implement-
ing the CMQA with the systolic priority queue, the
formation and compression of multiple stacks can be
completed at the same time and at the same memory
locations. The flowchart of the CMQA introduced below
is shown in Fig. 6. For easy comparison with the MSA,
the memory used in this algorithm is also referred to as a
‘stack’; however, it is actually a systolic priority queue.

4.2 Mechanism of the CMQA
S t e p 1 : At the beginning the operation is conducted in

a large stack. If a terminal node is reached before the
stack is full, the decoding results are the same as the
single-stack algorithm. If the stack is full, go to step 2.

S t e p 2: Partition the original stack used in step 1 into
two parts. Of these, the smaller stack is called the
primary stack and contains the nodes from the top of the
original stack. The other is called the secondary stack,
and is usually much larger than the primary stack.

S t e p 3 : Extend the top nodes in the primary stack and
then rearrange the extended new nodes and the nodes in
the primary stack. At the same time, rearrange the nodes
overflowed from the primary stack and the nodes in the
secondary stack. If a tentive decision is obtained in the
primary stack, go to step 4; otherwise, repeat step 3.

S t e p 4 : If a tentative decision is obtained in the
primary stack, clear the primary stack and then merge
the primary stack with the secondary stack. Now, the
merged stack is the same as the original stack used in
step 1.

S t e p 5 : If the stack is full again, go to step 2. Other-
wise, decoding will continue in this stack. The only con-

@

place root node In

t I extend top nodes in queues I-
1

ond
secondary queues

secondary queues
(to form the original queue)

Fig. 6

I E E Proc.-Commun., Vol. 141, No. 4, August 1994

Compressed-multiple queue algorithm (C M Q A)

2t7

dition for terminating the decoding procedure is when a
tentative decision is obtained during step 5, or when it
reaches the computation limit.

Examining the procedures for obtaining the first
tentative decision in the CMQA and the MSA, it is found
that the major operations are conducted in the primary
stack (or the highest-rank stack in the MSA). Because of
this similarity, it is reasonable that properties 6 and 7 in
Reference 9 and eqn. 2 hold for the CMQA (if U in eqn. 2
is replaced by the number of stacks ‘absorbed’ by the sec-
ondary stack). Thus the computation effort required by
the CMQA to reach the first tentative decision is also
exponentially distributed.

4.3 Implementation of CMQA
As the mechanisms in the above five steps are realised
with the systolic priority queue, stacks will be referred to
as queues in the following; for example, the primary
queue and the multiple-queue algorithm (MSA imple-
mented with the queues).

At first, if the original stack is replaced by a queue in
step 1, the algorithm will become a single-stack algorithm
implemented with a queue as in Reference 11. In step 2,
the original queue is partitioned into two parts. As all
nodes still stay where they are in the original queue, no
node transfer or other operations actually occur. There-
fore no time or hardware redundancy will be required in
the queue partition. The operations in step 2 are similar
to the multiple-queue algorithm: that is, a new queue is
formed and the top nodes are simultaneous transferred
into it. However, the size of this new queue is usually
smaller than those used in the multiple-queue algorithm.

In step 3, two things are to be completed: the first is to
extend the top node in the primary queue and then
rearrange the newly extended nodes and the nodes in the
primary queue; and the second is to reorder the nodes
overflowed from the primary queue with those in the sec-
ondary queue.

Rearranging nodes simultaneously in the secondary
queue is of crucial importance for this algorithm, as a
terminal node may be obtained in the primary queue at
any time and the primary queue will be cleared. Simul-
taneously completing these two jobs is difficult for tradi-
tional technology, but is easy with the parallel processing
capability of the systolic priority queue. Furthermore, no
compression or formation of queues actually happens,
although some extra control signals are necessary.

The arrangement of control signals and the partition
of queues is illustrated in Fig. 7. At first, as shown in Fig.
7a, to form the primary queue the nodes P , in the orig-
inal queue (where k < 3i + 2, i may be 1 ,2 or some other
small integer) are now declared to belong to the primary
queue. The other nodes in the original queue then belong
to the secondary queue. As the declaration is an abstract
idea, the node positions for the primary queue will
change with time. For example, when all elements are
shifted two positions down, the primary queue is also
shifted down, as shown in Fig. 76. Also, when all nodes
are shifted one position up, the primary queue and the
secondary queue are shifted up, as shown in Fig. 7c. The
reason the index k for P , is at first chosen to be
k = 3i + 2 is that, shifting two positions down, the
primary queue contains exactly triplets of processors (see
Fig. 7b), so that the node reordering operation can be
conducted independently in both the primary queue and
the secondary queue.

However, after all nodes have been shifted up, if the
node reordering operation is conducted everywhere as

218

usual it becomes meaningless to distinguish the primary
queue from the secondary queue. This is because, at this
time, if the reordering operation occurs on the boundary
between these two queues, e.g. P,-P, in Fig. 7d, nodes in
T - - - - - T - - - - - - - - - - - - - -
,poo p 2 0 p 5 0 , o o o o o o
l p l o ~ 3 0 6 6 0 ’ o o o o o o I

prlmory queue secondary queue
b

- - - - - - - -

poo pzo ~ 5 0 : o o o o o o
‘10 ‘ 3 0 ‘ 6 0 ; o o o o o o

p 4 0 ~ p 7 0 o o o o o o
I

- - - - J
primary queue secondory queue

C

- - - - - - - lnhlblt signals

poo p 2 0 p5 0 0 0 0 0 0

plo p 3 0 p6 go 0 0 0 0 o....
p ~ o ; p 7 0 0 0 0 0 0

- - - - - A
primary queue secondary queue

d
Fig. 7 The queues
a Division into primary and secondary queues
b Shifting both queues two positions down
e Shifting both queues one position up (bold line indicates the boundary between
queues)
d Adding the inhibit signals

the secondary queue may go into the primary queue.
Thus the decoding operations will not be confined within
a certain subtree, and the decoder may no longer be
erasure-free.

To prevent the elements in the secondary queue from
getting into the primary queue, the second node reorder-
ing operation (i.e. the reordering operation immediately
after the ‘shift one position up’ operation) should be
inhibited on the boundary between two queues. Inhibit
signals are used for blocking the paths for node exchang-
ing on the boundaries of queues, as shown in Fig. 7d. By
enabling or disabling the inhibit signals, the operations in
step 2 and step 3 can be conducted on a systolic priority
queue. With such inhibition, nodes in the primary queue
can still flow to the secondary queue. (As can be seen, P ,
in Fig. 7d belonging to the primary queue will belong to
the secondary queue in Fig. 7c, i.e. in the next iteration.)
However, nodes in the secondary queue can no longer get
into the primary queue. To merge the queues, as required
in steps 4 and 5, the inhibit signals are completely dis-
abled and the original queue can work normally again.
With these modifications, the CMQA can be easily
implemented with the systolic priority queue.

4.4 Memory considerations
As in the MSA, the control of memory space is a problem
for the CMQA. In general, the requirements of large

I E E Proc.-Commun., Vol. 141, No. 4, August 1994

memory space are usually found in the traditional stack
sequential decoders. However, in a practical stack
sequential decoder, the control of memory space is
simpler. The penetration depths of a correct path in
stacks has been studied in Reference 17. It is found that
the correct path usually stays near or at the top of a
stack. Thus the possibility of correct node loss can be
eliminated with moderate memory size.

Because limited memory is used to implement the
CMQA, overflow must be allowed in the original queue
to achieve better performance. The original queue works
until it is divided into two queues, and so its performance
will be determined by the queue division time & . Differ-
ent times to divide the original queue will result in quite
different performances. For example, if the queue division
time & is set too small, the probability of the correct
path not being found will greatly increase and, worse, the
correct node may be lost forever. On the other hand, if
the orignal queue is maintained for a moderate duration
even though it overflows, the BER performance will be
better. However, because the computation time is also
limited in the CMQA, too-late division of queues will
increase the possibility of incomplete decoding. To mini-
mise the probability of losing the correct node, and at the
same time to avoid incomplete decoding, & should be
chosen carefully so that it is large enough but below
some upper bound. This upper bound is derived as
follows.

Every time the primary queue is formed, N nodes are
transferred to the queue. Then, in the worst case, to make
a possible correct path in this queue one branch deeper
into the tree may require N computations. If nodes in the
primary queue are all very close to the root at the begin-
ning, then at a conservative estimate it will require
N x (depth ofdecoding tree) iterations of computation to
reach a tentative decision, i.e. to avoid incomplete decod-

-
lo processor I

-
to processor 111

to Drocessor I V

0
0

0
0
0

0
0
0

0

.......

.......

.......

q u e u e I

q u e u e I1

queue 111

....... q u e u e l V

Fig. 8A
parisons between f o p nodes in queues

I E E Proc.-Commun., Vol. 141, No. 4, August I994

Connections between Jour-processor C M Q A for further com.

ing. Accordingly, subtracting this estimated value from
the computation limit Climi,, the upper bound of queue
division time Td can be determined. For example, in the
computer simulations shown later, N = 4 and depth of
decoding tree = 500, so that & may be chosen to be (C,,,,,
- 2000) or smaller.

Multiprocessing is a way to improve memory usage
efficiency and increase tree searching speed [lS].
However, it is not easy to adopt in the CMQA, because
the systolic priority queue can extract only the best node,
but it will require more than one node in a
multiprocessor-type CMQA. Our approach to solving
the problem is to use one queue for each processor. The
multiprocessor-type CMQA is shown in Fig. 8A; four
processors and four queues are used in this example. The
double arrowed lines shown in the Figure indicate that
further comparisons are required between queues. These
are of crucial importance if better performance is desired.
As illustrated in Fig. 8B, although not all of the best four
nodes are obtained in each turn, the performance will be
better than when no further comparisons are included.
The reason is that good nodes usually fall into some
queue, and without these further comparisons other good
nodes may be buried under the best node in that queue.
With further comparisons, these good nodes can appear
at the top of other queues. A graphic example to illus-
trate this idea is shown in Fig. 8C. Computer simulations

1.0

V

2 0 8 -
m c
2 0 6
YI 01 U

0 4

A
I -
z 0 2

0 a
0.0

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ranks of n o d e s in the q u e u e

Fig. 8B
If further comparisons of top queue elements between queues are adopted, other
better nodes can be found
H further comparisons are adopted

Probabilitiesfor the top nodes to be extended

no comparison between queues

A1 A5 A9 A1 3

A2 A A3 A4 A6 /I\ A7 A8 A10 /I\ All AI2 A14 /l\ A15 A16

Fig. 8C Example to illustrate the benefit offurther comparisons in the
multiprocessor version oJCMQA
The top example shows the wont case if no further comparison is used (where
Ai > Aj, whenever i > j) . In this case, the top nodes selected for further extension
are nodes of rank one, five, nine, and thirteen. This is because nodes of rank two,
three, and four are 'buried' by that of rank one
The lower example shows that if the simple configuration shown in Fig. l a is used,
the order of these nodes will become as above. Note that the nodes of rank one,
two, three and four are all selected
(The dashed line is used to illustrate the paths connected for comparison)

219

prove that good performance can be achieved with this
scheme.

4.5 Speed considerations
The following compares the operation speeds of the
CMQA and the MSA. As some circuit design tricks are
adopted in the implementation of a systolic priority
queue, and there is still no practical implementation for
the MSA, some assumptions are necessary to make the
following comparisons more fair. First the node reorder-
ing operation is extracted from the integrated operation
of a systolic priority queue. This is because the speed of
this operation is crucial for the total speed of a single-
stack algorithm and the MSA. However, it is important
to note that, for a real VLSI circuit of a systolic priority
queue, all node reordering and node shifting operations
are conducted in parallel with the best-node retrieving
(READ) and the new-node insertion (WRITE) oper-
ations. That is, only the time delay for one READ and
one WRITE is required during a decoding cycle for a
systolic priority queue. Secondly, it is assumed that the
sorting operation in the MSA is replaced by the best
node searching operation. Furthermore, it is assumed
that the comparators used in the MSA are as many as
required, although in fact only one processor is usually
used. Using the comparators to find the best of N nodes
Dog, N1 iterations are required, where [a] is the
minimum integer greater than a. Thus 2*rlog, 31 iter-
ations are required for the CMQA. For the MSA,
[log, Zi l iterations are required, where Zi is the size of
the ith rank stack that the MSA is working on. The oper-
ations required for the CMQA and the MSA during one
decoding cycle are shown in Table 1. It is found that the

Table 1 : Operations for the CMOA and MSA during one
decoding cycle

CMQA CMQA MSA MSA
(when the (when using (when using (when using
queue is the high-rank the first the high-rank
not divided) memory) stack) memory)

1 READ l R E A D lREAD 1 READ
1 WRITE 1 WRITE 1 WRITE 1 WRITE
4 comparisons 4 comparisons 10 comparisons 4 comparisons

(size of the first (size of the high
stack=l000) rank stack=ll)
11 comparisons
(size of the first
stack = ZOO01

MSA is slower than the CMQA even with similar imple-
mentation technology. If the practical circuit is taken into
account, the speed of the CMQA will be faster (only one
READ and one WRITE).

5 Computer simulations and discussion

The performance of the CMQA is evaluted by computer
simulation. The MSA was also simulated under identical
conditions for comparison. A convolutional code with
rate R equal to 1/2 and constraint length L equal to 15
was used, where the generator polynomials were

Gl(X) = 1 + X + X4 + X 6 + X7 + X 8

+ X'O + X" + X I 3 + X I 5

+ X I 2 + X14 + X'5

G2(X) = 1 + X 3 + X6 + X7 + X 8 + X I o

All coded data sequences were transmitted through the
same binary symmetric channel with white Gaussian
noise; 500 bits per frame were transmitted.

220

The performances of the CMQA decoder with differ-
ent queue division time & and memory size are illus-
trated in Fig. 9A. Unlike most stack sequential decoders,

10-2.

P, 10-3.

1 0 . ~ -

Fig. 9A
CMQA
-a- curw 1

-0- curve2

Influence of queue division time Td on the performance of

(SO0 elements; '& = n00)

(1000elements; '& = Ioo0)

(loo0 elements; '& = 1800)

(800 elements; q = 2100)

(loo0 elements; '& = 2400)

(800 elements; '& = 3200)

-A- N N e 3

-A- curve4 -.- curve5

-0- curve6

the CMQA decoder with a larger memory does not
always perform better than those with a smaller memory.
For example, the performance shown by curve 2, which
corresponds to a decoder with lo00 queue elements, was
poorer than those shown by curves 4 and 6, which
correspond to the decoders with 800 queue elements.
This illustrates that the queue division time '& will influ-
ence the BER performance. In curve 2, queue division
took place just after the queue overflowed. However, in
curves 4 and 6, queue division took place after the queue
had overflowed thousands of times. As shown in the pre-
vious Section, the upper bound to ensure erasure-free
decoding in these simulations was 2096(3 = Climit
- N*Depth of the coding tree, where Climir was 4096, N

was 4 and depth of the coding tree was 500). In curve 6, &
was much larger than this, so that erasures sometimes
occurred. In curve 5, although & was slightly larger than
the bound, no erasure occurred during the simulation.
This is because the bound was derived under the worst
case; in most cases this would not happen.

The performance of the multiprocessor-type CMQA is
shown in Fig. 9B, where the performance of the single-
processor CMQA shown by curves 4 and 5 in Fig. 9A is
duplicated for comparison. A four-processor CMQA is
used here. As each processor corresponds to one systolic
priority queue, four systolic priority queues are used.
Using the same the total memory, the size of each queue
is one-quarter of that in the single-processor-type
CMQA. In a multiprocessor type CMQA, the deter-
mination of the queue division time is more important
than in the single-processor CMQA. If the queue division
time is selected to be equal to the queue overflow time, as
shown by curve 1 in Fig. 9B, the performance will
become very poor. The performances shown in curves 3
and 5 are good, but erasures sometimes occurred because

I E E Proc.-Commun., Vol. 141, No. 4, August 1994

10-1-

10.2.

10-3-

pe

10-6-

10-5-

10-6

curve 1
(loo0 elements; Td = 250)
curve a4
(single processor 800elements; 7, = 2100)

I

3 4 5 6 7

curve a5
(single processor loo0 elements; 7, = 2400)
curve 2

10-2

1 0 . ~ -

Pe

10-6

(800 elements; 7, = 2000)
curve 4
(loo0 elements; '& = 2000)
curve 3
(800 elements; 7, = 3400)
curve 5
(1000elements; 7, = 3500)

-

-

single-processor-type CMQA, it is found that the multi-
processor CMQA can achieve better BER performance
with the same memory sizes.

Comparisons between the performances of CMQA
and MSA are illustrated in Fig. 9C. Curves 2 and 4 in
Fig. 9B are chosen for these comparisons, because they
are truly erasure-free. In the MSA simulated here, the
first stack is chosen to contain either 1000 or 2000 ele-

ments, and the size for each higher-rank stack is 11 ele-
ments. The same computation limit as that in the CMQA
(Climir = 4096) or larger (Climir = 8192) is used. It is seen
in Fig. 9C that the size of the first stack in the MSA has a
great influence on its performance. The performance of
the MSA with the first stack size equal to 2000 is better
than that of the MSA with the first stack size equal to
1000. For example, when S / N is at 6 dB, the MSA with
its first stack equal to 2000 can achieve a bit error rate of
7.35 x lo-*, but at the same S/N the MSA with its first
stack equal to 1000 can only achieve 2.32 x lo4.

From Fig. 9C it is obvious that the CMQA can
achieve better performance than the MSA, using much

t
4 5 6 7

SIN

Fig. 9C
Note: ZI = first stack size; Z = total memory size
-e- curvel

-0- curve2

---A- curve 3

-A- curve4

Performance compurisons of the C M Q A us. the M S A

(MSA: Z, = 1000, Z = 3079; C,i,, = 4096)

(MSA: Z , = 1000,Z = 4112; C,,,,, = 8192)

(MSA: Z , = 2w0, Z = 3101; CLi,, = 4096)

(MSA: 2, = 2Mx), Z = 3093: C,$,,, = 8192)

(CMQA: 800 elements, 7, = 2100; C,,,,, = 4096)

(CMQA: I000elements. 7, = 2400; C,.,, = 4096)

-.- curve5

-0- curve6

Table 2: Performance comparisons for CMOA VS. MSA on the AWGN channel with (2.1,
12) convolutional code G = 142554.773041. d,,,, = 16

C M Q A C M Q A M S A M S A M S A M S A
Z,=lOOO z , = 2 0 0 0 Z,=lOOO z , = 2 0 0 0

Computation limit 4096 4096 4096 4096 81 92 81 92
Maximum memory used 800 1000 3112 4035 3244 41 56
S / N = 6 d B 6.7 10-5 3.7 x 10-5 9 x 10-4 9 x 10-5 7.2 x io-1 9.5 x 10-5
SIN = 5.5 dB 8.5 10-4 7.3 x 10-4 5.2 x 10-3 1.6 x 10-3 3.66 x 10-3 1.3 x 10-3
SIN = 5 dB 3.6 x 7.6 x 2.1 x 10.' 8.2 x 1.0 x l o - * 6.6 x

SIN = 4.5 dB 1.3 x 1.0 x l o - * 7.0 x l o - * 3.0. 6.6 x 3.6 x 10.'
S/N = 4 dB 6,0xlO- ' 4 .8x lO- ' 1.1 " l o - ' l .Ox lO- ' 1.1 x10-l l .OxlO- '

Table 3: Performance comparisons for CMQA vs. MSA on the AWGN channel with (4,l. 12)
convolutional code G = 144624,52374,66754,735341, d,,- = 33

C M Q A C M Q A MSA M S A M SA M SA
z. = 1000 2. = 2000 z. = 1000 z. = 2000

Computation limit 4096 4096 4096 4096 81 92 81 92
Maximum memory used 800 1000 2980 3892 1352 2000
SIN = 6 dB 4.0 x 3.4 x 4.4 x lo- ' 2.66 x 4.0 X lo- ' 2.83 x lo- '
SIN = 5.5 dB 6.0 x 5.5 x 8.5 x lo-: 6.3 x lo-: 7.0 x 5.5 x 10.'
SIN = 5 dB 1 . 2 7 ~ 1 0 - 5 9 . 4 ~ 1 0 - 6 1 . 3 3 ~ 1 0 - 1 . 1 6 ~ 1 0 - 1.21 . i o - 5 1.11 ~ 1 0 - 5
SIN = 4.5 dB 2.0 10-5 1.9 x 10-5 2.6 x 10-5 2.3 x 10-5 2.45 x 10-5 1 . 9 5 ~ 10-5
S / N = 4 d B 4.57 10-5 2.9 x 10-5 1.1 x 10-4 8.75 x 10-5 3.2 x 10-5 2.15 x 10-5

IEE Proc.-Commun., Vol. 141, No. 4 , August 1994 221

Table 4: Performance comparisons for CMOA vs. MSA on the AWGN channel with (4. 3. 9)
convolutional code

CMQA CMQA M SA MSA M SA MSA
Z.=lOOO z.=2OOo Z.=lOOo z.=2000

Computation limit 4096 4096 4096 4096 81 92 81 92
Maximum memory used 800 1000 241 9 3221 2375 3276
S/N=7dB 7.8 x 7.25 x 2.33 x 1.67 x 2.3 x 10.’ 1 . 4 5 ~
S/N = 6.5 dB 2.3 x l o - * 2.1 x 6.0 x l o - * 3.6 x l o - * 6.45 x l o - * 4.25 x
SIN = 6 dB 5.7 x 5.2 x 1.3 x 10.’ 9 . 2 ~ 10.: 1.27 x l o - ’ 1.06 x l o - ’
SIN = 5.5 dB 1 . 2 8 ~ 1 0 - ’ 1 .22x lO- ‘ 2 . 0 9 ~ 1 0 - ’ 1 . 6 9 ~ 1 0 - 2 . 2 5 ~ 1 0 - ‘ 1 . 7 7 x 1 0 - ’

less memory For example, when S/N is equal to 6 dB,
with only 800 queue elements, the CMQA can achieve a
bit error rate of 5 x At the same S/N, with a first
stack of size equal to 2000 and a total memory size equal
to 4122, the MSA can only achieve a bit error rate of

Some simulation results of the other three convolu-
tional codes are included in Tables 2-4. The CMQA in
all these tables are implemented in a four-processor
scheme. In Table 2, a (2, 1, 12) convolutional code is used.
It is found that, except for some degradation, the BER
performances of the CMQA and the MSA are similar to
those for a (2, 1, 15) convolutional code. This is because
the possibility of using higher-rank memory (i.e. the
possibility that erasure may occur in a single-stack
algorithm) is similar for both codes at those S/N ratios.
In Table 3, a (4, 1, 12) convolutional code is used.
Because this is a powerful code, the BER performance is
much better. Furthermore, the performances of the
CMQA and the MSA are quite close. This is reasonable,
as the possibility of using higher-rank memory is very
low for this code at those S/N ratios. Under these condi-
tions, both the CMQA and the MSA operate like a
single-stack algorithm, and the minor different in BER
performances are due to different memory size and
number of processors used. In Table 4, a (4, 3, 9) convol-
utional code is used. For this code at these S/N ratios the
frequency of using higher-rank memory is quite high for
both the CMQA and the MSA. From Table 4 it is found
that the BER performance for the CMQA is half or one-
third of that for the MSA. As the bit errors here are gen-
erated mainly in those cases where higher-rank memories
are used, the improvement that the CMQA can achieve
over the MSA is clear. Thus the CMQA can achieve
better BER with less memory than the MSA and is more
I/O efficient.

7.35 x 10-5.

6 Conclusion

The systolic priority queue has been shown to be a prom-
ising technique for implementing a high-speed single-
stack sequential decoder. A compressed multiple queue
algorithm (CMQA) is introduced to implement an
erasure-free decoder with the systolic priority queue.
Owing to the two-stack scheme proposed for the CMQA,
the 1/0 is much simpler than that required in the
multiple-stack algorithm. Furthermore, except for some

extra control signals required, the implementation for the
CMQA with the systolic priority queue is as easy as that
for the traditional single-stack algorithm. Computer
simulations show that the CMQA can achieve similar
performance to that of the MSA, using only one-quarter
to one-third the memory space.

7 References

1 LIN, S., and COSTELLO, D.J. Jr.: ‘Error control coding: funda-
mentals and applications’ (Prentice-Hall, New Jersey, 1983)

2 VITERBI, A.J., and OMURA, J.K.: ‘Principles of digital communi-
cation and coding’(McGaw-Hill, 1979)

3 CLARK, G.C., and CAIN, I.B.: ‘Error-correction coding for digital
communications’ (Plenum Press, New York, 1981)

4 CAIN, J.B., CLARK, G.C. Jr., and GEIST, J.M.: ‘Punctured convol-
utional codes of rate (n - l)/n and simplified maximum likelihood
decoding’, I E E E Trans., 1979, IT-25, pp. 97-100

5 HACCOUN, D., and BEGIN, G.: ‘High rate punctured convolu-
tional codes for Viterbi and sequential decoder’, I E E E Trans., 1989,
COM-37, pp. 1113-1125

6 ZIGANGIROV, K.: ‘Some sequential decoding procedures’, Probl.
Peredachi In$, 1966,2, pp. 13-25

7 JELINEK, F.: ‘A fast sequential decoding algorithm using a stack’,
IBM J. Res. Deu., 1969,13, pp. 675-685

8 CHANG, C.Y.: ‘Systolic array architecture for convolutional decod-
ing algorithms: Viterbi algorithm and stack algorithm’ (PhD disser-
tation, University of California, Los Angeles, 1986)

9 CHEVILLAT, P.R., and COSTELLO, D.J. Jr.: ‘A multiple stack
algorithm for erasure-free decoding of convolutional codes’, I E E E
Trans., 1977, COM-25, pp. 1460-1470

10 CHANG, C.Y., and YAO, K.: ‘Systolic array architecture for the
sequential stack decoding algorithm’, Pror. S P I E , 1986, 6%. pp.
1%-203

1 1 LAVOIE, P., BELZILE, J., TOULGOAT, M., HACCOUN, D., and
SAVARIA, Y.: ‘VLSI design of a systolic priority queue chip for
sequential decoders’. Proc. 1988 Canadian Conf. VLSI, Halifax,
Nova Scotia, Canada, 1988, pp, 1-9

12 SAVAGE, I.E.: ‘Sequential decoding - the computation problem’,
Bell Syst. Tech. J . , 1966.45, pp. 149-175

13 FORNEY, G.D.: ‘Convolutional codes 111: sequential decoding’,
lrfo. and Control, 1974,25, pp. 267-297

14 FANO, R.M.: ‘A heuristic discussion of probabilistic decoding’,
IEEE Trans., 1963, IT-9, pp. 64-74

15 HACCOUN, D., and FERGUSON, M.J.: ‘Generalized stack algo-
rithms for decoding convolutional codes’, l E E E Trans., 1975, IT-21,
pp. 63&651

16 FORNEY, G.D., and BOWER, E.K.: ‘A high speed sequential
decoder: prototype design and test’, IEEE Trans., 1971, COM-19,
pp. 821-835

17 GOULD, T.M., and HARRIS, J.H.: ‘Single-chip design of bit-error-
correcting stack decoders’, I E E E JSSC, 1992, SC-27, pp. 768-775

18 GUIBAS, L.J., and LIANG, F.M.: ‘Systolic stacks, queues, and
counters’, 1982 Conference on Advanced Research in VLSI, MIT

19 LEISERSON, C.E.: ‘Systolic priority queue’. Proc. of Caltech Conf.
on VLSI, 1979

222 I E E Proc-Commun., Vol. 141, No. 4, August 1994

