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The development of brain-computer interfaces (BCI) for multiple applications has undergone extensive
growth in recent years. Since distracted driving is a significant cause of traffic accidents, this study
proposes one BCI system based on EEG for distracted driving. The removal of artifacts and the selection of
useful brain sources are the essential and critical steps in the application of electroencephalography
(EEG)-based BCI. In the first model, artifacts are removed, and useful brain sources are selected based
on the independent component analysis (ICA). In the second model, all distracted and concentrated
EEG epochs are recognized with a self-organizing map (SOM). This BCI system automatically identified
independent components with artifacts for removal and detected distracted driving through the specific
brain sources which are also selected automatically. The accuracy of the proposed system approached
approximately 90% for the recognition of EEG epochs of distracted and concentrated driving according to
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the selected frontal and left motor components.
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1. Introduction

Numerous studies of human attention have confirmed that
multiplexed information and tasks make focusing on driving
difficult or impossible [1]. Safe automobile driving is a critical
concern throughout the world, particularly when drivers are
involved in multiple tasks that require watching for and reading
road signs, tracking the locations of surrounding vehicles, judging
when to pass others, navigating, and operating other technical
equipment in the vehicle. These additional tasks can shift atten-
tion from driving and cause cognitive functions to compete for the
brain resources required for safe driving, thus increasing the risk
of traffic accidents. According to a statistical report on driving
safety, distraction accounts for approximately 20-30% of traffic
accidents [2]. Therefore, recognizing state of drivers’ attention
during driving is extremely critical.

Because the cognitive function of attention is directly related to
competition for brain resources, the brain—computer interface (BCI),
which is based on the electroencephalogram (EEG), can be applied
[3,4]. Comparing with functional MRI (fMRI) and positron emission
tomography (PET), EEG devices are more portable and have better
time resolution. Several studies have also demonstrated that fluctua-
tions in driving and distraction are accompanied by distinct EEG
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power spectrum changes recorded noninvasively from the scalp [5,6].
EEG signals are easily influenced by artifacts, and signals from
different sources (sensors) are combined. This noise perturbation
destroys or obscures the original characteristics of the signal,
preventing the use of EEG signals in BCI applications. Therefore,
artifact-free EEG data are the limiting factor for the performance of
BCI systems. Signals with noise may become unusable; thus, signals
with noise are not acceptable in any measurement system.

Most artifact-removal methods can be categorized into one of
three types: (I) the error signal model is determined, and all
similar models are then eliminated along the time course of the
signal [7]; (II) high-frequency noises are removed by a low-pass
filter according to the frequency course [8]; and (III) the original
signal mixed with noise is separated into different instances
[9-11]. Among these methods of artifact removal, independent
component analysis (ICA) in the third type of method performs
better than other methods [12]. The aim of this study was to
remove artifacts from EEG signals with an ICA-based method.

After applying the ICA algorithm to the recorded EEG signals, the
artifact components need to be rejected manually by experts [13], and
the remaining components represent useful brain sources. There are
two drawbacks: first, the results fully depend on the availability of
experts, and the process of analyzing these selected independent
components is subjective. The analysis of some ambiguous compo-
nents would likely vary according to the experts’ judgment. Second,
the purpose of many BCI applications is online detection, which
would not benefit from this type of manual selection method. Our
previous studies prompted the development of a method to remove
artifact components to minimize the subjective variance [3]. For
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Fig. 1. The structure of the automatic detection system for distracted driving. Two
models are proposed in this BCI system. The first model can remove the artifact
signals and identify spatial brain sources from the raw EEG data. The data from the
selected sources are the features for the second model. In the second model, the
signature of concentrated or distracted driving is analyzed and detected.

various applications of the BCI system, the specific component
features are also important. The useful spatial brain components also
must be identified and selected for advanced analysis according to
the spatial locations of the sources. Distinct brain functions can be
separated by spatial brain regions. Then the problems could be solved
with our automated expert system of component selection for useful
brain sources.

In this investigation, two models were combined as one BCI
system, as shown in Fig. 1. The first model automatically rejects
artifact brain signals and selects the useful features of specific
independent components. In the second model, these selected
components are then applied to identify signatures of distracted or
concentrated driving.

2. Materials

The procedures used to collect data and the main algorithms
used in this investigation are described in this section.

2.1. Experiment and participants

Driving a car on an actual road while performing another task
is extremely dangerous. Our experiment was performed in a
surrounded virtual reality (VR)-based driving environment, which
consisted of surrounding highway driving scenes produced using
seven projectors and a real vehicle mounted on a Stewart platform
with six degrees of freedom (6-DOF). The four-lane road in the
VR scene had a median strip in its center. Two designed tasks
were implemented to investigate distracted driving: an unex-
pected deviation (swerving) of the car and the presentation of
mathematical equations. In the deviation task, the car randomly
deviated left or right from the third lane. This task required
participants to compensate for this deviation using the steering
wheel to keep the car in the center of the third (from left to right)
cruising lane. Two-digit addition mathematical equations were
presented to the subjects in the mental calculation task. The
answers to all equations were given and were either right or
wrong. The subjects had to press corresponding buttons on the

steering wheel as rapidly as possible. When the equation was
correct, the subjects had to press the right button. Conversely, the
subjects pressed the left button to indicate an incorrect mathe-
matics equation. The allotment ratio of correct-incorrect equa-
tions was 50-50.

Both of these tasks and the stimulus onset asynchrony (SOA)
were considered to provide different distraction levels [14], and
five conditions were developed as described below.

(I) Case-1: The mathematical equation is presented 400 ms ear-

lier than the occurrence of the deviation (M\D).

(II) Case-2: The car deviation and mathematical equation occur
simultaneously (D&M).

(III) Case-3: The car deviation is 400 ms earlier than the presenta-
tion of the mathematical equation (D\M).

(IV) Case-4: Only the mathematical equation is presented (M).

(V) Case-5: Only the car deviation occurs (D).

These five cases (conditions) were presented randomly to avoid
anticipation [15]. The inter-trial intervals were set from 6 to 8s,
and the independent trials did not interact to avoid affecting the
subject. Thus, as many as 100 trials were presented to the subject
in each session to ensure that the number of events was adequate
for statistical analysis. Approximately 80 trials of each of the cases
outlined above were performed in an entire experiment.

Fourteen volunteers (average age 26.2 years) currently studying
at National Chiao Tung University participated in this experiment.
All participants had a valid driver‘s license, with a mean reported
driving experience of 5 years. Each subject was free of neurological
and psychological disorders as well as drug and alcohol abuse.
Participants practiced for approximately 15 min to avoid the
learning effect [16]. The subjects were also asked to pay full
attention to driving while reacting quickly to each type of task.
Therefore, the subjects were obliged to rest after driving for
15 min to avoid the impact of fatigue. Scalp EEG signals were
recorded with 32 channels following the 10-20 international
system of electrode placement. Before acquiring EEG data, the
contact impedance between the EEG electrodes and the skin was
calibrated to less than 5 kQ2 by injecting a NaCl-based conductive
gel. The EEG data were recorded with 16-bit quantization levels at
a sampling rate of 1000 Hz.

2.2. Independent component analysis

Independent component analysis (ICA) is a computational
method for separating multi-source signals into subcomponents,
with the assumption that the signals are mutually statistically
independent [17,18]. This analysis is one type of blind source
separation that determines the independent components by
maximizing the statistical independence of the estimated compo-
nents. Segregating, identifying, and localizing EEG sources are
extremely difficult because EEG data collected the brain activities
within large brain areas from the human scalp. A prior study [10]
first applied ICA to biomedical time series data (EEG data). In ICA,
it is assumed that the aggregation of signals from different brain
sources is linear and instantaneous (no time delay). Although the
conductivity between the skull and brain varies, it does not cause a
significant time delay. Therefore, ICA effectively isolates electrical
activity recorded from all individual EEG channels [10,11,19], and
sources with artifacts can be detected and removed easily [19,20].

ICA models the data using the equation:

u=Wwx (1)
where X is the data recorded from individual EEG channels, W is a

weight matrix for projecting the mixing independent components
back into original signals, and u is the un-mixing matrix. The
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inverse weight matrix, W~!, is then computed, and the useful
components are selected. The projection of the ith independent
component onto the original data channels is then given by the
following:

Xetean(®) = W~ 1) - u(i,?) )

where each matrix column, W1, indicates the activation weights
distributed across the electrodes for each independent compo-
nent, which can be rendered as a two-dimensional (2D) topo-
graphic map on the scalp.

After applying ICA, the multi-channel EEG signal is separated
according to several independent brain sources. If there are N
sensors, N sources are separated with the ICA algorithm [10]. The
components must first be judged to be useful(good) or artifact
(bad) brain components. Bad components may include bad chan-
nels or artifacts such as eye-blinking, muscle noise, heart signals,
line noise, breathing noise, or environmental factors [11]. Such
components are always present and influence the raw EEG signal.
The selected useful (good) components may then be classified
according to distinct spatial regions to analyze specific brain
signals. The specific components measured are the frontal, central,
parietal, occipital, and motor components. The occipital and motor
component can be spatially isolated to left and right areas. In this
study, the left and right occipital components were all regarded as
occipital components.

2.3. Self-organizing map

A self-organizing map (SOM) is an unsupervised neural net-
work [21]. The learning process of the SOM is similar to the
information representation properties of many functions of the
brain [22]. The SOM is an unsupervised cluster algorithm that
provides mechanisms for visualizing the complex distribution of
cognitive states. This algorithm has been widely used in various
research areas [23-25]. High-dimensional data are projected
to low-dimensional data and then easily analyzed through
their topographic organization. Dimension projection in the SOM
algorithm is achieved using two layers: the input layer and the
output layer.

In the input layer, each neuron in the map contains an
n-dimensional (as in the input data) reference vector. In each
learning process, the Euclidean distance is computed between the
training sample and the neuron. The training sample is projected
to the neuron with the shortest distance. This neuron is stimulated
to adapt to the projected training sample. Competitive learning is
an essential characteristic of the SOM algorithm. The chosen
neuron and its neighbor neurons are adapted. The degree of
adaption depends on the distance between the two neurons.

In the output layer, topological neighborhoods can be of
different shapes, such as a rectangle or a hexagon. K neurons
(locations) are arranged as lattices with visual dimensions (1D, 2D,
or 3D), where K is the number of neurons on the map. During
the training process, similar data are projected on the neighbor
neurons to cluster the main areas.

When the unsupervised training process is complete, the
topographic organization of the map adequately represents the
distribution of the data. The growth of a child involves numerous
types of stimuli, and neurons with similar functions are clustered
in the same brain areas. Therefore, the SOM imitates the learning
mechanism of the brain. This property of the SOM was used to
investigate the EEG signals. We applied the SOM to train the
maps and analyze the relationships among data. We also created
classifiers with the trained map to recognize unknown data. In this
study, the maps were initialized, trained, and evaluated with the
SOM toolbox for MATLAB [26].

3. Methods

Two proposed models were combined in our BCI system. The
useful brain sources were selected in model 1, and these extracted
brain sources were then analyzed in model 2. The details of these
two models are described in the following sections.

3.1. Model 1: automatically selecting useful brain sources

A hierarchical model capable of automatically selecting compo-
nents was proposed, as shown in Fig. 2. Unlike previous methods, our
model can identify useful components and recognize the spatial
components from the remaining useful components for advance
analysis. The training data used to construct the automatically
selecting model were collected during our previous experiments
and included 25 subjects and 700 independent components.

3.1.1. Data processing

The EEG data were recorded at a 16-bit quantization level and a
sampling rate of 1000 Hz. In data pre-processing, the recordings
were down-sampled to a rate equal to 250 Hz to simplify data
processing. The EEG data were then processed for further analysis
with a simple low-pass filter with a cut-off frequency of 50 Hz to

Independent Components
from 25 subjects

h 4

Data Processing

h 4

10-fold cross-validation
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10 classifiers
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Fig. 2. Flowchart of the first model: the automatic selection of useful brain sources.
Two layers are combined in this model. In layer 1, SVMRBF and 10-fold cross-
validation are applied to remove artifact component. The outputs of layer 1 are the
useful components without artifacts. These selected components are then classified
into distinct spatial brain regions according to the SOM in layer 2.
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remove the line noise (60 Hz and its harmonics) and other high-
frequency noise. The DC drift was also removed by applying a
simple high-pass filter with a cut-off frequency of 0.5 Hz. Because
we designed different cases by combining the driving and mathe-
matics tasks, the EEG responses related to different cases were
extracted from the original EEG signals for further analysis. The
EEG epochs were extracted from continuous EEG data and com-
bined under the same conditions as those used for the ICA.
Although the EEG data were collected with 32 electrodes, the
two reference channels needed to be removed. The electrodes Fp1
and Fp2 were located close to the eyes, and eye movement easily
influences the raw EEG signal; hence, these two channels were
also removed to reduce the interference caused by eye blinking.
The ICA identified 28 independent components for each subject.
To eliminate the differences between individuals, we normalized
the weight matrix using the z-score method. Each component was
labeled as a useful or non-useful (artifact) by several experienced
experts capable of interpreting and analyzing EEG data to label
each scalp map. The automatically selecting model was finally
clustered all useful components to the distinct brain areas.

3.1.2. Component identification

In the first layer of selecting components, the goal is to
automatically identify useful or artifact components to solve the
two-class problem. The basic support vector machine (SVM) is
formulated for a two-class problem [27,28]. If the training data are
linearly separable, the SVM then finds an optimal hyperplane that
maximizes the margin of separation between the two classes. The
kernel of radial basis function (RBF) is usually used; therefore, the
SVM with RBF kernel is called the SVMRBEF. All training data were
equally divided into 10 parts to apply 10-fold cross-validation. In
each fold, one part was chosen to be the testing data, and the
others became the training data. These nine parts were trained
with the SVMRBF to obtain one classifier, and this trained classifier
was verified with the testing data. This procedure was repeated 10
times to collect 10 classifiers with different training data. These 10
classifiers were then combined into one classifier according to a
majority vote to identify useful or artifact components.

At the second layer, the goal is to identify specific brain regions
using the artifact-free useful components identified in the first
layer. As with the previous data, these data were also collected
from the 25 subjects. There were 115 useful components after
automatic artifact removal by the first layer, and detailed numbers
of each type of independent component are shown in Table 1. The
components represent different sources according to the spatial
relationship of the brain. We then applied the SOM to classify
these spatial components. After classification and identification by
this automatic selecting model, the artifact-free components were
assigned to one of six spatial brain regions.

3.2. Model 2: detecting distracted driving

According to model 1, the frontal, central, parietal, left, and
right motor components were selected to analyze the signature of
driver distraction. We investigated these five selected components
through the SOM. The frontal and left motor components were
then selected as the main brain sources for detecting distracted
driving.

Table 1
The number of each kind of independent components.

Frontal  Central  Parietal  Occipital L motor R motor

Numbers 15 15 24 19 22 20

3.2.1. Feature extraction

Before we could analyze the signature of distracted driving from
the extracted component data using the SOM, the features of these
components had to be extracted. The factor of stimulus onset
asynchrony (SOA) was considered in this experiment, particularly
regarding the different time intervals of the dual tasks. We designed
the epoch-based experiment to ensure that the features were
extracted based on the epoch. The EEG epoch was related to the
event or stimulus in the experiments. The length of each EEG epoch in
this distraction experiment was 5000 ms, which comprises the base-
line, totaling 1000 ms, and the phasic portion, totaling 4000 ms.

In the pre-processing steps, the sampling rate was reduced to
250 Hz; hence, one epoch yielded 1250 data samples. To obtain more
information, a fast Fourier transform (FFT) was applied to transform
the EEG signals from the time domain to the frequency domain.
Because the SOA factor was considered in this experiment, the time
interval was set to 400 ms. Both the frequency information and the
time information were preserved. The phasic portion of the EEG
epoch was divided equally into 10 intervals with lengths of 400 ms. A
FFT was then applied to the EEG signal in each interval (baseline and
10 phasic intervals) to compute the perturbation of the frequencies.
The time and frequency information provide higher quality features
when FFT is applied. There were 550 data points in one EEG epoch
(50 Hz x 11 intervals). To reduce the dimensions and obtain better
descriptions of the EEG epochs, only those data points from 1 to 30 Hz
were considered. Therefore, a total of 330 dimensions were extracted
in each EEG epoch.

The EEG signal that occurred 1 s before the onset of the event was
defined as the baseline in this study. To investigate the changes in
spectral power and the perturbations in the oscillatory dynamics of
the ongoing EEG, the baseline of each EEG epoch was removed to
ensure that the EEG signals were primarily caused by reacting to the
designed tasks and not by the “state of resting”. A complete experi-
ment consisted of four sessions. Each session encompassing all trials
was conducted under the same circumstances, and the subjects
maintained the same psychological and physical states throughout
the experiments. However, different subjects were not necessarily
given the same phenomena for the same task; in other words, the
degree of spectrum power or mental state for the same tasks were not
the same for all participants. We therefore analyzed the influence of
distraction on each participant instead of the differences among
all subjects. The diversity and variation among all subjects must be
minimized because the goal of this study was to provide a general
system for detecting distracted driving. The mean value and standard
deviation were computed using the EEG data collected from one
specific subject, and the EEG signal was then normalized using the
Fisher z-score method to reduce the variation among subjects. After
feature processing, each EEG epoch contained 300 data points. Five
independent components (frontal, central, occipital, right motor, and
left motor) were selected through our automatic system, as described
previously. The EEG signals in each individual component were
trained using the SOM to analyze the signature of distracted driving.

After considering the performance (as shown in Section 4) and
the number of subjects, the EEG signals from the frontal and left
motor components were selected as the features of distracted
driving for our BCI system in this study. Previous studies have
demonstrated that the frontal and motor components are related
to the characteristics of distracted driving [5]. Activation in the
frontal areas is induced by performing a mental task [29,30].
The power changes in the frontal area primarily reflect the activa-
tion of neurons involved in allocating attention to the stimuli of
different tasks [31]. The spectra in the motor component were
selected because the subjects had to react to either the car deviation
or a mathematics equation [32]. The power changes of the motor
component during motor planning are involved in preparing for
steering the wheel and answering the math questions. Therefore,
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Fig. 3. Flowchart of the process used to detect distracted or concentrated driving.
The EEG epochs of distracted driving are determined according to a majority vote.
The leave-one-out method is also considered to verify the performance of the
system.

for the input data (feature), the characteristics of the frontal and the
left motor components were combined as one complete feature.
The main phenomenon in the frontal area is reported to be
approximately 1-20 Hz; hence, the feature in the frontal compo-
nent was reduced from 300 dimensions to 200 dimensions [5].
Then the dimension of the combined features was 500 (frontal: 200
and motor: 300). The same parameters used in the SOM were
applied to trained maps for the distracted driving detection system.

3.2.2. Detecting the signature of distracted driving

This study proposes a model for detecting distracted driving.
Based on the EEG data from two selected components, the leave-
one-out method was considered in this simulation, as shown in
Fig. 3. Classification in our model involved conducting a majority
vote according to the different classifiers, which were nine trained
maps [33]. The EEG data of a chosen subject were the testing data,
and the other EEG epochs of the remaining subjects were used as
the training data. Therefore, the training data were collected from
10 subjects. Nine maps were then generated using this training
data with the same SOM parameters used previously. Unlabeled
neurons on the map were labeled first through the shortest
distance from the neighboring labeled neurons, with the unla-
beled neuron given the same label as the specifically labeled
neighboring neuron. All fully labeled maps were then considered
to provide complete information about the relationships among
the neural neighborhood. These nine trained and fully labeled
maps were used as the dataset to verify the testing data by
majority voting. Each EEG epoch belonged to one best matching
neuron with the shortest Euclidean distance for each map.
We obtained nine results using the database and classified the
EEG epoch by voting. The class with the highest frequency was
assigned to that EEG epoch. This simulation was repeated 11 times
for the EEG epoch of each subject.

4. Results
4.1. Component identification

The independent components collected from 14 subjects were
the testing data for the automatically selecting components model,
and there were 392 (14 x 28) independent components in this
testing data. Fig. 4(a) depicts the useful and artifact components

that were separated from one subject. In Fig. 4(b), the selected
useful components are labeled according to the spatial brain
sources. The useful components were selected in the first layer
in model 1. The labeling accuracy is shown in Table 2, with an
average value of 90%. In this layer, all bad components were
accurately identified, while the useful components were occasion-
ally erroneously classified as bad components. Therefore, perfect
classification of useful brain sources remains a challenge. The
number of useful components for each subject is also shown
in Table 2. These useful components were classified again into
different spatial brain areas by the second layer.

There were 115 useful independent components collected from
the previous 25 subjects with 700 components, as shown in
Table 1. These data were used to create one classifier for identify-
ing different spatial brain sources. This classifier is one 2-D map, as
shown in Fig. 5. There are six perfect clusters representing six
brain sources on this map. The labeling accuracy using this map
was 100% for each brain source. Using this map, the SOM was able
to represent the spatial differences between brain sources, and the
variations caused by subjective judgment were reduced. The left
and right motor components were projected to the neighbor
neurons. There are also spatial characteristics among the neurons
representing the frontal, central, and parietal components.
Although the occipital components are located in the middle of
this map, they are still near the parietal, left, and right motor
components. Therefore, the relationships between different inde-
pendent components could be discovered using the SOM. The map
shown in Fig. 5 can also be used as a classifier to identify distinct
brain sources. The selected useful components with different brain
sources in Table 2 were then identified using this map. These
useful components were classified among different spatial brain
sources, as shown in Table 3. The accuracy of the classification was
100% for each selected type of component (spatial brain sources).

To automatically identify components, clustering components
are also provided in EEGLAB, a popular toolbox used to analyze
EEG data. Using this toolbox, the mean accuracy of each type of
spatial component was 95.6%. The results of this method let some
components be classified to other clusters in adjacent areas. If the
variance of misclassification is reduced, the analysis of EEG signals
will be more stable. Using our automatic model, each component
was recognized successfully with high accuracy and low variance
Therefore, the SOM is a better classifier than the available method
in EEGLAB to identify distinct spatial brain sources.

We collected data from 14 subjects in this experiment, but the
number of spatial brain sources was less than 14; if a particular
brain area was not highly activated when the subjects performed
specific tasks, then that area or component could not be separated
in the ICA results. Since the frontal cluster contains the largest
number of brain sources, the number of this component reaches
to 14 as Table 3. So the frontal region may be the most important
component in distracted driving. As previously mentioned,
the frontal component is known to be highly associated with
attention-demanding tasks [31]. When an individual drives or
responds to other tasks, their motor areas may be involved in
planning the motions [32]. In agreement with this result, the
number of left and right motor areas was identified as 11 and 10 in
Table 3, respectively.

4.2. The signature of distracted driving in distinct brain sources

Six types of components were identified using the previous
automatic selecting system. Here, the selected components from
the 14 subjects were used to analyze the differences in EEG epochs
during distracted driving in the BCI system. The occipital compo-
nents can be divided into bilateral and backward parts, and the
number of identified components in these two clusters is too low
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R. Occipital Parietal
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Artifact Component: A.C.
Useful Component: U.C.

L. Occipital Frontal

Fig. 4. All labeled components in one subject. (a) Each component is first classified as a useful component (U.C.) or artifact component (A.C.). (b) All useful components are
then identified as frontal, central, parietal, occipital, left, or right motor components through distinct brain sources.

Table 2
The accuracy and the number of selected components in each subject.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
Accuracy 92.9 89.3 89.3 96.4 82.1 96.4 92.9 89.3 92.9 96.4 92.9 100 96.4 92.9
Useful 6 7 6 7 4 5 7 6 7 7 4 6 8 5

to be used. So EEG epochs were collected from the frontal, central,
parietal, left motor, and right motor components were considered
except the occipital component. The trained maps are depicted in
Fig. 6, and Table 4 lists the correct labeling percentage. In these
five maps, the neurons represent single conditions that were
clustered more accurately than those of the other three dual
conditions. The EEG epochs of dual conditions were usually
projected to particular sub-areas, indicating that the differences
among the brain activity phenomena in one situation were
discovered using a single type of component, which may not
represent the effects of distracted driving.

When examining these maps according to the labeling accuracy
and distribution of neurons, the frontal, left motor and right motor
components were selected for the index of distracted driving
for two reasons. First, the accuracy of the three maps in these
components was the highest, with an average accuracy of more
than 85%. This indicates that each component could represent the
differences among the five conditions. Second, the distribution
of labeled neurons was more accurately clustered. SOM analysis
involves projecting similar data to neighbor neurons and the
relationships among the data can be illustrated according to the
distribution of each neuron on the well-trained map. The maps of
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the left motor and frontal components are clearly clustered to the
EEG signals collected from single conditions, and the neurons of
dual conditions are also clustered to several small groups. Because
the results of the left motor component are more favorable than
those of the right motor component, the right motor component
was discarded. Therefore, all EEG epochs in the frontal and motor
components are considered the effective indices of distracted
driving.

Fig. 7 shows the trained maps with complex features, and the
accuracy of these two maps is given in Table 5, which shows the
average rate of correct labeling. The features of the frontal and
motor components are combined to provide more detailed infor-
mation for detecting distracted driving because Case-2 is usually
divided into sub-groups that can be as small as a single neuron.

Parietal

Occipital

Right Motor

Left Motor

Q00000

Fig. 5. The clustering results of distinct spatial components. The different brain
sources are represented in various colors. Six brain sources are depicted in this
map: the frontal, central, parietal, occipital, right motor, and left motor
components.

Table 3
The recognized number of different brain sources.

Frontal  Central  Parietal Occipital L motor R motor

Numbers 14 10 9 9 11 10

Under this condition, our designed tasks appeared simultaneously,
and the subjects were asked to perform them well. Their brain
resources may have competed and been activated by two visual
stimuli [34]. The EEG epochs of Case-2 were excluded first. The
map shown in Fig. 7(a) was trained using the EEG epochs of only
four conditions. The labeling accuracy was also higher than 95%.
Four areas, indicated by different colors on this map, were
discovered. In particular, the EEG epochs from two single condi-
tions (Case-4 and Case-5) are clustered accurately to two almost-
perfect areas in the corner of this map. Although some neurons
representing dual conditions (Case-1 and Case-3) are clustered into
small sub-groups, two main clusters are still found. Fig. 7(b) depicts
the map trained using all EEG epochs from the five conditions. The
phenomena of the other four cases are similar to the results shown in
Fig. 7(a), while the neurons labeled as Case-2 are separated into
several sub-groups on this map, without clustering into one main
area similar to the other four classes. According to the results of
classifying the EEG epochs of these five cases, the results of Case-2
represent the lowest labeling accuracy and the largest standard
deviation.

The EEG could be one source for distinguishing distracted
driving, according to the results of the combined features. There
is a noticeable difference in the EEG spectra between distracted
and undistracted drivers. When the subjects faced only a single
stimulus, either car deviation or a mathematical equation, their
brain resources were fully allocated to these tasks. In the map
results, the EEG epochs of two single conditions were consistent
and clustered accurately to two perfect areas. By contrast, when
the subjects performed two tasks within 2 s (by behavior analysis),

Table 4
The accuracy of each type of component.

Dual conditions Single conditions

Case-1 (M\D) Case-2 (D&M) Case-3 (M\D) Case-4 (M) Case-5 (D)

Frontal 89.1+046 893 +41 89.2+14 876+18 957+21
Central 76.8 +3.9 68.6 +3.1 68.9+ 1.0 751+25 706+18
Parietal 84.6 +2.7 738+ 18 81.3+0.8 829+15 769+24
L motor 96.2 +0.9 97.7+ 1.0 97.3+0.9 96.7+ 16 98.8+0.2
R motor 87.5+5.2 83.5+9.8 84.4+79 921+46 924+39

. Case-3
. Case-4
. Case-5

Fig. 6. The clustering results of the EEG epochs with five cases by selected brain sources. The EEG epochs of five cases are clustered, and the EEG data are extracted from five
different brain sources: (a) frontal; (b) central; (c) parietal; (d) left motor; and (e) right motor.
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. Case-3
. Case-4
. Case-5

Fig. 7. Final results of clustering into four or five cases. The features of EEG epochs are composed of two brain sources: the frontal and left motor components. (a) Four
conditions, excluding Case-2, are clustered and (b) the EEG epochs of all five cases are depicted.

Table 5
Average accuracy of each map with combined features.

Dual conditions Single conditions

Case-1 (M\D) Case-2 (D&M) Case-3 (M\D) Case-4 (M) Case-5 (D)

4 Cases 98.2+1.2 X
5 Cases 97.1+2.9 93.1 +3.1

978+ 1.6
95.7+22

992+ 1.1
979+ 18

99.7+0.8
98.6 + 1.6

Table 6
Average performance of recognizing EEG samples.

Distracted driving Non-distracted driving

Validation 84.1+ 18 91.5+0.7

they may have been distracted from driving by the secondary task
of answering the mathematical equation. When two tasks
occurred simultaneously, the subjects employed different strate-
gies to respond to them. They may have chosen one task to answer
first and then completed the other task, in which case the EEG
phenomenon was similar to that of either Case-1 or Case-3. They
may have neglected one task to react perfectly to the other,
in which case the EEG epochs were the same as those of single
conditions. This is the reason for the disorderly neurons of Case-2.
According to our SOM maps in Fig. 7, brain activations could
indeed represent the effects of distracted driving.

Several studies have evaluated the feasibility of classifying EEG
data for extensive applications. Simple logic functions, linear or
nonlinear regression, and neural networks have been used for this
purpose [35-39]. The classification performance is almost 90%.
Using the linear method, the EEG epochs could not be recognized
clearly, and the performance was approximately 42.6%. Nonlinear
algorithms were also considered. The average accuracy of our data
reached 63.6% using a SVM with a radial basis function. In [38], the
use of SVMs for automatic EEG classification was proposed. In [39],
SOM was used to classify EEG patterns. SOM not only recognizes
differences but also provides a visual map to represent the
relationships among the data. In the present study, an accuracy
of approximately 90% was obtained with the SOM.

4.3. Testing performance

The SOM could distinguish differences between brain activities
with high accuracy under all five conditions. Case-5 is defined as
concentration driving because the subjects only controlled the
steering wheel when responding to car deviation. The subjects
were required to analyze mathematical equations under the other
four conditions (Case-1 to Case-4), causing their attention to shift

from driving to the secondary task. Hence, those four conditions
were defined as distracted driving. Our brain-computer interface
system was able to identify the phenomenon of EEG signals as
distracted or concentrated driving, and the result of identification
by our BCI was transformed into a two-class problem. Each piece
of testing data was a new EEG signal from one subject that was not
included in the training data. The performance rates for detecting
driver distraction with the SOM are shown in Table 6. The hit rates
of distracted and concentrated driving were 84.1% and 91.5%,
respectively. Therefore, this system can recognize the EEG epochs
of one new subject and assign them to one of two clusters: a
concentrated or distracted driver.

5. Conclusions

In this study, an automatic detection system for distracted
driving was proposed; this system involves the selection of
components with artifact removal and judgments of driver dis-
traction levels. The useful components are extracted to provide
more effective information. Based on the selected useful compo-
nents, the automatic classification model with the SOM can clearly
classify six different spatial brain sources, including frontal,
central, parietal, right motor and left motor components, for
advanced analysis. The feature composed of the selected frontal
and left motor components is novel and useful for detecting
distracted driving. Considering the frontal and left motor compo-
nents, the proposed BCI system reached a maximum accuracy of
approximately 90% for the recognition of EEG epochs of distracted
and concentrated driving. Therefore, the frontal and left motor
components are the main areas that respond to multiple tasks
during distracted driving. The recognition of distraction levels
could be used to monitor drivers and warn them to pay more
attention to avoid traffic accidents in real-life driving.
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