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Abstract—With the increasing number of mobile Apps de-
veloped, they are now closely integrated into daily life. In this
paper, we develop a framework to predict mobile Apps that
are most likely to be used regarding the current device status
of a smartphone. Such an Apps usage prediction framework
is a crucial prerequisite for fast App launching, intelligent
user experience, and power management of smartphones. By
analyzing real App usage log data, we discover two kinds
of features: The Explicit Feature (EF) from sensing readings
of built-in sensors, and the Implicit Feature (IF) from App
usage relations. The IF feature is derived by constructing the
proposed App Usage Graph (abbreviated as AUG) that models
App usage transitions. In light of AUG, we are able to discover
usage relations among Apps. Since users may have different
usage behaviors on their smartphones, we further propose one
personalized feature selection algorithm. We explore minimum
description length (MDL) from the training data and select
those features which need less length to describe the training
data. The personalized feature selection can successfully reduce
the log size and the prediction time. Finally, we adopt the
kNN classification model to predict Apps usage. Note that
through the features selected by the proposed personalized
feature selection algorithm, we only need to keep these features,
which in turn reduces the prediction time and avoids the curse
of dimensionality when using the kNN classifier. The results
based on a real dataset demonstrate the effectiveness of the
proposed framework and show the predictive capability for
App usage prediction.

Keywords-Mobile Application; Usage Prediction; Classifica-
tion; Apps;

I. INTRODUCTION

With the increasing number of smartphones, mobile appli-

cations (Apps) have been developed rapidly to satisfy users’

needs [1], [2], [3], [4]. Users can easily download and install

Apps on their smartphones to facilitate their daily lives. By

analyzing the collected real Apps usage log data, the average

number of Apps in a user’s smartphone is around 56. For

some users, the number of Apps is up to 150. As many Apps

are installed on a smartphone, users need to spend more time

swiping screens and finding the Apps they want to use. From

our observation, each user has on average 40 launches per

day. In addition, the launch delay of Apps becomes longer as

their functionality becomes more complicated. To ease the

inconvenience of searching for Apps [5], [6] and to reduce

the delay in launching Apps [7], one possible way is to

predict which Apps will be used before the user actually

needs them.

Recently, some research works have addressed the Apps

usage prediction problems [5], [6], [7]. In [5], only the

temporal information of App usages is considered. However,

some Apps with no significant periods cannot be predicted

by their temporal profiles. In [7], the authors adopted three

features to remedy slow App launches: time, location, and

used Apps. However, they always use these three features to

predict different users’ usage, which is impractical as users

could have different usage behavior. Though the authors

in [6] collected 37 sensor reading as features, it cannot filter

out useless features in advance, such that the system need

to waste the storage and energy to process those useless

features.

In this paper, we adopt the concept of minimum de-

scription length (MDL) to select personalized features for

different users and propose a kNN-based App Prediction

framework, called KAP, to predict Apps usage. Once we

distinguish the useful and useless features, only the useful

features need to be collected. Therefore, the size of the log

data could be reduced. The overall framework is shown

in Figure 1. KAP investigates features from both explicit

and implicit aspects. The explicit feature is a set of sensor

readings from built-in hardware sensors, such as GPS, time,

accelerometers, etc. On the other hand, the implicit feature

is referred to as the correlations of Apps usage. To capture

these correlations, the implicit feature is represented as the

transition probability among Apps.

The major contributions of this research work are sum-

marized as follows.

• We address the problem of Apps usage prediction by

discovering different feature sets to fulfill different

users’ Apps usage behavior, and propose the concept of
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Figure 1. Overview of kNN-based App Prediction framework.

explicit and implicit features for Apps usage prediction.

• We estimate the distribution of the transition probability

among Apps and design an Apps Usage Graph (AUG)

to model both Apps usage order and transition intervals.

Two algorithms are proposed to extract the implicit

features from the AUG graph for training and testing

purposes respectively.

• We propose a personalized feature selection algorithm

in which one could explore MDL to determine a

personalized set of features while still guaranteeing the

accuracy of the predictions.

• A performance evaluation is conducted on real datasets,

and our proposed framework outperforms the state-of-

the-art methods [6].

The rest of this paper is organized as follows. Section II

investigates the related works which discuss the conventional

prediction problem and Apps usage prediction. Section III

introduces the explicit and implicit features. Section IV

presents the mechanism of personalized feature selection.

Section V conducts extensive and comprehensive experi-

ments. Finally, this paper is concluded with Section VI.

II. RELATED WORKS

To the best of our knowledge, the prediction problem

of Apps usage in this paper is quite different from the

conventional works. We focus on not only analysing usage

history to model users’ behavior, but on personalizing varied

types of features including hardware and software sensors

attached to smartphones. The proposed algorithm selects

different features for different users to satisfy their usage

behavior. Although there have been many research works

solving the prediction problem in different domains [8], [9],

[10], [11]. In [12], the author selected features from multiple

data streams, but the goal is to solve the communication

problem in a distributed system.

Currently, only a few studies discuss mobile Apps usage

prediction. In [7], the authors solved the prediction problem

through multiple features from 1) location, 2) temporal

burst, and 3) trigger/follower relation. However, they did

not analyze the importance of each feature. Therefore, for

different users, they always use the same three features to

predict their Apps usage. In [6], the authors investigated

all possible sensors attached to a smartphone and adopted

a Naive Bayes classification to predict the Apps usage.

However, collecting all possible sensors is inefficient and

impractical. Moreover, the useful sensors for different users

could vary according to users’ usage behavior. We claim that

for different users, we need to use different sets of features to

predict their usage. In this paper, we collect only the subset

of all features which are personalized for different users.

III. EXPLICIT AND IMPLICIT FEATURES

In this paper, we separate the features into two main

categories: the explicit feature and the implicit feature. The

explicit feature represents the sensor readings which are

explicitly readable and observable. The implicit feature is

the Apps usage relations.

A. Explicit Feature Collection

The number of hardware sensors we use for the explicit

feature is 24, and we categorize these sensors on a smart-

phone into three groups: 1) device sensors, which sense the

status inside the devices, for instance, space, free ram, and

battery level; 2) environmental sensors, which capture the

outside status such as time, GSM signal, and Wi-Fi signal;

3) personal sensors, which capture the outside status of the

devices, for example, the acceleration, speed, heading and

position of the device. It is totally free to add or remove any

hardware sensors here.

B. Implicit Feature Extraction

The implicit feature formulates the usage transitions

among Apps in a usage session. As mentioned in [7], users

use a series of Apps, called a usage session, to complete a

specific task. For example, one user could use ”Maps” when

travelling to a sightseeing spot, then use camera to take pho-

tos, and upload those photos to Facebook. Thus, the series

of using ”Maps”, ”Camera” and ”Facebook” is called a us-

age session, denoted as ”Map”
δ1−→”Camera”

δ2−→”Facebook”,

where δ1 and δ2 represent the transition intervals.

The implicit feature of ”Facebook” in this usage session is

thus < sMF (δ1), sCF (δ1 + δ2), sFF (∞) >, where sMF (·),
sCF (·), and sFF (·) are probability models which represent

the probability of using ”Maps”, ”Camera” and ”Facebook”

respectively before using ”Facebook” with the transition

interval as the random variable. Note that because there

is no ”Facebook” to ”Facebook” in this usage session, the

transition interval is thus set to ∞ and then the probability

would be 0.

1) Apps Usage Graph (AUG): For each user, we construct

an Apps Usage Graph (AUG) to describe the transition

probability among Apps. An AUG is a directed graph where

each node is an App, the direction of an edge between two

nodes represents the usage order, and the weight on each

edge is a probability distribution of the interval between

two Apps. Since two consecutive launches could be viewed
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Figure 2. An example of the Apps Usage Graph (AUG).

as a Poisson arrival process, we can formulate the intervals

between two launches as an exponential distribution.

Here, Equation 1 formulates the exponential density func-

tion of the launch interval being in [x, x+1). The parameter

α = ˆp(0) is derived by assigning x = 0 in Equation 1,

and could be calculated by p(0), the real probability derived

from the training data. Then, β is solved by minimizing

the difference between the estimated probability ˆp(i) and

the real probability p(i) as shown in Equation 2 for every

interval i.

ˆp(x) = α exp−βx (1)

β = argmin
β

∑
i

| ˆp(i)− p(i)|

= argmin
β

∑
i

|p(0) exp−βi−p(i)| (2)

For example, Figure 2 shows an AUG with three Apps.

From Figure 2, the probability of two consecutive usages of

App1 with an interval of 0.3 minutes (i.e., App1
0.3
−−→ App1)

is 0.4, and App1
1.5
−−→ App2 is 0.2. Although AUG only takes

two consecutive Apps into account, such as p12 and p23, the

probability of p13, could be calculated by p12 × p23.

2) Implicit Features for Training: For each training case,

the implicit features are derived by looking up the AUG.

Suppose the currently used App (i.e., class label) is Appt,
the implicit feature is thus, < p′1t, p

′

2t, ..., p
′

nt >, where p′it
represents the probability of transiting from Appi to any

random Apps and then to Appt. The probability of p
′(l)
it

is defined as in Equation 3 which is the summation of

every probability from Appi to Appt. Note that we use

a superscript, s, to indicate how many Apps are between

Appi and Appt, and Appmk
is the k-th App after Appi.

Once we derive the implicit feature in a reverse time order,

the sub-problem of estimating p
′(s−k)
mk,t

is already solved. The

calculation of the implicit feature for Appi stops when the

transition probability falls below a given threshold, mintp.

In our collected dataset, the transition probability falls to

0.1% when we look backward to more than 5 Apps, which

is the default parameter for mintp. Algorithm 1 depicts the
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Figure 3. Steps of obtaining the implicit feature of App3 in the training

case, · · · → App1
1
−→ App2

0.5
−−→ App1

0.5
−−→ App3.

derivation of the implicit feature for a training case with

Appt as its class label.

p
′(l)
it = p̂it +

∑
k

ˆpi,mk
× p

′(s−k)
mk,t

(3)

Algorithm 1: Deriving the implicit feature of Appt for

training.

Input: Appt: a training App

Output: IFt: the implicit feature of Appt

1 foreach Appi prior than Appt do

2 IFt[i]← IFt[i] + ˆpit(δit) ;

3 foreach Appm between Appi and Appt do

4 IFt[i]← IFt[i] + ˆpim(δjm)× IFm[t] ;

5 end

6 end

7 return IFt

For example, suppose we have an AUG as shown in

Figure 2 and a usage trace as · · · → App1
1
−→ App2

0.5
−−→

App1
0.5
−−→ App3 → . . . . Figure 3 shows the process of

obtaining the implicit feature of App3. We first estimate p
′(0)
13

from App1
0.5
−−→ App3, then p

′(1)
23 from App2

0.5
−−→ App1

0.5
−−→

App3, and finally update p
′(2)
13 from App1

1
−→ App2

0.5
−−→

App1
0.5
−−→ App3. Note that p

′(0)
13 is reused for calculating

p
′(1)
23 , and p

′(1)
23 and p

′(0)
13 are reused for updating p

′(2)
13 . The

implicit feature of App3 is < 0.01, 0.13, 0 >.

3) Implicit Features for Testing: Since the App to be

predicted for current invocation, Appt, is unknown for

testing, the derivation process of implicit features for training

does not work. We propose an iterative refinement algorithm

to estimate both Appt and its implicit feature, IFt, for

testing. Suppose θi is the probability of Appt = Appi, the

implicit feature IFt is calculated as in Equation 4 which

is a linear combination of the IF of each Appi. In addi-

tion, M = [IFT
1 , IFT

2 , . . . ] represents the transition matrix

among Apps, where IFT
1 , IFT

2 , . . . are column vectors.

Then, the value of θi could be updated by Equation 5, which
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is the probability of staying in Appi after one-step walking

along the transition matrix M . We keep updating θi and IFt

iteratively, until Appt is fixed to one specific App. In our

experiments, the iterative refinement process converges in

about 3 iterations. Algorithm 2 depicts the derivation of the

implicit feature for testing.

IFt =
∑
Appi

θi × IFi (4)

θi =
∑
Appm

IFt[m]×M [m][i] (5)

Algorithm 2: Deriving the implicit feature for testing.

Input: t: a testing case

Output: IFt: the implicit feature at t

1 while iter < threshold do

2 foreach θj do

3 IFt ← IFt + θi × IFi ;

4 end

5 foreach Appi prior than time t do

6 θi ← θi + IFt[m]×M [m][i] ;

7 Normalize θi ;

8 end

9 iter← iter + 1 ;

10 end

11 return IFt

For example, suppose the testing case is · · · → App1
1
−→

App2
0.5
−−→ App1

0.5
−−→ Appt. First, we initialize θi as

< 1/3, 1/3, 1/3 >, which gives equal probability to each

App, and the transition matrix M =

⎡
⎣

0.49 0.6 0.01
0 0 0.13
0 0 0

⎤
⎦,

which is derived by calculating the IF of each App shown

in Equation 3. Note that the last row is all zero because

there is no App3 transiting to any other Apps. Then, the

implicit feature is < 0.37, 0.04, 0 > in the first iteration.

Next, θi is updated to < 0.18, 0.22, 0.01>, and normalized

as < 0.44, 0.54, 0.02 > according to one-step walk in M
with the calculated implicit feature as the prior probability.

Then, we can obtain the implicit feature as < 0.53, 0.01, 0 >
in the second iteration.

IV. PERSONALIZED FEATURE SELECTION

The goal of the personalized feature selection is to use

as fewer features as possible to guarantee an acceptable

accuracy. Due to the energy and storage consumption of

collecting sensors readings and Apps transition relations, we

should select useful features for different users in advance.

Furthermore, through the personalized feature selection, we

could avoid the curse of dimensionality on performing the

kNN. We first apply the personalized feature selection on

the training data, and then only the selected features are

required to be collected in the future.

Here, we propose a greedy algorithm to select the best

feature iteratively. We adopt the concept of Minimum De-

scription Length (MDL) [13] to evaluate the goodness of

the features. For different features, we can have varied

projections of the training data. We claim that if a feature

needs fewer bits to describe its data distribution, it is good

for predicting the data. Therefore, in each iteration, the

feature with the minimum description length is selected.

Then, those data points which are correctly predicted are

logically eliminated from the training data, and the next

feature is selected by the same process repeatedly. We define

the description length of the hypothesis, which is shown in

Equation 6, as the length of representing the training data.

NG(Appi) is the number of groups of Appi. The description

length of Data given the hypothesis is the total number of

miss-classified data which is formulated as in Equation 7.

L(H) =
∑
i

log2 NG(Appi) (6)

L(D|H) =
∑
i

log2(missClassified(Appi) + 1) (7)

For example, given 8 data points in the training data and

three features as shown in Figure 4. In the first round, Time

is the feature with minimum description length. Those data

points marked as red are correctly predicted and will be

removed. Therefore, in the second round, only two data

points are left, and the feature of Wi-Fi signal is selected

due to its minimum description length.

The selection process stops when a percentage of ρ of the

training data is covered. Note that the number of features

affects the energy and storage consumption and is set

according to the capability of the smartphones. Algorithm 3

depicts the process of personalized feature selection. After

the selection, only the readings of the sensors which are

selected will be collected as the explicit feature in the future.

In addition, only the selected Apps will be used to construct

AUG.

V. EXPERIMENTAL STUDY

In this section, we compare the performance of the

proposed KAP framework with other existing methods in-

cluding 1) most frequently used (MFU) method, 2) most

recently used (MRU) method which is the built-in prediction

method in most mobile OS, such as Android and iOS, 3)

SVM, 4) App Naive Bayes [6], 5) Decision Tree, and 6)

AdaBoost. In the following, we first discuss the collected

dataset, then introduce the metrics employed to evaluate the

performance, and finally deliver the experimental results.

In addition, we conduct the experiments on a real world

1130
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Figure 4. An example of feature selection where the red data points are
correctly predicted.

Algorithm 3: Personalized feature selection.

Input: Dz: the training data

Output: PF : the personalized features

1 Let Nz ← |Dz| ;

2 while |Dz| < ρNz do

3 foreach feature f do

4 Calculate DLf : description length for feature f
;

5 end

6 PF ← PF ∪ {argmax
f

DLf} ;

7 Let Da be the set of accurately predicted data

points ;

8 Dz ← Dz −Da ;

9 end

10 return PF

dataset which contains totally 50 volunteers from June 2010

to January 2011.

A. Experimental Results

To evaluate the performance of predicting Apps usage

by the proposed KAP framework, we first evaluate the

overall performance using average recall and nDCG [14]

when predicting different numbers of Apps, also assess the

efficiency of the proposed framework. Note that we use

top-k = 4, kNN=40%, and the minimum data coverage of

personalized feature selection ρ as 70% to be the default

parameter settings throughout the experiment.

1) Overall Performance: First, we evaluate the perfor-

mance KAP and other different methods under various

numbers of prediction, k. As can be seen in Figure 5, when

the number of prediction k increases, both the recall and

nDCG values also increase. However, KAP, SVM perform

better than others. In Figure 5(a), when k = 9 (the number

of predictions shown in the latest Android system), the recall

of KAP and SVM could be more than 90%, while it is below
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Figure 5. Impact of the number of prediction, k.

Table I
THE STORAGE CONSUMPTION AND ACCURACY UNDER VARIED DATA

COVERAGE ρ.

Coverage(%) 20 40 60 80 100

Storage(KB) 28 34 43 52 94
Recall 0.78 0.80 0.82 0.82 0.83
nDCG 0.50 0.52 0.55 0.57 0.58

80% for the others. On the other hand, the nDCG value of

KAP shown in Figure 5(b) is always higher than that of the

other methods, which means the prediction order of KAP is

better.

2) Impact of Personalized Feature Selection: For the

proposed KAP method, we evaluate the performance of the

personalized feature selection to see if the proposed MDL-

based selection algorithm could reduce the used storage

when maintaining a good prediction accuracy. For one user,

the average used storage and prediction accuracy is shown

in Table I under different data coverage ρ. As can be seen in

Table I the personalized feature selection could reduce 55%

of training data size and only lose 1% of recall and 3% of

nDCG when the data coverage is 70%. In addition, Table II

compares the execution time of KAP with and without the

personalized feature selection, where the training time is

reduced dramatically under ρ = 70%.

Table II
THE EXECUTION TIME OF KAP WITH AND WITHOUT PERSONALIZED

FEATURE SELECTION.

Execution time (ms) Training Testing Total

KAP 86 160 246
KAP without selection 185 160 345

1131



VI. CONCLUSION

In this paper, we propose an Apps usage prediction frame-

work, KAP, which predicts Apps usage regarding both the

explicit readings of mobile sensors and the implicit transition

relation among Apps. For the explicit feature, we consider

three different types of mobile sensors: 1) device sensors,

2) environmental sensors, and 3) personal sensors. For the

implicit features, we construct an Apps Usage Graph (AUG)

to model the transition probability among Apps. Then, for

each training datum, we could represent the next used App

as the implicit feature which describes the probability of

transition from other Apps. Note that, since the next App

in the testing data is unknown, we propose an iterative

refinement algorithm to estimate both the probability of the

App to be invoked next and its implicit feature. We claim that

different usage behaviors are correlated to different types

of features. Therefore, a personalized feature selection algo-

rithm is proposed, where for each user, only the most relative

features are selected. Through the feature selection, we

can reduce the dimensionality of the feature space and the

energy/storage consumption, and demonstrate the efficiency

of MDL-based selection algorithm. We integrate the explicit

and implicit features as the feature space and the next used

App as the class label to perform kNN classification. In

the experimental results, our method outperforms the state-

or-the-art methods and the currently used methods in most

mobile devices.
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