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Make-to-order or direct-order business models that require close interaction between production and
distribution activities have been adopted by many enterprises in order to be competitive in demanding
markets. This article considers an integrated production and distribution scheduling problem in which jobs
are first processed by one of the unrelated parallel machines and then distributed to corresponding cus-
tomers by capacitated vehicles without intermediate inventory. The objective is to find a joint production
and distribution schedule so that the weighted sum of total weighted job delivery time and the total distribu-
tion cost is minimized. This article presents a mathematical model for describing the problem and designs
an algorithm using ant colony optimization. Computational experiments illustrate that the algorithm devel-
oped is capable of generating near-optimal solutions. The computational results also demonstrate the value
of integrating production and distribution in the model for the studied problem.

Keywords: integrated scheduling; production and distribution operations; unrelated parallel machines;
ant colony optimization

1. Introduction

In the current competitive global market, companies are forced to lower the amount of inventory
needed across their supply chain but still have to be responsive to customers’ requirements.
Reduced inventory creates a closer interaction between production and distribution activities and
thus increases the practical usefulness of integrated models (Sarmiento and Nagi 1999).

Consider a make-to-order business model where products are custom-made and are delivered
to customers within a very short lead-time directly from the factory without the intermediate step
of finished product inventory. For example, in a typical computer direct-order system, there are
hundreds of configurations available for a customer to choose from when ordering a computer.
It would be impractical and not cost-effective to store assembled and packaged computers with
a particular configuration before knowing what customers will order. Many manufacturers are
now operating under the concept of postponement to delay product differentiation until closer
to the time the product is sold. As a result, the factory only keeps inventory at the component
level and has to start computer assembly and packaging after receiving customer orders. How-
ever, owing to keen market competition, a business operating under this direct-sale model must
deliver completed orders to customers within a very short time-frame. Therefore, production and
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504 Y.-C. Chang et al.

distribution operations are linked together directly without any intermediate steps (Chen 2004).
Similar characteristics can also be found in the service industry, especially for time-sensitive
services.

Traditional approaches deal with production and distribution one by one with little or no
coordination between these two stages. When there is a sufficient amount of inventory between
production and distribution, the operations of these two stages can be decoupled; hence, traditional
approaches are able to deliver reasonable and effective solutions. However, in make-to-order or
direct-order business models, there is not much inventory between the production and distribution
stages, so close interaction between these two stages is essential.

This article discusses a two-stage supply-chain problem that involves the integration of pro-
duction and distribution scheduling at the individual job level. For such problems, jobs are, at the
first stage, arranged to be processed by some machines and then delivered, at the second stage,
to some customers who may reside at different locations by some means of transportation (e.g.
delivery vehicles). Traditionally, the problem in each of these two stages is considered separately.
The problems at the first and second stages are called the job scheduling problem (e.g. Pinedo
2002) and vehicle routing problem (Golden, Raghavan, and Wasil 2008), respectively. Both prob-
lems have been widely studied in the past. However, not until recently has attention been given to
models that address the integration of production and distribution operations. One of the reasons
that few studies attempt to address these two stages simultaneously is that the problem of a single
stage by itself is already tremendously hard to solve.

Among the research that explicitly addresses the integration of production and distribution
scheduling, Lee and Chen (2001) studied machine scheduling problems that considered either
intermediate delivery between machines or the finished product deliveries. Li, Vairaktarakis,
and Lee (2005) extended Lee and Chen’s work by considering the situations where product
may demand different amounts of storage space for delivery and where deliveries are made to
multiple locations via a direct shipping method, respectively. These studies aimed at optimizing
the customer service level measured by job delivery times subject to a delivery vehicle availability
constraint. Averbakh (2010) studied the on-line integrated production–distribution problems with
capacitated batches and aimed to minimize the sum of weighted flow time and delivery cost. There
are models that consider the trade-off between the total transportation cost and customer service
performance measures related to due date or job delivery time (Chen and Vairaktarakis 2005; Hall
and Potts 2005; Pundoor and Chen 2005; Wang and Lee 2005; Chen and Pundoor 2006; Li and
Vairaktarakis 2007). In terms of delivery methods, most of the existing literature considered the
problems with batch delivery to customers by the direct shipping method (Lee and Chen 2001;
Hall and Potts 2003; Hall and Potts 2005; Li and Ou 2005; Li and Ou 2007; Zhong, Dosa, and
Tan 2007; Chen and Lee 2008), but only a few studies discussed routing decisions (Chen and
Vairaktarakis 2005; Li, Vairaktarakis, and Lee 2005; Armstrong, Gao, and Lei 2008; Geismar
et al. 2008).

Most of the special cases of this problem class have already been proved as NP hard, espe-
cially when there are multiple machines for production and/or when there are multiple customer
locations (Lee and Chen 2001; Chang and Lee 2004; Li et al. 2005; Pundoor and Chen 2005).
As pointed out by Chen and Vairaktarakis (2005), more research is needed to model production–
distribution interactions and develop problem-solving techniques that can be used in practice.
Chen (2010) has recently provided an extensive review on this problem class.

In this study, jobs are first arranged to be processed by a manufacturing facility modelled as
a shop with a set of unrelated parallel machines (Lenstra and Shmoys 1990) (i.e. there is no
relationship between the processing times of a job on different machines). After production, jobs
are delivered to customers residing at different locations by homogeneous capacitated vehicles.
The objective is to find a joint production and distribution schedule so that the overall cost is min-
imized. This article presents a mathematical model for this integrated production and distribution
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Engineering Optimization 505

scheduling problem. Since this problem is NP hard, a heuristic is designed using ant colony
optimization (ACO) to find near-optimal solutions of the studied problem.

The remainder of this article is organized as follows. Section 2 defines the studied problem
and gives a mixed integer programming formulation. Section 3 presents the design of the ACO
heuristic. Computational experiments are discussed in Section 4 along with the analysis of results.
Section 5 concludes this article with future research directions.

2. Problem definition and mathematical formulation

The integrated production and distribution scheduling problem is described as follows. There are
n jobs N = {1, 2, . . . , n} ordered by q customers Q = {1, 2, . . . , q} residing at different locations
within an underlying transportation network. Let Nh ⊂ N be the subset of jobs ordered by customer
h, and nh = |Nh| for h ∈ Q, where N = N1 ∪ . . . ∪ Nq and n = n1 + · · · + nq. The weight of job
j ∈ N is denoted as wj, which represents the relative importance of job j among others. Jobs are
first processed in a manufacturing system and then delivered to their respective customers.

In the production part, m unrelated parallel machines M = {1, 2, . . . , m} are available in the
manufacturing system. Each job needs to be processed by one of the machines without interruption.
The processing time of job j on machine k is pkj. All jobs and machines are available at time 0.
Given a production schedule, completion time Cj represents the time when job j is completed by
one of the machines. Clearly, job j cannot be picked up for delivery until time Cj.

In the distribution part, a set of v vehicles (v ∈ V = {1, 2, . . . , v}, v ≥ n) of the same capacity
are available to deliver jobs. Each vehicle is limited to carry up to c (c < n) jobs in one delivery
and is initially located at the manufacturing facility. The transportation cost incurred by each
delivery consists of a fixed cost f and a heterogeneous variable cost depending on the particular
route taken by the vehicle. Parameters b0i, bij and bj0 denote the variable cost for travelling from
the manufacturing facility to customer i, from customer i to customer j, and from customer j to
the manufacturing facility, respectively. The corresponding travel times are denoted as t0i, tij and
tj0, respectively. A delivery vehicle can depart from the manufacturing facility only when each of
the jobs allocated to the corresponding batch has been processed by some machine. The delivery
time of job j ∈ N , Dj, is defined as the time when job j is delivered to its customer.

Similar to Chen andVairaktarakis (2005), the objective function considers both customer service
and total distribution cost, where the former is captured by the weighted sum of the job completion
delivery times of job j ∈ N (i.e. �j∈N wjDj, denoted as � wD) and the latter is the sum of distribution
costs (denoted as T ). Therefore, the goal is to minimize θ�wD + (1 − θ)T , where θ is a user-
defined parameter between 0 and 1, which reflects the decision-maker’s relative preference on the
customer service and the total distribution cost.

To introduce the formulation, more notations are defined as follows:

du
0 : the time when vehicle u ∈ V departs from the manufacturing facility

du
h : the time when vehicle u ∈ V arrives at customer h ∈ Q.

The decision variables are:

xk
ij = 1 if job i ∈ N is processed immediately before job j ∈ N\{i} on machine k ∈ M

yu
hl = 1 if vehicle u ∈ V travels from customer h ∈ Q to customer l ∈ Q\{h} (i.e. they are

visited consecutively by the same vehicle)
zu

i = 1 if job i ∈ N is delivered by vehicle u ∈ V .

For convenience, two dummy jobs are introduced, job 0 and job n + 1, which do not take any
time to be processed or consume any vehicle capacity, and C0, the completion time of job 0,
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506 Y.-C. Chang et al.

is set to 0. Moreover, let customer 0 represent the location of the manufacturing facility where
each vehicle is initially located, and customer q + 1 represents the location in the manufacturing
facility where each vehicle will return to. There is no travel time or cost between customer 0 and
customer q + 1. The problem formulation is given as follows.

min θ
∑
j∈N

wjDj + (1 − θ)

⎛
⎜⎜⎝f

∑
u∈V

∑
h∈Q

yu
0h +

∑
u∈V

∑
h,l∈Q∪{0,q+1}

h �=l

bhly
u
hl

⎞
⎟⎟⎠ (1)

subject to ∑
i∈N∪{0}

i �=j

∑
k∈M

xk
ij = 1, ∀j ∈ N ∪ {n + 1} (2)

∑
j∈N

xk
0j ≤ 1, ∀k ∈ M (3)

Cj =
∑
k∈M

⎛
⎜⎜⎝ ∑

i∈ N∪{0}
i �=j

pkix
k
ij + pkj

⎞
⎟⎟⎠, ∀j ∈ N ∪ {n + 1} (4)

∑
l∈Q∪{q+1}\{h}

yu
hl −

∑
l∈Q∪{0}\{h}

yu
lh = 0, ∀u ∈ V h ∈ Q (5)

∑
h∈Q

yu
h,q+1 −

∑
h∈Q

yu
0,h = 0, ∀u ∈ V (6)

∑
h∈Q

yu
0h ≤ 1, ∀u ∈ V (7)

nh

∑
l∈Q\{h}

yu
lh −

∑
j∈Nh

zu
j ≥ 0, ∀u ∈ V , h ∈ Q (8)

∑
u∈V

zu
j = 1, ∀j ∈ N (9)

∑
j∈Q

zu
j ≤ c, ∀u ∈ V (10)

du
h =

∑
l∈Q∪{0}\{h}

(du
l + tlh)y

u
lh, ∀u ∈ V , h ∈ Q (11)

Cj −
∑
u∈V

du
0 zu

j ≤ 0, ∀j ∈ N (12)

Dj −
∑
u∈V

du
h zu

j = 0, ∀j ∈ Nh, h ∈ Q (13)

xk
ij ∈ {0, 1}, ∀i ∈ N ∪ {0}, j ∈ N ∪ {n + 1}, k ∈ M (14)

ek
ij ∈ {0, 1}, ∀i ∈ N ∪ {0}, j ∈ N ∪ {n + 1}, i �= j, k ∈ M (15)

yu
hl ∈ {0, 1}, ∀h ∈ Q ∪ {0}, l ∈ Q ∪ {q + 1}, u ∈ V (16)

zu
j ∈ {0, 1}, ∀j ∈ N , u ∈ V (17)
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Engineering Optimization 507

Equation (1) minimizes the weighted sum of the total weighted job delivery time and total
distribution cost. Equation (2) ensures that each job is processed exactly once. Equation (3)
ensures that each machine can have at most one job as the first job to process. Equation (4) defines
the time when each job is completely processed by a machine and is ready for delivery. Equa-
tions (5) and (6) represent the conservation-flow requirements. Equation (7) ensures that each
vehicle is used at most once. Equation (8) makes sure that if a job is delivered to its customer
by a vehicle, then the vehicle has to visit that customer. Equation (9) guarantees that each job
will be delivered to its customer exactly once. Equation (10) associates with the vehicle capacity.
Equations (11) and (13) define the job delivery time. Equation (12) makes sure that a job will
not be delivered until it has been processed by a machine. The binary restriction for some of the
decision variables is shown in Equations (14) to (17).

Clearly, this formulation is very complicated. Equation (11) even incorporates nonlinear con-
straints that make this problem intractable. It is easy to see that this problem is NP hard in the
strong sense since a reduction from the travelling salesman problem (TSP), whose complexity
has been clarified as NP hard in the strong sense (Garey and Johnson 1979), can be taken as
a special case of this problem with m = 1 and pj = 0, ∀j ∈ N . It is unlikely that a polynomial
algorithm can be found for this problem; hence, there is a need to explore methodologies to ease
the computational effort while still obtaining good-quality solutions.

3. Research methodology

Owing to its complexity, the problem class of this study appears to be a good candidate for the
ACO methods. ACO is a population-based metaheuristic approach proposed by Colorni, Dorigo,
and Maniezzo (1991) and refined by Dorigo (1992), and Dorigo and Di Caro (1999). Dorigo and
Stützle (2004) revised the original algorithm and added some new features for consideration when
applying ACO. ACO has been successfully applied to many combinatorial optimization problems,
including but not limited to the TSP (Dorigo and Gambardella 1997; Liu 2005), vehicle routing
problems (VRP) (e.g. Bullnheimer, Hartl, and Strauss 1999), scheduling problems (Stützle et al.
1998; Gagné, Price, and Gravel 2002; T’kindt et al. 2002; Shyu, Lin, and Yin 2004; Huang and
Liao 2008) and multi-objective optimization (Afshar, Sharifi, and Jalali 2009). Dorigo, Birattari,
and Stützle (2006) also showed the most successful applications ofACO. Gagné, Price, and Gravel
(2002) reported that ACO has a certain advantage for larger problems. Therefore, in this article,
an ACO heuristic is designed to obtain near-optimal solutions for the studied problem. Recent
research trends in ACO can be found in Dorigo and Stützle (2010).

Per Chen and Vairaktarakis (2005), this problem has the following straightforward optimality
properties.

Lemma 1 There exists an optimal schedule to the studied problem such that

(1) there is no idle time between the jobs processed on each machine in the manufacturing facility
in the production part of the schedule; and

(2) the departure time of each batch is the production finishing time of the last job included in
the batch.

3.1. Framework of the proposed ACO algorithm

ACO is a probabilistic search procedure whose central component is the pheromone model,
which is employed to probabilistically sample the search space. In this study, a number of ants
probabilistically construct solutions to the problem according to the designed pheromone model
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508 Y.-C. Chang et al.

Figure 1. Framework of the proposed ant colony optimization algorithm.

at each iteration. Before the next iteration starts, some of the solutions are used for performing a
pheromone update. A pheromone matrix for production and a pheromone matrix for distribution
are designed. The framework of the proposed ACO algorithm is depicted in Figure 1. In this
framework, a production schedule is constructed using the transition rules that also take into
account the required delivery times incurred at the distribution stage. After updating locally the
production pheromone matrix, a delivery schedule is constructed according to the previously
constructed production schedule. The distribution pheromone matrix is locally updated after
the distribution schedule is constructed. The same procedure repeats until all ants find their
feasible solutions. Both production and distribution pheromone matrices are updated afterwards
to reward the best-found trail (solution). TheACO algorithm is terminated when the predetermined
maximum number of iterations is reached. Section 3.2 describes the details of the proposed ACO
algorithm.
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Engineering Optimization 509

Table 1. Job–machine mapping for a three-job–two-machine problem.

Machine 1 1 1 2 2 2
Job 1 2 3 1 2 3
Operation number 1 2 3 4 5 6

3.2. Construction of schedules

There are three steps for constructing the path of ants. The production schedule is formed first,
then the delivery batches and sequence are arranged accordingly, and finally the route of each
vehicle is determined.

3.2.1. Transformation of job and machine relationship for production

For an unrelated parallel machine problem, each job can only be processed by one of the
machines while the job processing time is machine dependent. To construct a production sched-
ule, the job–machine assignment is transferred as a set of alternatives. An alternative represents
a mapped relationship between a pair comprising a job and a machine. Taking a three-job–
two-machine problem, for example, there are six alternatives resulting from this transformation
(Table 1).

Through this transformation, both machines and jobs are taken into account to be used for
constructing the production pheromone matrix. Although there may be multiple alternatives asso-
ciated with a job, only one of the alternatives can be selected for each job. A feasible production
schedule is then represented by the n selected alternatives out of nm choices of alternatives. If each
alternative is referred as a node, then constructing a feasible production schedule is equivalent
to finding a path consisting of n nodes from the underlying network consisting of nm nodes. In
what follows, the terms ‘node’ and ‘alternative’ are used interchangeably. For the same three-job–
two-machine example described earlier, the corresponding production pheromone matrix has six
rows and six columns. Let τ

p
ij be the (i, j) entry of the production pheromone matrix, where τ

p
ij

represents the intensity of the pheromone trail associated with the path from node i to node j
for the production schedule. Let �(i) be the job corresponding to alternative i. Then τ

p
ij equals

0 if �(i) = �(j). For instance, in the three-job–two-machine example, both τ
p
14 and τ

p
41 equal

0 since both alternatives 1 and 4 are related to job 1. Suppose an ant k has just chosen node i,
then Pk(i) is the set of nodes already visited by ant k and Ek(i) is the set of nodes eligible to
be visited for ant k from node i. In this three-job–two-machine example, suppose node 4 is cho-
sen first, then Pk(4) = {4}. As alternative 4 has been selected, alternative 1, the other alternative
associated with job 1, is no longer eligible to be selected. Consequently, Ek(4) = {2, 3, 5, 6}. If
node 6 is selected next, then Pk(6) = {4, 6} and Ek(6) = {2, 5}. At this moment, alternatives 4
and 6 have been included in the solution, and only alternatives 2 and 5 designated for job 2 can
be visited next.

3.2.2. State transition rule for production

To search for better solutions, ants may rely on their past experience that leads to a better trail, and
they also need to find other trials that have not been explored. These two strategies are referred to
as ‘exploitation’ and ‘exploration’, respectively. The main purpose of exploitation is to improve
the currently found solutions. However, this strategy may cause the search to be trapped into a
local optimal solution. Therefore, exploration provides ants with opportunities to escape from
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510 Y.-C. Chang et al.

local optima and to search better solutions in a new area. The state transition rule proposed by
Dorigo and Gambardella (1997) is employed to determine the next-visit node.

Let η
p
iu be the heuristic information of node u from node i for ant k for the production schedule.

Moreover, let s(j) be the customer who ordered job j. The heuristic information is determined by
Equation (18):

η
p
iu =

⎛
⎝ ∑

x∈Pk(i)

w�(x)C�(x) + w�(u)C�(u) + ts(�(i))s(�(u))

⎞
⎠

−1

, u ∈ Ek(i) (18)

In Equation (18), the current position of ant k is node i, and node u is a node eligible to be visited
from node i. This equation encourages the ant to select an alternative such that its corresponding
job has smaller weighted completion time and shorter delivery time. The decision on which node
to visit next depends on the preference between exploration and exploitation. In the interval [0, 1],
let π be a random number generated from the uniform distribution and πp be a constant which
indicates the desired probability of exploitation in the production scheduling. If π ≤ πp, then
the next node the ant visits is determined by Equation (19), where αp and βp are two parameters
chosen to represent the relative importance of the pheromone value and the heuristic information,
respectively. If Equation (19) is applied, ant k uses exploitation to determine the next node to
visit.

j = arg max
u∈Ek(i)

{(τ p
iu)

αp(η
p
iu)

βp}, if π ≤ πp (19)

On the other hand, if π > πp, then ant k is allowed to explore a new trail, as a strategy of
exploration. The probability of selecting alternative u among all eligible alternatives is determined
by Equation (20).

Piu = (τ
p
iu)

αp(η
p
iu)

βp∑
x∈Ek(i) (τ

p
ix)

αp(η
p
ix)

βp
, if π > πp (20)

3.2.3. Allocation of distribution batches

The next stage of the heuristic is to determine which jobs are to be included in a batch and the time
at which when the vehicle carrying the batch of jobs leaves the production facility. Routing for a
batch is required if the jobs in the batch belong to different customers. This routing subproblem
is in fact a TSP, a well-known NP-hard problem.

To simplify the work required in this stage, a dynamic programming algorithm, called DPA, is
designed to assign jobs into batches according to their job completion times as well as the estimated
transportation cost. The jobs are first arranged in non-decreasing order of the job completion
times. This sequence is called the first-in–first-out (FIFO) sequence. Let j(i) be the job that is
finished on the ith position (i = 1, 2, . . . , n) in the FIFO sequence. The jobs are then allocated to
vehicles accordingly. To speed up path construction, the routing decision is avoided in DPA by
assuming that jobs are also delivered per the FIFO sequence. The actual routing is determined when
constructing the distribution schedule (described in Section 3.2.4). Let V(j(i)) be the total weighted
sum of the production and distribution cost (i.e. the objective function value) for delivering the
first i (i = 1, 2, . . . , n) jobs per the FIFO sequence. DPA is described as follows:

The initial condition:

V(j(i)) =
{

0 if i = 0

∞ otherwise
(21)
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Engineering Optimization 511

Recursive relationship:

V(j(i)) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V(j(i−h)) + θ

(
hCj(i) + t0s(�(j(i−h+1))) +

i−1∑
x=i−h+1

ts(�(j(x)))s(�(j(x+1)))

)

+ (1 − θ)

(
f + b0s(�(j(i−h+1))) +

i−1∑
x=i−h+1

bs(�(j(x)))s(�(j(x+1)))

)

: h = 1, . . . , min(c, j(i))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

for i = 1, . . . , n. (22)

The optimal objective value = V(j(n)).
The initial condition is stated in Equation (21). In Equation (22), h represents the number of

jobs delivered with j(i) in one batch. The goal is to select a number of jobs to carry along with
j(i) to minimize V(j(i)). The cost terms shown in Equation (22) represent the additional cost of
carrying these h jobs along with j(i) while assuming that jobs are also delivered according to the
FIFO sequence. The departure time of the corresponding vehicle is the completion time of j(i) by
Lemma 1(2).

3.2.4. State transition rule for distribution

The state transition rule of the distribution schedule is similar to the rule of the production schedule.
After allocating all the jobs to some vehicles, the route of each vehicle is determined. Let a be
the current node that ant k is visiting and Skv(a) be the set of nodes that still need to be visited
by the vth vehicle of ant k. If there is another undelivered job ordered by the same customer of
job a, then ant k will visit the job first. Otherwise, the next job will be selected according to the
preference between exploitation and exploration. Let τ d

ab be the value corresponding to the (a, b)

entry in the distribution pheromone matrix and ηd
ab be heuristic information of node b from node

a. The heuristic information is determined by Equation (23).

ηd
ab =

⎧⎨
⎩

wb

dab
, for dab > 0

∞, otherwise
(23)

In Equation (23), wb is the weight of job b, and dab is the transportation time between the customers
of jobs a and b. If both jobs are for the same customer, the transportation time is assumed to
be 0. Similar to the notation used in Section 3.2.2, in the interval [0, 1], let π be a random
number generated from the uniform distribution and πd be a constant which indicates the desired
probability of exploitation in the distribution part. If π ≤ πd , then the next job ant k delivers is
determined by Equation (24).

b = arg max
u∈Skv(a)

{(τ d
au)

αd (ηd
au)

βd }, if π ≤ πd (24)

In Equation (24), αd and βd are two parameters chosen to represent the relative importance of the
pheromone value and the heuristic information, respectively. On the other hand, if π > πd , ant k
is allowed to explore new trails. The probability of node x being selected at node a is determined
by Equation (25).

Pax = (τax)
α(ηax)

β∑
u∈Sk(a) (τau)α(ηau)β

for x ∈ Sk(a), if π > πd (25)
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512 Y.-C. Chang et al.

3.2.5. Pheromone update

Pheromone, the medium that ants use to exchange information and communicate with each other,
needs to be updated according to the moves of ants and solution quality. The pheromone is updated
locally and globally. During the construction of a path, the pheromone can be updated locally
using Equation (26) right after a node (an alternative in the production matrix or a job in the
distribution matrix) j has been chosen by the ant k from node i.

τ new
ij = (1 − ϕ)τ old

ij + ϕτ0, ∀i, j (26)

In Equation (26), τ old
ij and τ new

ij are the current and updated pheromone values corresponding to
the (i, j) entry of the production pheromone matrix, respectively, where ϕ is the predetermined
evaporation rate taking value between 0 and 1, and τ0 is the predetermined initial pheromone value.
The effect of adjusting the pheromone level from node i to node j in Equation (26) is to increase
the chance for other ants to visit different paths. Moreover, pheromone density is confined within
a range between τmin and τmax to avoid a very high or low pheromone density so as to increase
diversification.

In this article, two pheromone matrices are designed, one for production and the other for
distribution. The size of the production pheromone matrix is nm by nm while that the size of the
distribution pheromone matrix is n by n. These two matrices seem independent, but a feedback
mechanism of pheromone intensity is designed to integrate these two matrices. That is, when the
distribution pheromone matrix is updated, the production pheromone matrix is revised for the
corresponding alternatives of each job. The goal of interaction between these two matrices is to
generate some influence on the production stage from the distribution stage so as to enhance the
integration of these two stages.

After all ants have constructed their feasible schedules in an iteration, both production and
distribution pheromone matrices are globally updated using Equation (27) in order to intensify
the better-found solutions and to lead ants to explore or exploit trails in later iterations.

τ t+1
ij = (1 − ρ)τ t

ij + ρ�τ ∗
ij (27)

In Equation (27), t refers to the current completed iteration, and ρ represents the predetermined
global pheromone evaporation rate. The symbols τ t

ij and τ t+1
ij represent the (i, j) entry of the

pheromone matrix in iterations t and t + 1, respectively. The increase in pheromone value of path
(i, j) as a result of the best-found solution is denoted by �τ ∗

ij and is determined by Equation (28).

�τ ∗
ij =

⎧⎨
⎩

Lgb

Ngb
τ0, if path(i, j) ∈ the best solution found in iteration t

0, otherwise
(28)

In Equation (28), Lgb is the objective value of the best solution found up to the tth iteration, and
Ngb stands for the best objective value found in the current iteration. The reward on pheromone
decreases with increasing value of Ngb.

3.3. Summary of ACO heuristic

The heuristic of this article is developed from ACO and consists of path construction and
pheromone update. The construction process involves three steps. First, the production schedule is
constructed by assigning each job to some machine and determining the job order of production.
The initial solution is randomly generated per the method described in Section 3.2.1. Then, the
distribution batches are allocated by following the order that jobs are finished in the first step.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

6:
02

 2
8 

A
pr

il 
20

14
 



Engineering Optimization 513

Dynamic programming is employed to determine the delivery batches. Finally, the distribution
sequence within each vehicle is determined.

With this framework, the procedure of the heuristic (referred to as ACO_DPA) is summarized
as follows.

Step 1: Initializing parameters
The following parameters are determined in this step: the number of ants (n_ants), the number

of iterations (iter), the initial value of pheromone intensity of each path (τ0), the weight of
pheromone intensity (αp, αd), the weight of heuristic information (βp, βd), the probabilities of
exploitation degree (πp, πd), and local and global pheromone evaporation rates (ϕ, ρ).

Step 2: Construction of production schedule
After transforming the mapping between jobs and machines into a series of alternatives, con-

struct the path for each ant according to the preference of exploitation and exploration. The
construction continues until the completion of a path.

Step 3: Local pheromone update for production
Once a new production operation is scheduled following the current operation, update the

pheromone intensity from the current operation to the new one.
Step 4: Allocation of distribution batches
After the production schedule has been completely constructed, determine the total number of

batches required and associate jobs with each batch.
Step 5: Planning of distribution for each batch of jobs
Within each batch of jobs set in step 4, determine the sequence of delivery. The delivery starts

from the manufacturing facility, and visits customers following the preference of exploitation and
exploration. Jobs in a batch that belongs to the same customer will be delivered at the same time.

Step 6: Local pheromone update for distribution
Once a new job has been selected for delivery, update the pheromone intensity from the current

job to the new one. This step also triggers the pheromone feedback mechanism, which updates
the production pheromone matrix as well.

Step 7: Global pheromone update
Once all the ants have finished the construction of the entire path, the pheromone of the path

with the minimal objective function value is increased while the pheromone of the other paths is
reduced from pheromone evaporation.

Step 8: Stopping criterion
If the number of iterations has reached the allowed maximum, stop; otherwise go back to step 2.

4. Computational experiments

This section demonstrates the computational results for a set of problem instances tested on an
AMD Dual-Core Opteron 2218 CPU with 2 GB of RAM. The ACO_DPA algorithm is coded in
Matlab.

4.1. Design of test problem instances

To test the effectiveness and efficiency of ACO_DPA, 162 problem instances were generated.
These instances are distinguished by the number of machines (m = 2, 4 or 8), number of customers
(q = 5, 10 or 20), number of jobs (n = 25, 50 or 100), vehicle capacity (c = 5, 10 or 20) and
objective relative preference (θ = 0.2, 0.5 or 0.8). Note that not all the above combinations are
used. When q = 10, n takes only the value of 50 or 100; whereas when q = 20, n takes only
the value of 100. In the production stage, jobs are distinguished by their processing times. The
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514 Y.-C. Chang et al.

length of processing times can be long, average and short for large, medium and small jobs,
respectively. Denote U(x1, x2) as the uniform distribution between x1 and x2. The processing times
of large, medium and small jobs were randomly created from U(30, 35), U(15, 20) and U(1, 5),
respectively. A fixed cost of 100 for each vehicle being used was assumed for the distribution
stage. The x-coordinate and y-coordinate of each customer’s location were both generated from
U(−30, 30) and the manufacturing facility was located at the origin. The distribution time and
cost were calculated according to the Euclidean distance between the locations of each pair of
customers.

4.2. Tuning of parameters

Preliminary experiments were conducted to find the appropriate value for each of the parameters.
The following values have either been superior or achieved the best compromise between solution
quality and computational time, and were thus used for all further experiments in this study:
n_ants = 40, iter = 80, τ0 = 0.0005, (αp, βp) = (2, 0.1), (αd , βd) = (0.05, 0.1), πp = 0.95, πd =
0.6, ϕ = 0.7 and ρ = 0.005.

4.3. Effectiveness of ACO_DPA

Chang, Chang, and Chang (2013) used column generation to solve a special case of the studied
problem where all the parallel machines are identical. To test the solution quality, the best solu-
tions obtained by ACO_DPA were compared with the results obtained using the exact method.
Owing to memory restrictions on the personal computer platform, the exact method designed
by Chang et al. was capable of finding optimal solutions to small-scale problem instances only.
Therefore, the problem instances tested here are all on a small scale: limited to three or four
customers, vehicle capacity of four jobs, and the number of machines being two, four or six. The
job processing times, distribution times and costs were all randomly generated from U(1, 10).
The same objective function as Equation (1) is used in both methods where the total production
cost and total distribution cost are equally preferred (i.e. θ = 0.5). Let Z∗ and ZDPA be the best
objective function value obtained by the exact method and ACO_DPA, respectively. The gap
between these two methods is calculated using (ZDPA − Z∗)/ZDPA. Table 2 lists the solutions as
well as the computer run-time required by ACO_DPA and the exact method, respectively. As can

Table 2. Gap between ZDPA and Z∗ (obtained from column generation).

Obj. by Optimal Run time of Run time of
No. q m n ACO−DPA obj. value Gap on obj. ACO−DPA exact method

1 3 2 7 84.0 84. 0 1.1 92.4
2 3 2 9 122.5 122.5 0 1.2 1273.8
3 3 4 6 59.5 59.5 0 2.8 10.2
4 3 4 8 77.5 77.5 0 3.0 13.1
5 3 4 10 90.5 90.5 0 3.5 133.4
6 3 6 8 74.5 70.5 5.7% 5.8 9.7
7 3 6 10 92.5 91.0 1.6% 6.4 13.5
8 3 6 12 80.0 78.0 2.6% 6.9 50.3
9 4 2 7 76.0 76.0 0 1.1 50.3

10 4 4 8 63.0 63.0 0 3.2 18.7
11 4 4 9 94.5 91.0 3.8% 3.2 302.2
12 4 6 10 77.0 72.0 6.9% 6.3 49.1
13 4 6 10 95.0 92.5 2.7% 6.6 345.8
14 4 6 10 95.0 93.0 2.2% 7.0 558.2

Note: CPU time measured in seconds.
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Engineering Optimization 515

be seen, ACO_DPA obtains the optimal solution in seven out of 14 problem instances, while the
average gap on the objective function values is 2.32%. These results show that ACO_DPA has the
potential to obtain very good results in just a fraction of time in comparison to the exact approach.
The price of a complete enumeration of this problem is pretty expensive. There are already mnn!
possible schedules for the production part. Incorporating the distribution part makes the problem
even more difficult to solve.

4.4. Results of experiments

The effectiveness of ACO_DPA is evaluated from several different perspectives as discussed in
the following subsections.

4.4.1. Effectiveness of using DPA

The purpose of designing the DPA between the production and distribution in the ACO heuristic
is to allocate finished jobs to batches before distribution. To evaluate the effectiveness of DPA, it
was compared with another alternative called the fully loaded strategy. In the fully loaded strategy,
jobs are scheduled to be distributed per their completion times. Except for the last one, all vehicles
have to wait until they are fully loaded. Let ZF denote the best objective function value obtained
by the fully loaded strategy. The gap between ZF and ZDPA is calculated using (ZF − ZDPA)/ZF . A
multiple regression analysis for the foregoing value was conducted by considering m, q, n, c and
θ as the independent variables. The results of the multiple regression analysis are summarized in
Table 3.

Table 3 shows an insignificant impact of m or q on the relevant differences. According to this
observation, the results were consolidated by taking the average value across different m and q
values, respectively. The average gaps between ZF and ZDPA are summarized in Table 4, from
which the following two observations are made:

(1) The average gap increases as θ increases because larger value of θ makes the job delivery
time contribute more to the objective function value. If a vehicle has to wait until it is fully
loaded, the delivery times of some of the jobs will be increased owing to extra waiting time.

(2) The larger the vehicle capacity, the more effective the DPA, in general. When the capacity is
doubled from 5 to 10 and from 10 to 20, the average gap increases to 1.89 (= 20.47%/10.84%)

and 1.82 (= 37.28%/20.47%) times the original value, respectively.As the capacity increases,
there are more choices to combine jobs for distribution. Consequently, the batching decision
is more important when the vehicle capacity is large.

Table 3. Multiple regression analysis for the gap between ZF and ZDPA.

Regression summary for dependent variable: R = 0.94319306, R2 = 0.88961315,
Adjusted R2 = 0.88607511 F(5, 156) = 251.44, p < 0.0000, Std. Error of estimate: 0.04728

N = 162 Beta Std. Err. of Beta B Std. Err. of B T(156) p

Intercept −0.052884 0.015780 −3.35134 0.0010009
M −0.026795 0.026601 −0.001500 0.001489 −1.00731 0.315347
Q 0.002466 0.030583 0.000065 0.000800 0.08065 0.935826
N −0.207404 0.030583 −0.000955 0.000141 −6.78174 0.000000
C 0.775728 0.026601 0.017372 0.000596 29.16173 0.000000
θ 0.494594 0.026601 0.281991 0.015166 18.59313 0.000000
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516 Y.-C. Chang et al.

Table 4. Average gaps between ZF and ZDPA.

θ = 0.2 θ = 0.5 θ = 0.8

n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100
c (%) (%) (%) (%) (%) (%) (%) (%) (%) Average

5 9.70 6.00 4.30 11.80 10.00 7.20 21.90 16.30 10.40 10.84
10 9.70 12.80 10.80 23.80 22.10 15.40 34.40 31.90 23.30 20.47
20 23.60 23.80 21.10 42.70 39.30 34.40 56.80 50.50 43.30 37.28

Table 5. Comparison of run time between dynamic programming
algorithm (DPA) and fully loaded strategy.

n c TDPA TF Gap (%)

25 5 27.84 17.38 38
25 10 35.23 22.47 36
25 20 48.21 30.17 37
50 5 110.44 71.01 36
50 10 126.79 81.72 36
50 20 172.78 109.87 36

100 5 514.93 363.29 29
100 10 551.48 387.57 30
100 20 660.48 445.84 32

Note: CPU time measured in seconds.

In summary, the impact of including DPA is significant as the average gap between ZDPA and ZF is
22.9% for these 162 problem instances. This result indicates that the fully loaded strategy cannot
yield better solutions than loading vehicles partially, even though the former strategy minimizes
the number of vehicles used, thus justifying the value of using DPA in the ACO heuristic.

To illustrate the run-time performance of ACO_DPA as well as the difference in run-time
between using DPA and using the fully loaded strategy in ACO, the run-time information is
organized in Table 5. Let TDPA and TF be the run-time of using DPA and the fully loaded strategy
in ACO, respectively. The gap between TDPA and TF is calculated as (TDPA − TF)/TDPA. The
results in Table 5 were consolidated by taking the average value across different θ , m and q values
since these three parameters do not affect the run-time gap significantly. As seen in Table 5, DPA
spends 30% more run-time than the fully loaded strategy does, but the improvement of solution
quality is significant. Take the set of problems with n = 100 and c = 20 as an example. Applying
DPA in ACO requires 32% more CPU time (per Table 5) but improves the solution quality by
37.28% (per Table 4).

4.4.2. Effectiveness of incorporating pheromone feedback mechanism

Recall that a pheromone feedback mechanism is designed in ACO_DPA. To evaluate the
effectiveness of this feedback mechanism, the results obtained with and without it were com-
pared. Let Zoff be the objective function value when the feedback mechanism is switched off.
The gap between Zoff and ZDPA is calculated as (Zoff − ZDPA)/Zoff . A multiple regression analysis
for the gap between these two variants was conducted by considering m, q, n, c and θ as the
independent variables. The results show that q and θ do not have a significant impact on the gap.
Thus, the results shown in Table 6 were consolidated by taking the average value across different
q and θ values, respectively. The average gaps between Zoff and ZDPA with n = 25, 50 and 100
are 17.04%, 11.04% and 3.99%, respectively, per Table 6. The effect of the feedback mechanism
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Engineering Optimization 517

Table 6. Average gaps between Zoff and ZDPA.

n = 25 n = 50 n = 100

c = 5 c = 10 c = 20 c = 5 c = 10 c = 20 c = 5 c = 10 c = 20
M (%) (%) (%) (%) (%) (%) (%) (%) (%)

2 20.49 16.80 22.55 9.96 13.64 12.38 7.20 5.96 7.12
4 11.74 16.10 17.06 8.99 8.74 13.64 1.25 1.69 3.80
8 14.97 18.72 14.97 8.29 9.12 14.57 0.01 3.34 5.57

decreases as the number of jobs increases. It is observed that the effect from the pheromone
feedback is dampened by pheromone evaporation when the number of jobs is relatively large.

4.4.3. Value of integrating production and distribution stages

In practice, the scheduling decisions of production and distribution are usually made separately
and often sequentially by different decision-makers. The effect of integrating the production
and distribution scheduling is evaluated by comparing the results obtained using the integrated
approach presented in this article (ACO_DPA) with the method that addresses production and
distribution sequentially.

A two-step algorithm involving an ACO (named ACO_SA) was designed. In the first stage
(production) of ACO_SA, only customer service (measured by the completion time) is consid-
ered. The goal in this stage is to minimize the total weighted completion times,

∑n
j=1 WjCj. To

construct one path in the production stage, ACO_SA uses Equation (29) to determine the heuristic
information of node u from node i for ant k. In contrast to Equation (18) in ACO_DPA, ACO_SA
does not consider the distribution time from the job associated with node i to the job associated
with node u.

ηiu =
⎛
⎝ ∑

x∈Pk(i)

wω(x)Cω(x) + wω(u)Cω(u)

⎞
⎠

−1

, u ∈ Ek(i) (29)

After the production schedule has been determined, jobs are waiting to be allocated to batches
before distribution. Here, jobs are scheduled to be distributed according to their completion
times. Dynamic programming is employed to assign jobs into delivery batches. The recursive
relationship in algorithm DPA, i.e. Equation (22), is modified as shown in Equation (30). The
difference between Equations (22) and (30) is the consideration of job delivery times.

V(j(i)) = min

{
V(j(i−h) +

(
f + c0j(u)

+
i−1∑
x=u

cj(x)j(x+1)

)∣∣∣∣∣ h = 1, . . . , min(c, j(i))

}
(30)

Once the allocation of batches has been performed, ACO_SA utilizes the construction method
to determine the delivery routes as in ACO_DPA. The difference is that the pheromone feedback
mechanism is not incorporated into ACO_SA.

Let ZSA be the objective function value obtained using ACO_SA. The improvement percentage
of the overall cost from ZSA to ZDPA is calculated as (ZSA − ZDPA)/ZSA. A multiple regression
analysis for the gap between ACO_SA and ACO_DPA was conducted by considering m, q, n, c
and θ as the independent variables. The results show an insignificant impact of q on the relevant
differences. Therefore, the results were consolidated by taking the average value of q. The average
improvement percentages between ZSA and ZDPA are summarized in Table 7.

As seen in Table 7, the average improvement increases as θ increases when n is fixed at a
constant value, indicating the merit of using ACO_DPA when the focus is on the weighted sum of
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518 Y.-C. Chang et al.

Table 7. Value of integration: average improvement percentage from ZSA to ZDPA.

θ = 0.2 θ = 0.5 θ = 0.8

c = 5 c = 10 c = 20 c = 5 c = 10 c = 20 c = 5 c = 10 c = 20
n m (%) (%) (%) (%) (%) (%) (%) (%) (%)

25 2 14.88 6.21 28.42 13.19 23.00 48.20 12.61 38.42 53.15
4 12.56 4.09 30.01 19.09 14.68 44.24 24.34 36.52 59.55
8 9.72 10.32 32.78 14.87 26.22 49.38 24.84 29.68 49.70

50 2 6.91 5.84 19.82 6.15 13.09 23.56 14.62 17.41 29.87
4 2.83 4.08 14.47 5.66 9.50 23.18 9.43 16.77 29.63
8 1.82 5.70 12.61 5.97 7.60 21.96 7.52 14.74 26.03

100 2 7.14 7.68 17.96 5.47 13.91 28.57 11.80 22.85 34.28
4 5.21 3.99 9.87 8.49 8.01 24.56 4.39 14.92 35.68
8 2.37 6.25 11.31 3.32 7.31 22.09 6.65 13.76 36.16

job delivery times. It is also found that the average improvement is larger when n = 25 compared
with that when n = 50 or 100. Note that this result does not imply that the value of integration
is less significant for larger scale problem instances. For example, consider two cases where the
overall costs for ACO_SA and ACO_DPA are 4 and 3 at a smaller n value, and 100 and 80 at a
bigger n value, respectively. The improvement rate of the former and the latter case is 25% and
20%, respectively. Even though the improvement rate is larger when n is smaller, the absolute
improvement is very small.

Moreover, it is observed that the average improvement percentage increases when c increases
for a fixed n value. As the vehicle capacity gets larger, there are more opportunities to integrate
different combinations of job batches for delivery. Consequently, the integration effect becomes
more significant when the vehicle capacity is larger.

Last but not least, the average gap between ACO_SA and ACO_DPA for 162 instances is
18.04%, demonstrating the value and importance of the integration of both production and
distribution stages.

5. Conclusions and future research directions

Traditional approaches consider production–distribution scheduling separately and sequentially
with little or no coordination between these two stages. The current trend for inventory reduction
across stages within supply chains has caused some businesses to consider seriously integrating
the production and distribution activities in order to stay profitable. In this article, an integrated
production and distribution scheduling problem is studied. This type of problem can be commonly
found in businesses that keep very little finished good inventory, such as e-business direct sales,
express delivery services and food catering.

An ACO heuristic was designed to obtain near-optimal solutions for the studied problem. In this
ACO algorithm, a polynomial algorithm involving dynamic programming, DPA, is designed to
assign jobs into delivery batches. A pheromone feedback mechanism is embedded to increase the
integration of both production and distribution stages during schedule construction. Computational
experiments are conducted to evaluate the effectiveness of the ACO algorithm. The computational
results show that the present ACO algorithm is capable of generating near-optimal solutions,
and that the DPA and the designed pheromone feedback mechanism can improve the quality of
solutions obtained. The value of integration was also evaluated in this study by comparing the
results of using ACO to solve the production and distribution scheduling problem sequentially
with those obtained using an integrated approach. It was found that the value of integration is
significant.
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Engineering Optimization 519

The integrated production and distribution scheduling problem still requires more discussion in
the literature and in-depth investigation in practice. Further research can be conducted to explore
more practical approaches to solving this class of problems. Moreover, it is also important to
discuss such problems under different cost structures, such as including the performance measures
related to due date.

Acknowledgements

Funding for the first author was provided by National Science Council of Taiwan under grant numbers NSC 98-2410-
H-009-005 and NSC 101-2410-H-009-005-MY2. The authors are also grateful to Dr Chi-Leung Chu for providing
suggestions on an earlier version of this article.

References

Afshar, A., F. Sharifi, and M. R. Jalali. 2009. “Non-dominated Archiving Multi-colony Ant Algorithm for Multi-objective
Optimization: Application to Multi-purpose Reservoir Operation.” Engineering Optimization 41 (4): 313–325.

Armstrong, R., S. Gao, and L. Lei. 2008. “A Zero-Inventory Production and Distribution Problem with a Fixed Customer
Sequence.” Annals of Operations Research 159 (1): 395–414.

Averbakh, I. 2010. “On-line Integrated Production–Distribution Scheduling Problems with Capacitated Deliveries.”
European Journal of Operational Research 200 (2): 377–384.

Bullnheimer, B., R. F. Hartl, and C. Strauss. 1999. “An Improved Ant System Algorithm for the Vehicle Routing Problem.”
Annals of Operations Research 89: 319–328.

Chang, Y. C., K. H. Chang, and T. K. Chang. 2013. “Applied Column Generation-based Approach to Solve Supply Chain
Scheduling Problems.” International Journal of Production Research, in press.

Chang, Y.-C., and C.-Y. Lee. 2004. “Machine Scheduling with Job Delivery Coordination.” European Journal of
Operational Research 158 (2): 470–487.

Chen, Z.-L. 2004. “Integrated Production and Distribution Operations: Taxonomy, Models and Review.” In Handbook
of Quantitative Supply Chain Analysis: Modeling in the e-Business Era, edited by D. Simchi-Levi, S. D. Wu and
Z.-J. Shen, 711–746. New York: Kluwer Academic Publishers.

Chen, Z. L. 2010. “Integrated Production and Outbound Distribution Scheduling: Review and Extensions.” Operations
Research 58 (1): 130–148.

Chen, B., and C.-Y. Lee. 2008. “Logistics Scheduling with Batching and Transportation.” European Journal of Operational
Research 189 (3): 871–876.

Chen, Z.-L., and G. Pundoor. 2006. “Order Assignment and Scheduling in a Supply Chain.” Operations Research 54 (3):
555–572.

Chen, Z.-L., and G. L. Vairaktarakis. 2005. “Integrated Scheduling of Production and Distribution Operations.”
Management Science 51 (4): 614–628.

Colorni,V., M. Dorigo, andV. Maniezzo. 1991. “Distributed Optimization byAnt Colonies.” In First European Conference
on Artificial Life, edited by F. Varela and P. Bourgine, 134–142. Amsterdam: Elsevier.

Dorigo, M. 1992. Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano.
Dorigo, M., M. Birattari, and T. Stützle. 2006. “Artificial Ants as a Computational Intelligence Technique.” IEEE

Computational Intelligence Magazine 1: 28–39.
Dorigo, M., and G. Di Caro. 1999. “The Ant Colony Optimization Meta-heuristic.” In New Ideas in Optimization, 11–32.

London: McGraw-Hill.
Dorigo, M., and L. Gambardella. 1997. “Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman

Problem.” IEEE Transactions on Evolutionary Computation 1 (1): 53–66.
Dorigo, M., and T. Stützle. 2004. Ant Colony Optimization. Boston, MA: MIT Press.
Dorigo, M., and T. Stützle. 2010. “Ant Colony Optimization: Overview and Recent Advances.” In Handbook of

Metaheuristics, 227–263. New York: Springer.
Gagné, C., W. L. Price, and M. Gravel. 2002. “Comparing an ACO Algorithm with other Heuristics for the Single Machine

Scheduling Problem with Sequence-dependent Setup Times.” Journal of the Operational Research Society 53 (8):
895–506.

Garey, M. R., and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-completeness. New
York: W. H. Freeman.

Geismar, H. N., G. Laporte, L. Lei, and C. Sriskandarajah. 2008. “The Integrated Production and Transportation Scheduling
Problem for a Product with a Short Life Span and Non-instantaneous Transportation time.” Informs Journal on
Computing 20 (1): 21–33.

Golden, B. L., S. Raghavan, and E.A.Wasil, eds. 2008. TheVehicle Routing Problem: Latest Advances and New Challenges.
New York: Springer.

Hall, N. G., and C. N. Potts. 2003. “Supply Chain Scheduling: Batching and Delivery.” Operations Research 51 (4):
566–584.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

6:
02

 2
8 

A
pr

il 
20

14
 



520 Y.-C. Chang et al.

Hall, N. G., and C. N. Potts. 2005. “The Coordination of Scheduling and Batch Deliveries.” Annals of Operations Research
135: 41–64.

Huang, K.-L., and C.-J. Liao. 2008. “Ant Colony Optimization Combined with Taboo Search for the Job Shop Scheduling
Problem.” Computers and Operations Research 35 (4): 1030–1046.

Lee, C.Y., and Z. L. Chen. 2001. “Machine Scheduling with Transportation Considerations.” Journal of Scheduling 4 (1):
3–24.

Lenstra, J. K., and D. B. Shmoys. 1990. “Approximation Algorithms for Scheduling Unrelated Parallel Machines.”
Mathematical Programming 46 (3): 259–271.

Li, C.-L., and J. Ou. 2005. “Machine Scheduling with Pickup and Delivery.” Naval Research Logistics 52 (7): 617–630.
Li, C.-L., and J. Ou. 2007. “Coordinated Scheduling of Customer Orders with Decentralized Machine Locations.” IIE

Transactions 39 (9): 899–909.
Li, C.-L., and G. Vairaktarakis. 2007. “Coordinating Production and Distribution of Jobs with Bundling Operations.” IIE

Transactions 39 (2): 203–215.
Li, C.-L., G. Vairaktarakis, and C.-Y. Lee. 2005. “Machine Scheduling with Deliveries to Multiple Customer Locations.”

European Journal of Operational Research 164 (1): 39–51.
Liu, J-L. 2005. “Rank-based Ant Colony Optimization Applied to Dynamic Traveling Salesman Problems.” Engineering

Optimization 37 (8): 831–847.
Pinedo, M. 2002. Scheduling: Theory, Algorithms, and Systems. 2nd ed. Upper Saddle River, NJ: Prentice Hall.
Pundoor, G., and Z.-L. Chen. 2005. “Scheduling a Production–distribution System to Optimize the Tradeoff between

Delivery Tardiness and Distribution Cost.” Naval Research Logistics 52 (6): 571–589.
Sarmiento, A. M., and R. Nagi. 1999. “A Review of Integrated Analysis of Production–Distribution Systems.” IIE

Transactions 31 (11): 1061–1074.
Shyu, S. J., B. M. T. Lin, and P. Y. Yin. 2004. “Application of Ant Colony Optimization for No-wait Flowshop Scheduling

Problem to Minimize the Total Completion Time.” Computers & Industrial Engineering 47 (2–3): 181–193.
Stützle, T., F. Intellektik, F. Informatik, and T. H. Darmstadt. 1998. “An Ant Approach to the Flow Shop Problem.” 6th

European Congress on Intelligent Techniques & Soft Computing (EUFIT’98), September 7–10. Aachen, Germany:
ELITE Foundation.

T’kindt,V., N. Monmarche, F. Tercinet, and D. Laugt. 2002. “AnAnt Colony OptimizationAlgorithm to Solve a 2-machine
Bicriteria Flowshop Scheduling Problem.” European Journal of Operational Research 142 (2): 250–257.

Wang, H., and C.-Y. Lee. 2005. “Production and Transport Logistics Scheduling with Two Transport Mode Choices.”
Naval Research Logistics 52 (8): 796–809.

Zhong, W., G. Dosa, and Z. Tan. 2007. “On the Machine Scheduling Problem with Job Delivery Coordination.” European
Journal of Operational Research 182 (3): 1057–1072.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

6:
02

 2
8 

A
pr

il 
20

14
 


	Introduction
	Problem definition and mathematical formulation
	Research methodology
	Framework of the proposed ACO algorithm
	Construction of schedules
	Summary of ACO heuristic

	Computational experiments
	Design of test problem instances
	Tuning of parameters
	Effectiveness of ACO_DPA
	Results of experiments

	Conclusions and future research directions

