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• Scattering amplitudes calculated for infinitely many new solvable potentials.
• New scattering potentials obtained by deforming six known solvable potentials.
• Multiple Darboux transformations in terms of (pseudo) virtual states employed.
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• Errors in scattering amplitudes of some undeformed potentials in the literature corrected.
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a b s t r a c t

New solvable one-dimensional quantum mechanical scattering
problems are presented. They are obtained from known solvable
potentials by multiple Darboux transformations in terms of virtual
and pseudo virtual wavefunctions. The same method applied to
confining potentials, e.g. Pöschl–Teller and the radial oscillator po-
tentials, has generated the multi-indexed Jacobi and Laguerre poly-
nomials. Simple multi-indexed formulas are derived for the trans-
mission and reflection amplitudes of several solvable potentials.
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1. Introduction

We address the problem of rational extensions of solvable one-dimensional quantum mechanical
scattering problems. Study of exactly solvable potentials in one dimensional quantum mechanics
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[1–3] has been rapidly developing in recent years. It culminated in the discovery of multi-indexed
Jacobi and Laguerre polynomials [4,5] together with the exceptional orthogonal polynomials [6–17]
as the main part of the eigenfunctions for the rationally extended Pöschl–Teller and radial oscillator
potentials. The main focus of these papers [4–17] has been iso-spectral deformations of the (semi)
confining potentials and the bound state eigenfunctions. These rational extensions (deformations)
are achieved by multiple Darboux transformations [18–20] in terms of polynomial type seed solutions,
which are called the virtual and pseudo virtual state wavefunctions [4,21,22]. These seed solutions
are obtained from the eigenfunctions by discrete symmetry operations (twisting) [4,22] or adopting
the same function forms of the eigenfunctions with their degrees much higher than the highest
eigenlevel nmax (overshoot eigenfunctions) [21]. A Darboux transformation in terms of a virtual state
wavefunction generates an iso-spectral deformation, whereas a pseudo virtual state wavefunction
used in a Darboux transformation will create an eigenstate at its energy, which is below the original
groundstate. Therefore the latter generates a non-isospectral deformation. The multi-index consists
of the degrees of the used polynomial type seed solutions. In this paper we simply use the same
method (multiple Darboux transformations) and the same polynomial type seed solutions to enlarge
the list of exactly solvable scattering problems, starting from five potentials having a finite number of
eigenlevels, e.g. the Rosen–Morse potential, etc. [21] and the Coulomb potential with the centrifugal
barrier. These six potentials are divided into three large groups, Group (A) for which the scattering
waves extend from x = −∞ to x = +∞ and Group (B) for which the waves reach x = +∞ but
they cannot reach x = −∞, and Group (C) for the long-ranged Coulomb potential on half-line. The
solvable full line scattering and half line scattering have very different characteristics. In Group (A), the
full line scattering cases, the transmission and reflection amplitudes are invariant under the discrete
symmetry transformation, whereas in Groups (B) and (C), the discrete symmetry of the potential does
not imply the invariance of the reflection amplitude. The extended scattering data (the transmission
and reflection amplitudes) are determined solely by the asymptotic exponents of the seed solutions,
whereas the deformed potentials, in particular their regularity or non-singularity, depend heavily on
the local behaviours of the seed solutions.

Historically, extensions of solvable scattering problems had been discussed in connection with
the soliton theory and the inverse scattering problem [23]. The adopted methods had been related
to Abraham–Moses transformations [24,25] and the extensions were non-polynomial or non-
rational [26–31]. Compared to those non-rational extensions, the multi-indexed extensions reported
in this paper aremuch clearer in notion and simpler in execution, although their applicability is limited
to shape invariant potentials only. Two papers discussing similar targets but with limited contents
appeared recently [32].

The present paper is organised as follows. In section two the basic structures of the scattering
problems and their extensions by multiple Darboux transformations are recapitulated. The full line
scattering, called Group (A) and the half line scattering, Groups (B) and (C), are treated separately.
Various properties of the polynomial type seed solutions, the virtual state, pseudo virtual state
wavefunctions and the overshoot eigenfunctions are explored in section three. The conditions for
the non-singularity of the deformed potentials are explained. Sections four, five and six provide the
explicit data of the original solvable potentials and the characteristics of the deformed ones. The three
potentials belonging to Group (A) are presented in section four: Rosen–Morse Section 4.1, soliton
Section 4.2 and hyperbolic symmetric top potential Section 4.3. Those belonging to Group (B) are
explained in section five: Morse Section 5.1, Eckart Section 5.2, hyperbolic Pöschl–Teller Section 5.3.
The long range Coulomb potential is the sole member of Group (C) summarised in Section 6. Section
seven is for a summary and comments.

2. Scattering problems and their extensions

Herewe review the setting of one-dimensional quantummechanical scattering problems and their
extensions by multiple Darboux transformations in terms of polynomial type seed solutions. Let a
quantum mechanical Hamiltonian H be defined in an interval x1 < x < x2, with a smooth potential:

H = −
d2

dx2
+ U(x), U(x) ∈ R. (2.1)
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We discuss either the full line x1 = −∞, x2 = +∞ case called Group (A) or a half line x1 = 0, x2 =

+∞ case called Group (B). Because of its long range character, Coulomb potential will be treated
separately in (C). In all cases we adjust the constant part of the potential function so that it vanishes
at the right infinity, U(+∞) = 0. We discuss the extensions of solvable potentials. That means the
entire data of the discrete eigensystems and the scattering data are known:

Hφn(x) = Enφn(x) (n = 0, 1, . . . , nmax), E0 < E1 < · · · < Enmax , (2.2)

(φm, φn)
def
=

 x2

x1
dxφm(x)φn(x) = hnδmn (hn > 0), (2.3)

Hψk(x) = k2ψk(x), k ∈ R≥0, (2.4)

ψk(x) ≈


eikx x → +∞

A(k)eikx + B(k)e−ikx x → −∞,
(A), (2.5)

ψk(x) ≈ r(k)eikx + e−ikx x → +∞, (B), (2.6)

ψk(x) ≈ r(k)eikx−iγ log x
+ e−ikx+iγ log x x → +∞, (C). (2.7)

Here γ = −1/k for the Coulomb case. The scattering amplitudes A(k), B(k) and r(k) are
meromorphic functions of k, except for Rosen–Morse (RM) Section 4.1 and Eckart Section 5.2, which
are meromorphic functions of k and k′ (to be defined there). The transmission amplitude t(k) and the
reflection amplitude r(k) for the full line scatterings are defined by:

t(k) def
=

1
A(k)

, r(k) def
=

B(k)
A(k)

, (A). (2.8)

In cases (B) and (C), the scatteringwaveψk(x) (2.6)–(2.7) has to satisfy the square integrable boundary
condition at the left boundary. In these cases, only the reflection amplitude r(k) can be defined. In (2.7)
γ is a coefficient of the logarithmic corrections due to the long range of Coulomb potential. Except
for the Coulomb potential Section 6, all the potentials discussed in this paper have a finite number
of discrete eigenlevels nmax. As is well known that the poles on the positive imaginary k-axis of the
transmission amplitude t(k) ((A) case) and the reflection amplitude r(k) ((B), (C) case) correspond to
the discrete eigenstates.

The potentials to be discussed in this paper depend on a certain set of parameters, which is sym-
bolically denoted by λ. When needed we express the parameter dependence like H(λ),U(x; λ),
t(k; λ), r(k; λ), etc. In Group (A), Rosen–Morse potential has two different asymptotic limits of the
potential, U(−∞) ≠ U(+∞). This requires a slightly different setting from (2.5). It will be shown
explicitly in Section 4.1.

We prepare polynomial type seed solutions {φ̃dj(x)}, j = 1, . . . ,M , indexed by a set of non-
negative integersD = {d1, . . . , dM}which are the degrees of the polynomial part of the seed solutions.
The asymptotic behaviours of the polynomial seed solution φ̃v(x) are characterised by the asymptotic
exponents∆±

v :

φ̃v(x) ≈


ex∆

+
v x → +∞

ex∆
−
v x → −∞,

(A) (2.9)

φ̃v(x) ≈ ex∆
+
v x → +∞, (B), (2.10)

φ̃v(x) ≈ gv+(x) ex∆
+
v x → +∞, (C), (2.11)

in which gv+(x) is a certain power function of x due to the long range interactions. See (6.2) for the
explicit form. The extensions by multiple Darboux transformations in terms of polynomial type seed
solutions {φ̃dj(x)}, j = 1, . . . ,M are expressed neatly in terms of a ratio of Wronskians [19,4,21,22]:

H [M]φ
[M]

D, n(x) = Enφ
[M]

D, n(x), (n = 0, 1, . . . , nmax), (2.12)
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φ
[M]

D, n(x)
def
=

W[φ̃d1 , φ̃d2 , . . . , φ̃dM , φn](x)

W[φ̃d1 , φ̃d2 , . . . , φ̃dM ](x)
, (2.13)

H [M]ψ
[M]

D, k(x) = k2ψ [M]

D, k(x), k ∈ R≥0, (2.14)

ψ
[M]

D, k(x)
def
=

W[φ̃d1 , φ̃d2 , . . . , φ̃dM , ψk](x)

W[φ̃d1 , φ̃d2 , . . . , φ̃dM ](x)
, (2.15)

H [M] def
= H − 2∂2x log

W[φ̃d1 , φ̃d2 , . . . , φ̃dM ](x)
 (2.16)

provided that the deformed potential is non-singular. That requires the condition that the Wronskian
W[φ̃d1 , φ̃d2 , . . . , φ̃dM ](x) should not have any zeros in the interval −∞ < x < ∞ (A), or 0 < x < ∞

(B). This condition will be discussed in Section 3. For the discrete eigenstates {φ
[M]

D, n(x)} and the
scattering states {ψ

[M]

D, k(x)} the transformation is iso-spectral. We stress, however, that additional
discrete eigenstates may be created below the original groundstate level E0. Their number is equal
to that of the used pseudo virtual state wavefunctions.

It should be stressed that with the polynomial type seed solutions (2.9)–(2.11), the deformation
potential −2∂2x log

W[φ̃d1 , φ̃d2 , . . . , φ̃dM ](x)
 vanishes asymptotically, x → ±∞. Thus the deformed

continuous spectrum also starts at E = 0 and the relationship between the energy E and the wave
number k, E = k2 is unchanged. The multi-indexed scattering amplitudes are easily obtained from
the asymptotic form of the wavefunctionψ [M]

D, k(x) (2.15) by using the asymptotic forms of the original
wavefunctionψk(x) (2.5)–(2.7) and those of the polynomial seed solutions φ̃v(x) (2.9)–(2.11). For the
full line scattering (Group (A)) case, we obtain

ψ
[M]

D, k(x) ≈

M
j=1

(ik −∆+

dj
) · eikx x → +∞, (2.17)

ψ
[M]

D, k(x) ≈

M
j=1

(ik −∆−

dj
) · A(k) eikx +

M
j=1

(−ik −∆−

dj
) · B(k) e−ikx x → −∞, (2.18)

which lead to multi-indexed multiplicative deformations of the transmission and reflection ampli-
tudes:

(A) : tD(k) =

M
j=1

k + i∆+

dj

k + i∆−

dj

· t(k), rD(k) = (−1)M
M
j=1

k − i∆−

dj

k + i∆−

dj

· r(k). (2.19)

For Rosen–Morse potential (see Section 4.1 for the definition of k′), we obtain

RM: tD(k) =

M
j=1

k′
+ i∆+

dj

k + i∆−

dj

· t(k), rD(k) = (−1)M
M
j=1

k − i∆−

dj

k + i∆−

dj

· r(k). (2.20)

For the half line scattering (Group (B), (C)) case, similar calculation gives

(B) : ψ
[M]

D, k(x) ≈

M
j=1

(ik −∆+

dj
) · r(k) eikx +

M
j=1

(−ik −∆+

dj
) · e−ikx x → +∞, (2.21)

(C) : ψ
[M]

D, k(x) ≈

M
j=1

(ik −∆+

dj
) · r(k) eikx−iγ log x

+

M
j=1

(−ik −∆+

dj
) · e−ikx+iγ log x

x → +∞, (2.22)

(B), (C) : rD(k) = (−1)M
M
j=1

k + i∆+

dj

k − i∆+

dj

· r(k). (2.23)
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It should be stressed that the meromorphic character of the scattering amplitudes is preserved by the
multi-indexed extensions and that the added poles and zeros all appear on the imaginary k-axis deter-
mined solely by the asymptotic exponents of the used polynomial type seed solutions. The derivation
depends on the simple fact: the Wronskian of exponential functions W[eα1x, eα2x, . . . , eαM x

](x) is re-
duced to a van der Monde determinant

W[eα1x, eα2x, . . . , eαM x
](x) =


1≤k<j≤M

(αj − αk) · e
M

j=1 αjx,

and most factors cancel out between the numerator and denominator of (2.15). The logarithmic (2.7)
and power function (2.11) correction terms of Coulomb case give vanishing asymptotic contributions
(∂x log x = 1/x → 0) in the Wronskian, and the final deformation formula is the same (2.23) as that
of the other half line scattering potentials.

3. Polynomial type seed solutions

In the previous section we have derived simple formulas of the transmission and the reflection
amplitudes (2.19)–(2.23) after the multi-indexed extensions. The deformed amplitudes tD(k) and
rD(k) are again meromorphic functions of k with M extra zeros and poles determined by the
asymptotic exponents∆±

dj
appearing on the imaginary axis. However, this does not necessarily mean

that any extension specified by D = {d1, . . . , dM} are realisable. The deformed potential (2.16) must
be non-singular, that is, the Wronskian W[φ̃d1 , φ̃d2 , . . . , φ̃dM ](x) should not have any zeros in the
interval where the scattering takes place. The situation is in good contrast with the extensions by
Abraham–Moses transformations [24,25], inwhich case the non-singularity of the deformed potential
is always guaranteed but simple formulas of the deformed amplitudes are not available due to the
non-rational nature of the extensions.

In this section we summarise the properties of various polynomial type seed solutions, virtual and
pseudo virtual state wavefunctions and overshoot eigenfunctions and provide several practical rules
for achieving non-singular extensions. Most of the materials in this section have been presented in
connection with rational extensions of solvable potentials, in particular, the bound state problems, [4,
21,22]. The well informed readers can skip this section.

First of all, these polynomial seed solutions {φ̃v(x)} are required to have energies below the original
groundstate energy Ẽv < E0. This is enough to guarantee the positive norm of all the deformed
eigenstates:

(φ
[M]

D,m, φ
[M]

D, n) =

M
j=1

(En − Ẽdj) · hnδmn, (n,m = 0, 1, . . . , nmax). (3.1)

However this is not a sufficient condition for the non-singularity of the deformed potential. But it is
closely related with the absence of zeros of the seed solutions in the physical region.

A virtual state wavefunctions φ̃v(x) is obtained from the eigenfunction by a discrete symmetry trans-
formation, namely by a certain twist of parameters. Thus they are non-square integrable polynomial
type solutions of the original Schrödinger equation (2.1), H φ̃v(x) = Ẽvφ̃v(x): The degree v of the poly-
nomial is so restricted that the corresponding energy is below the original groundstate level Ẽv < E0
and it has no zeros in the domain x1 < x < x2. Thus a Darboux transformation in terms of a virtual
state wavefunction is non-singular.

There are two types of virtual state wavefunctions, type I and type II. The type I virtual state wave-
functions {φ̃I

v} are square non-integrable at the upper boundary x2 and their reciprocals are square
non-integrable at the lower boundary x1. That is {φ̃I

v} go to zero fairly rapidly as x → x1. For type II
the behaviour is opposite, {φ̃II

v } are square non-integrable at the lower boundary x1 and their recipro-
cals are square non-integrable at the upper boundary x2. Since a Wronskian of two type I (II) virtual
state wavefunctions is monotonously increasing or decreasing

∂xW[φ̃I
v1 , φ̃

I
v2 ](x) = (Ẽv1 − Ẽv2)φ̃

I
v1(x)φ̃

I
v2(x) ≷ 0,
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so the boundary condition of vanishing at the lower boundary is ‘‘preserved’’. Thus the above Wron-
skian has also no zeros in the domain. Multiple Darboux transformations in terms of type I (II) virtual
state wavefunctions only, W[φ̃I

d1
, φ̃I

d2
, . . . , φ̃I

dM
](x) is non-singular provided the parameter ranges are

properly restricted such that the conditions

∂ sxφ̃
I
dj(x)


x=x1

= 0 (s = 0, 1, . . . ,M − 1) (3.2)

are satisfied. For the Darboux transformations in terms of mixed type I and II virtual state wavefunc-
tions, proper care is needed to ensure the non-singularity of the resulting potentials.

The pseudo virtual state wavefunctions are also obtained from the eigenfunctions by discrete sym-
metry transformations, i.e. by twists of the parameters. Thus they are also polynomial type solutions
specified by their degrees {v}. In this case the requirements on the degrees are that they are square
non-integrable at both boundaries and their reciprocals are square integrable at both boundaries. An-
other requirement is that their energies satisfy the condition

Ẽv = E−(v+1). (3.3)

The nodeless condition on each particular pseudo virtual state wavefunction is not required.
The conditions of non-singularity for multiple Darboux transformations in terms of pseudo virtual

wavefunctions specified by their degrees are stated through their equivalent eigenstates deleting
Darboux transformations [22,20]. Let D

def
= {d1, d2, . . . , dM} (dj ∈ Z≥0) be a set of distinct non-

negative integers. We introduce an integer N as the maximum of D,N def
= max(D). Let us define

a set of distinct non-negative integers D̄ = {0, 1, . . . ,N} \ {d̄1, d̄2, . . . , d̄M} together with the shifted
parameters λ̄:

D̄
def
= {0, 1, . . . , ˘̄d1, . . . , ˘̄d2, . . . , ˘̄dM , . . . ,N} = {e1, e2, . . . , eN+1−M}, (3.4)

d̄j
def
= N − dj, λ̄

def
= λ − (N + 1)δ. (3.5)

Here δ is a characteristic quantity of each solvable potential, called the ‘shifts’, whose values are given
in sections four, five and six for each solvable potential. The notation ˘̄dj simply means that d̄j should
be excluded from the containing set. The singularity free conditions of the M-th deformed potential
(2.16) are [20,22]:

N+1−M
j=1

(n − ej) ≥ 0 (∀n ∈ Z≥0). (3.6)

For M = 1,D = {d1}, D̄ = {1, 2, . . . , d1}, the above conditions are satisfied by even d1, d1 ∈ 2Z≥0.
For example, D = {2, 3}, {2, 5}, {4, 5}, {2, 3, 4}, {2, 5, 6}, {2, 5, 8}, {2, 5, 8, 11} etc. produce non-
singular potentials.

The overshoot eigenfunctions are another category of polynomial type seed solutions [21]. The
overshoot eigenfunctions have exactly the same forms as the eigenfunctions φ̃os

v (x)
def
= φv(x) (Ẽos

v =

Ev). But their degrees aremuch higher than the highest discrete energy level nmax so that their energies
are lower than the groundstate energy E0. Depending on their asymptotic behaviours, the overshoot
eigenfunctions are classified into type I and type II virtual state wavefunctions and ‘pseudo virtual’
state wavefunctions, which fail to satisfy the condition (3.3), Ẽos

v ≠ E−v−1. For some potentials, the
classification of the seed solutions changes depending on their degrees v. As for the ‘pseudo virtual’
wavefunctions obtained from the overshoot eigenfunctions, the above criterion for non-singularity
(3.6) cannot be used, since (3.3) is not satisfied.

When various kinds of polynomial type seed solutions, type I and II virtual, pseudo virtual and
‘pseudo virtual’, are employed for multiple Darboux transformations, the non-singularity of the
deformed potentials should be verified one by one, as we do not have as yet a general criterion.
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The asymptotic behaviours of the polynomial type seed solutions are summarised neatly as the
signs of the corresponding asymptotic exponents:

type I virtual:∆+

v > 0, ∆−

v > 0, ∆+

v ∆
−

v > 0,
type II virtual:∆+

v < 0, ∆−

v < 0, ∆+

v ∆
−

v > 0,
pseudo virtual:∆+

v > 0, ∆−

v < 0, ∆+

v ∆
−

v < 0.

For the half line scattering, only the first entries are meaningful.
As explained above, type I and II virtual state wavefunctions generate iso-spectral deformations.

That means, no new eigenstates are created. As seen from (2.19), (2.20), a type II virtual state (∆−
v <

0) contributes a new pole factor of the transmission amplitude tD(k) on the positive imaginary k-
axis. Among the three potentials of Group (A), only Rosen–Morse potential has type II virtual state
wavefunctions. Close examination in Section 4.1 reveals that the numerator factor k′

+i∆+
v cancels that

pole. As for the half line scatterings, a type I virtual state (∆+
v > 0) contributes a new pole factor of the

reflection amplitude r(k) on the positive imaginary k-axis. Among the half line scattering potentials,
Morse Section 5.1, Eckart Section 5.2 and hyperbolic PT Section 5.3 potentials have type I virtual states.
As shown for each potential in Section 5, these new poles at k = i∆+

v are cancelled by the zeros of
the scattering amplitude r(k). In contrast, a pseudo or a ‘pseudo’ virtual state wavefunction, having
∆−

v < 0 for full line and ∆+
v > 0 for half line, always creates a new pole on the positive imaginary

k-axis of t(k) (full) and r(k) (half). These new poles correspond to the energy of the added eigenstates.
For each potential in sections four, five and six, we demonstrate quite simply that the energies of
the created eigenstates are equal to the energies of the employed pseudo and ‘pseudo’ virtual state
wavefunctions in accordance with the general theory of Darboux transformations [22].

4. Original and extended scatterings: full line scattering

In the three sections hereafter, we first present various data of the original solvable potentials;
the eigenenergies, eigenfunctions, scattering data, i.e., the transmission and reflection amplitudes,
various polynomial seed solutions, the virtual and pseudo virtual state wavefunctions, the overshoot
eigenfunctions together with the corresponding asymptotic exponents. These original solvable
potentials are all shape invariant [33].We emphasise that the original scattering amplitudes presented
in this article satisfy the constraints of shape invariance:

full line: t(k; λ + δ) =


ik + W+

ik + W−


t(k; λ), r(k; λ + δ) =


−ik + W−

ik + W−


r(k; λ), (4.1)

RM: t(k; λ + δ) =


ik′

+ W+

ik + W−


t(k; λ), r(k; λ + δ) =


−ik + W−

ik + W−


r(k; λ), (4.2)

half line: r(k; λ + δ) =


ik + W+

−ik + W+


r(k; λ), (4.3)

W+

def
= − lim

x→+∞

∂xφ0(x; λ)

φ0(x; λ)
, W−

def
= − lim

x→−∞

∂xφ0(x; λ)

φ0(x; λ)
. (4.4)

For simplicity of presentation, we do not indicate the parameter dependence of various exponents,
∆±

v ,W±, etc. But of course they depend on the parameters. The characteristic properties of various
extended potentials and the deformed scattering data are discussed. For various properties of virtual
and pseudo virtual wavefunctions and overshoot eigenfunctions including their applications we refer
to [21,22] formore details. The solvable potentials are divided into three groups: the full line scattering
in Group (A), the half line scattering in Group (B) and the long range scattering in Group (C).

This Group (A) consists of three potentials: Rosen–Morse (RM), soliton (s) and hyperbolic symmet-
ric top II (hst).
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4.1. Rosen–Morse potential (RM)

Original system. This potential is also called Rosen–Morse II potential. The system has finitely many
discrete eigenstates 0 ≤ n ≤ nmax(λ) = [h−

√
µ ]

′ in the specified parameter range ([a]′ denotes the
greatest integer not exceeding and not equal to a):

λ = (h, µ), δ = (−1, 0), −∞ < x < ∞, h(h − 1) > µ > 0,

U(x; λ) = −
h(h + 1)
cosh2 x

+ 2µ (tanh x + 1) ,

En(λ) = −


h − n −

µ

(h − n)

2

, η(x) = tanh x,

φn(x; λ) = e−
µ

h−n x(cosh x)−h+nP (αn,βn)n (η), W+ = α0, W− = −β0.

αn = h − n +
µ

h − n
, βn = h − n −

µ

h − n
.

The asymptotic behaviour of this potential is slightly different from the others in the full line
scattering. Although it approaches to zero at−∞,U(−∞; λ) → 0, in the limit x → ∞ it approaches
a non-vanishing constant, U(+∞; λ) → U0 ≡ 4µ > 0. The asymptotic forms of the scattering state
are slightly different from (2.5)

ψk(x; λ) ∼


eik

′x x → +∞,

A(k; λ)eikx + B(k; λ)e−ikx x → −∞,
(4.5)

in which k′ def
=


k2 − 4µ is the wave number in the region x > 0. We choose the Riemann sheet such

that k′
→ k in the limit µ → 0. The amplitudes A(k; λ) and B(k; λ) are given by [2]

A(k; λ) =
0(−ik)0(1 − ik′)

0


−h − i k2 − i k

′

2


0


1 + h − i k2 − i k

′

2

 , (4.6)

B(k; λ) =
0(ik)0(1 − ik′)

0


−h + i k2 − i k

′

2


0


1 + h + i k2 − i k

′

2

 . (4.7)

These give

t(k; λ) =

0


−h − i k2 − i k

′

2


0


1 + h − i k2 − i k

′

2


0(−ik)0(1 − ik′)

, (4.8)

r(k; λ) =

0(ik)0

−h − i k2 − i k

′

2


0


1 + h − i k2 − i k

′

2


0(−ik)0


−h + i k2 − i k

′

2


0


1 + h + i k2 − i k

′

2

 . (4.9)

The poles on the positive imaginary k-axis coming from the first Gamma function factor in the
numerator of t(k; λ) (4.8), −h − i k2 − i k

′

2 = −n,⇒ k = iβn, βn > 0, n = 0, 1, . . . , [h −
√
µ]

′

provide the eigenspectrum as above. In the µ → 0 limit, the potential, eigenvalues, eigenfunctions,
scattering amplitudes and the polynomial type seed solutions give the corresponding quantities of
soliton potential.

The physical quantities for the one-dimensional scattering problem are the transmission (T (k; λ))
and reflection (R(k; λ)) coefficients, defined as the ratio of the fluxes of the transmitted and reflected
waves, respectively, to that of the incident wave. They are related to t(k; λ) and r(k; λ) by

T (k; λ) =
k′

k
|t(k; λ)|2 =

k′

k
·

1
|A(k; λ)|2

,

R(k; λ) = |r(k; λ)|2 =

B(k; λ)

A(k; λ)

2 , k ∈ R≥0.

(4.10)
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It is easy to verify T (k; λ)+ R(k; λ) = 1, which indicates the conservation of total flux. Note that, for
energy 0 < k2 < U0, the wave number k′ becomes purely imaginary. In this case, there is no trans-
mitted waves, i.e., T (k; λ) = 0 and R(k; λ) = 1. Setting k′

= k gives the corresponding expressions
for the case of soliton potential to be discussed in the next subsection.

The potential. U(x; h, µ) and the scattering data (4.6)–(4.9) are invariant under the discrete trans-
formation h → −(h + 1), µ → µ. But the eigenvalues and the eigenfunctions are not invariant. The
discrete symmetry transformations produce polynomial type seed solutions, as shown below.

Polynomial type seed solutions. The discrete symmetry h → −h − 1, µ → µ generates the pseudo
virtual state wavefunctions:

pseudo virtual: φ̃v(x; λ) = e
µ

h+1+v x(cosh x)h+1+vP (ᾱv,β̄v)v (η) (v ∈ Z≥0),

∆+

v = −ᾱv > 0, ∆−

v = β̄v < 0, Ẽv(λ) = E−v−1(λ) = −β̄2
v , (4.11)

ᾱv = −h − 1 − v −
µ

h + 1 + v
, β̄v = −h − 1 − v +

µ

h + 1 + v
. (4.12)

For non-negative v the above pseudo virtual state wavefunctions have lower energies than the
groundstate energy Ẽv(λ) < E0(λ).

The overshoot eigenfunctions provide two types of virtual state wavefunctions [34] and ‘pseudo
virtual’ state wavefunctions [21]:

φ̃os
v (x; λ) = φv(x; λ), Ẽv(λ) = −β2

v ,

∆+

v = −αv, ∆−

v = βv,


type II virtual: h −

µ

h
< v < h, ∆+

v < 0, ∆−

v < 0

type I virtual: h < v < h +
µ

h
, ∆+

v > 0, ∆−

v > 0

‘pseudo virtual’: v > 2h, ∆+

v > 0, ∆−

v < 0.

(4.13)

It is obvious that the above type I and II virtual states disappear in the soliton potential, i.e. µ → 0
limit.

4.1.1. Deformed scatterings
Here we examine various properties of the multi-indexed extended scattering amplitudes (2.20)

derived in section two.

Invariant transmission and reflection coefficients. For real k ∈ R≥0, the additional factors in (2.20)M
j=1(k

′
+ i∆+

dj
)/(k + i∆−

dj
),

M
j=1(k − i∆−

dj
)/(k + i∆−

dj
), are all modulo one. We conclude that the

transmission and reflection coefficients (4.10) are the same as those of the original potentials:

TD(k; λ) = T (k; λ), RD(k; λ) = R(k; λ). (4.14)

These relations are a generic feature of the multi-indexed extensions and they hold for all the exam-
ples discussed in this paper.

Type II virtual. Here we examine the apparent poles on the positive imaginary k-axis of the trans-
mission amplitude tD(k) caused by the overshoot type II virtual state wavefunctions (4.13) having
∆−

v < 0. In (2.20) the contribution of a type II virtual state wavefunction φ̃v(x) reads:

k′
+ i∆+

v

k + i∆−
v

=
k′

− iαv

k + iβv
=

k − iβv

k′ + iαv
→ −

βv

αv
, as k → −iβv.

As k approaches −iβv, the numerator also vanishes and the ratio goes to a constant. This is a simple
consequence of the phase convention of k′ and k′2

+ α2
v = k2 + β2

v . On the other hand, type I virtual
state wavefunctions produce poles in tD(k; λ) and rD(k; λ) on the negative imaginary k-axis. As for
the poles in tD(k; λ), the same cancellation mechanism as above works and the pole disappears. As
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for the poles in rD(k; λ), the second Gamma function factor in the denominator cancels them for both
type I, II and pseudo virtual:

1

0


−h + i k2 − i k

′

2

 ∝
1
2


−h + v +

µ

h − v
+ ik


=

1
2
(ik − βv) , h −

µ

h
< v.

Pseudo virtual. A pseudo (‘pseudo’) virtual wavefunction will add a new discrete eigenstate at its en-
ergy. It is trivial to verify that the pseudo (4.11) and ‘pseudo’ (4.12) virtual will add a pole on the
positive imaginary k-axis with exactly the same energy of the employed seed solution, −β̄2

v and −β2
v ,

respectively.

4.2. Soliton potential

Original system. In the limit µ → 0, the RM potential reduces to soliton potential. The system has
finitely many discrete eigenstates 0 ≤ n ≤ nmax(λ) = [h]′ in the specified parameter range:

λ = h, δ = −1, −∞ < x < ∞, h > 1/2,

U(x; λ) = −
h(h + 1)
cosh2 x

,

En(λ) = −(h − n)2, η(x) = tanh x,
φn(x; λ) = (cosh x)−h+n

× P (h−n,h−n)
n (tanh x), W+ = −W− = h.

The transmission and reflection amplitudes are:

t(k; λ) =
0(−h − ik)0(1 + h − ik)

0(−ik)0(1 − ik)
, (4.15)

r(k; λ) =
0(ik)0(−h − ik)0(1 + h − ik)

0(−ik)0(−h)0(1 + h)
. (4.16)

The poles on the positive imaginary k-axis coming from the first Gamma function factor in the numer-
ator of t(k; λ) (4.15), −h − ik = −n,⇒ k = i(h − n), n = 0, 1, . . . , [h]′ provide the eigenspectrum
as above. As is well known, at integer h ∈ Z≥1 the reflectionless potential r(k; λ) = 0 is realised by
the poles of the Gamma function 0(−h) in the denominator of r(k; λ). The potential and the scat-
tering amplitudes (4.15)–(4.16) are invariant under the discrete transformation h → −(h + 1), but
the eigenvalues and the eigenfunctions are not. The relation |t(k; λ)|2 + |r(k; λ)|2 = 1 holds as the
µ → 0 limit of Rosen–Morse case.
Polynomial type seed solutions. The discrete symmetry h → −h − 1 generates the pseudo virtual
wavefunctions, which lie below the groundstate:

pseudo virtual: φ̃v(x; λ) = (cosh x)h+1+vP (−h−1−v,−h−1−v)
v (tanh x) (v ∈ Z≥0),

∆+

v = h + 1 + v > 0, ∆−

v = −∆+

v < 0, Ẽv(λ) = E−v−1(λ) < E0(λ). (4.17)

The overshoot eigenfunctions provide ‘pseudo’ virtual state wavefunctions for this potential for
v > 2h:

‘pseudo virtual’: φ̃os
v (x; λ) = φv(x; λ),

∆+

v = −h + v > 0, ∆−

v = −∆+

v < 0, Ẽos
v (λ) < E0(λ) (v > 2h). (4.18)

Deformed scatterings. A pseudo (‘pseudo’) virtual statewavefunctionwill add a newdiscrete eigenstate
at its energy. It is trivial to verify that the pseudo (4.17) and ‘pseudo’ (4.18) virtual wavefunctions will
add a pole on the positive imaginary k-axis at k = i(v + h + 1), k = i(v − h), respectively, with
exactly the same energy of the employed seed solution, −(h + v + 1)2 and −(v − h)2, respectively.
For both the pseudo (4.17) and ‘pseudo’ (4.18) virtual wavefunctions, ∆+

v = −∆−
v . This means that
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the deformation factors of the transmission and reflection amplitudes are the same except for a sign
(−1)M :

tD(k; λ)

t(k; λ)
= (−1)M

rD(k; λ)

r(k; λ)
=

M
j=1

k − i∆−

dj

k + i∆−

dj

.

4.3. Hyperbolic symmetric top II

Original system. The system has finitely many discrete eigenstates 0 ≤ n ≤ nmax(λ) = [h]′ in the
specified parameter range:

λ = (h, µ), δ = (−1, 0), −∞ < x < ∞, h, µ > 0,

U(x; λ) =
−h(h + 1)+ µ2

+ µ(2h + 1) sinh x
cosh2 x

,

En(λ) = −(h − n)2, η(x) = sinh x,

φn(x; λ) = i−ne−µ tan−1 sinh x(cosh x)−h P (α,β)n (iη), W+ = −W− = h,

α = −h −
1
2 − iµ, β = −h −

1
2 + iµ.

The scattering amplitudes of this system are given in [2]:

t(k; λ) =
0(−h − ik)0(1 + h − ik)0

 1
2 + iµ− ik


0

 1
2 − iµ− ik


0(−ik)0(1 − ik)


0

 1
2 − ik

2 , (4.19)

r(k; λ) = t(k; λ) [cos(πh) sinh(πµ) sech(πk)+ i sin(πh) cosh(πµ) cosech(πk)] . (4.20)

The poles on the positive imaginary k-axis coming from the first Gamma function factor in the
numerator of t(k; λ) (4.15), −h − ik = −n,⇒ k = i(h − n), n = 0, 1, . . . , [h]′ provide the
eigenspectrum as above. In the µ → 0 limit, the potential, eigenvalues, eigenfunctions, scattering
amplitudes and the polynomial type seed solutions give the corresponding quantities of soliton
potential. In this connection, see Section 3.9 of [22]. Note that |t(k; λ)|2 + |r(k; λ)|2 = 1 for
k ∈ R≥0. The potential and the scattering amplitudes (4.19)–(4.20) are invariant under the discrete
transformation h → −(h + 1) and µ → −µ, but the eigenvalues and the eigenfunctions are not.

It is interesting to note that t(k; λ) and r(k; λ) have poles at k = ±µ−(n+
1
2 )i, n ∈ Z≥0. In the case

of k = µ−(n+
1
2 )iwith positive real part, these poles correspond to the so-called quasinormalmodes,

whose real part representing the actual frequency of oscillation and the imaginary part representing
the damping (in time) [35]. Such mode have attracted much interest in recently years in the studies
of neutron stars and black holes, as they are produced mainly during the formation phase of the
compact stellar objects, which may be strong enough to be detected by several large gravitational
wave detectors under construction. Our results in this subsection indicates that infinitely many
quantal systems admitting quasinormal modes are provided by the multi-indexed extensions of the
hyperbolic symmetric top systems.
Polynomial type seed solutions. The discrete symmetry h → −h − 1, µ → −µ generates the pseudo
virtual state wavefunctions, which always lie below the groundstate:

φ̃v(x; λ) = eµ tan−1 sinh x(cosh x)h+1P (−α,−β)v (iη), Ẽv(λ) = E−v−1(λ) < E0(λ),

pseudo virtual:∆+

v = h + 1 + v > 0, ∆v− = −∆+

v < 0 (v ∈ Z≥0). (4.21)

The overshoot eigenfunctions for v > 2h provide the ‘pseudo’ virtual state wavefunctions:

φ̃os
v (x; λ) = φv(x; λ), Ẽos

v (λ) = v(2h − v)

‘pseudo’ virtual:∆+

v = v − h > 0, ∆−

v = −∆+

v < 0 (v > 2h). (4.22)

Deformed scatterings. The general properties of the deformed scatterings of soliton potential are shared
by hyperbolic symmetric top, too.



126 C.-L. Ho et al. / Annals of Physics 343 (2014) 115–131

5. Original and extended scatterings: half line scattering

This Group (B) consists of three potentials: Morse (M), Eckart (E) and hyperbolic Pöschl–Teller
(hPT). Although the domain of Morse potential extends from −∞ to +∞, the exponentially growing
potential forbids the plane wave to reach −∞ and reflection only occurs. The reflection amplitudes
are determined by the right (x → +∞) asymptotic properties of the solutions which are vanishing
at the left boundary. The discrete symmetry transformations change the left boundary (x = 0 or
x = −∞) behaviours. Thus, the reflection amplitudes are not invariant under the discrete symmetry
transformation of the potential. This is in good contrast to the full line case in which the transmission
amplitudes and reflection amplitudes are invariant under the discrete symmetry transformations of
the potential. In the full line scattering cases, the scattering amplitudes are determined based on the
two dimensional solution space, which is invariant under the discrete symmetry transformations. Let
us emphasise again that all the original scattering amplitudes presented in this section satisfy the
shape invariance constraints.

5.1. Morse potential

Original system. The potential and the functions are changed from those of [21,22], by x → −x. This
system is defined on the whole line, but there are no transmitted waves to the right because of the
infinitely rising exponential components. So only the reflection amplitude is defined [2].

The system has finitely many discrete eigenstates 0 ≤ n ≤ nmax(λ) = [h]′ in the specified
parameter range:

λ = (h, µ), δ = (−1, 0), −∞ < x < ∞, h > 1/2, µ > 0,
U(x; λ) = µ2e−2x

− µ(2h + 1)e−x,

En(λ) = −(h − n)2, η(x) = ex,

φn(x; λ) = (2µ)−ne−(h−n)x−µe−x
L(2h−2n)
n (2µη−1), W+ = h.

The reflection amplitude is given by [2]

r(k; λ) = (2µ)−2ik 0(2ik)0(−h − ik)
0(−2ik)0(−h + ik)

. (5.1)

The poles on the positive imaginary k-axis coming from the second Gamma function factor in the
numerator of r(k; λ) (5.1), −h − ik = −n,⇒ k = i(h − n), n = 0, 1, . . . , [h]′ provide the
eigenspectrum as above. Note that |r(k; λ)|2 = 1 for k ∈ R≥0. The potential is invariant under the
discrete symmetry h → −h− 1, µ → −µ transformation, but the reflection amplitude (5.1) and the
eigenvalues with eigenfunctions are not invariant.
Polynomial type seed solutions. The discrete symmetry h → −h − 1, µ → −µ generates the pseudo
virtual state wavefunctions, which always lie below the groundstate:

φ̃v(x; λ) = e(h+1+v)x+µe−x
L(−2h−2−2v)
v (−2µη−1), Ẽv(λ) = E−v−1(λ) < E0(λ),

pseudo virtual:∆+

v = (h + 1 + v) > 0 (v ∈ Z≥0). (5.2)

The overshoot eigenfunctions provide type I virtual state wavefunctions for v > 2h [34]:

φ̃os
v (x; λ) = φv(x; λ), Ẽos

v (λ) = −(v − h)2

type I virtual:∆+

v = v − h > 0 (v > 2h). (5.3)

Since this type I virtual state wavefunction satisfies the boundary conditions

∂ sxφ̃
os
v (x; λ)


x=−∞

= 0 (s = 0, 1, . . .),

a multiple virtual state φ̃os
v deletion gives a non-singular Hamiltonian H [M].
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Deformed scatterings. As shown above, the overshoot type I virtual state wavefunction has ∆+
v >

0 and it adds a new pole on the positive imaginary k-axis, although the corresponding Darboux
transformation is iso-spectral. In fact, this new pole at k = i(v − h) is cancelled by the zero coming
from the second Gamma function in the denominator:

1
0(−h + ik)

∝ (−h + v + ik), k → i(v − h), v ∈ Z≥0, v > 2h.

As the other cases, a pseudo virtual statewavefunctionwill add a newdiscrete eigenstate at its energy.

5.2. Eckart potential

Original system. This potential is also called the Kepler problem in hyperbolic space [21]. It has finitely
many discrete eigenstates 0 ≤ n ≤ nmax(λ) = [

√
µ− g]′ in the specified parameter range:

λ = (g, µ), δ = (1, 0), 0 < x < ∞,
√
µ > g >

3
2
,

U(x; λ) =
g(g − 1)
sinh2 x

− 2µ (coth x − 1) ,

En(λ) = −


g + n −

µ

g + n

2

, η(x) = coth x,

φn(x; λ) = e−
µ

g+n x(sinh x)g+n P (αn,βn)n (η), W+ = α0,

αn = −g − n +
µ

g + n
, βn = −g − n −

µ

g + n
. (5.4)

The reflection amplitude is

r(k; λ) =

0(ik)0

g − i k2 + i k

′

2


0


g − i k2 − i k

′

2


0(−ik)0


g + i k2 + i k

′

2


0


g + i k2 − i k

′

2

 . (5.5)

This functional form is slightly different from that given in [2]; the present form satisfies the shape
invariance constraint (4.3). It is a meromorphic function of k and k′ def

=

k2 − 4µ.

Again we choose the Riemann sheet such that k′
→ k in the limit of µ → 0. The poles on the

positive imaginary k-axis coming from the second Gamma function factor in the numerator of r(k; λ)

(5.5), g − i k2 + i k
′

2 = −n,⇒ k = iαn, αn > 0, n = 0, 1, . . . , [
√
µ − g]′ provide the eigenspectrum

as above. It is easy to see that |r(k; λ)|2 = 1 for k ∈ R≥0. The potential is invariant under the discrete
symmetry g → 1− g, µ → µ transformation, but the reflection amplitude (5.5) and the eigenvalues
with eigenfunctions are not invariant.
Polynomial type seed solutions. The discrete symmetry g → 1 − g, µ → µ generates the pseudo
virtual and virtual state wavefunctions [34]:

φ̃v(x; λ) = e
µ

g−v−1 x(sinh x)−g+v+1P (ᾱv,β̄v)v (η),

∆+

v = −ᾱv


pseudo virtual: 0 < v < g − 1, ∆+

v > 0
type II virtual: g − 1 < v < 2g − 1, ∆+

v < 0

pseudo virtual: v >
µ

g
+ g − 1, ∆+

v > 0,
(5.6)

ᾱv = g − v − 1 −
µ

g − v − 1
, β̄v = g − v − 1 +

µ

g − v − 1
, (5.7)

Ẽv(λ) = E−v−1(λ)

0 ≤ v < g − 1, v >

µ

g
+ g − 1


. (5.8)



128 C.-L. Ho et al. / Annals of Physics 343 (2014) 115–131

The overshoot eigenfunctions provide type I virtual state wavefunctions for v > µ

g − g [36]:

φ̃os
v (x; λ) = φv(x; λ), Ẽos

v (λ) = Ev(λ),

type I virtual:∆+

v = −αv > 0

v > max(µ/g − g, 2g − 1)


. (5.9)

For v > 2g − 1, the overshoot eigenfunction has no node. Since this type I virtual state wavefunction
satisfies the boundary conditions

∂ sxφ̃
os
v (x; λ)


x=0 = 0 (s = 0, 1, . . .),

a multiple virtual state φ̃os
v deletion gives a non-singular Hamiltonian H [M].

Deformed scatterings. The overshoot type I virtual state wavefunction has ∆+
v > 0 and it adds a new

pole on the positive imaginary k-axis, although the corresponding Darboux transformation is iso-
spectral. In fact, this new pole at k = −iαv is cancelled by the zero coming from the second Gamma
function in the denominator:

1

0(g + i k2 + i k
′

2 )
∝ [2(g + v)+ ik + ik′

]/2, k → −iαv, k′
→ −iβv.

The type II virtual state wavefunction, on the other hand, will add a pole on the negative imaginary
k-axis, which does not correspond to a bound state. The pseudo virtual state wavefunction will add a
new discrete eigenstate at its energy.

5.3. Hyperbolic Pöschl–Teller potential

Original system. This potential has finitely many discrete eigenstates 0 ≤ n ≤ nmax(λ) = [
h−g
2 ]

′ in the
specified parameter range:

λ = (g, h), δ = (1,−1), 0 < x < ∞, h > g >
3
2
,

U(x; λ) =
g(g − 1)
sinh2 x

−
h(h + 1)
cosh2 x

,

En(λ) = −(h − g − 2n)2, η(x) = cosh 2x,

φn(x; λ) = (sinh x)g(cosh x)−h P


g− 1

2 ,−h− 1
2


n (η), W+ = h − g.

The reflection amplitude is

r(k; λ) = 2−2ik 0(ik)0

(−h + g − ik)/2


0

(1 + h + g − ik)/2


0(−ik)0


(−h + g + ik)/2


0

(1 + h + g + ik)/2

 , (5.10)

which is different from that given in [2] by the factor 2−2ik. The poles on the positive imaginary k-axis
coming from the second Gamma function factor in the numerator of r(k; λ) (5.1), −h + g − ik =

−2n,⇒ k = i(h − g − 2n), n = 0, 1, . . . , [ h−g
2 ]

′ provide the eigenspectrum as above. Note that
|r(k; λ)|2 = 1 for k ∈ R≥0. It is interesting to note that the potential is invariant under the discrete
symmetry transformation, g → 1 − g , or h → −h − 1, or g → 1 − g and h → −h − 1, but the
reflection amplitude (5.10) is invariant only under the transformation h → −h − 1, which does not
change the left boundary condition. The eigenvalues and eigenfunctions are not invariant.
Polynomial type seed solutions. Two types of virtual and pseudo virtual state wavefunctions are
generated by the discrete symmetry transformations:

type I virtual: h → −h − 1 Ẽv(λ) = −(h + 1 + g + 2v)2 < E0(λ),

φ̃v(x; λ) = (sinh x)g(cosh x)h+1 P


g− 1

2 ,h+
1
2


v (η),
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∆+

v = g + h + 1 + 2v > 0 (v ∈ Z≥0), (5.11)

type II virtual: g → 1 − g Ẽv(λ) = −(h + g − 1 − 2v)2,

φ̃v(x; λ) = (sinh x)1−g(cosh x)−h P


1
2 −g,−h− 1

2


v (η),

∆+

v = 1 − g − h + 2v


type II virtual: ∆+

v < 0 0 < v < g −
1
2

pseudo virtual: ∆+

v > 0 v > h −
1
2
.

(5.12)

The type II virtual states are below the groundstate energy for 0 < v < g − 1/2. Pseudo virtual
state wavefunctions are generated by g → 1 − g, h → −h − 1:

φ̃v(x; λ) = (sinh x)1−g(cosh x)h+1P


1
2 −g,h+ 1

2


v (η) Ẽv(λ) = E−v−1(λ),

pseudo virtual:∆+

v = h − g + 2 + 2v > 0 (v ∈ Z≥0). (5.13)

The overshoot eigenfunctions provide type I virtual state wavefunctions for v > h − g:

φ̃os
v (x; λ) = φv(x; λ), Ẽos

v (λ) = Ev(λ) = −(h − g − 2v)2,

type I virtual:∆+

v = g − h + 2v > 0

h − g < v < h +

1
2


. (5.14)

For v < h +
1
2 , the overshoot eigenfunction has no node.

Deformed scatterings. The type I virtual state wavefunction (5.11) has∆+
v > 0 and it adds a new pole

on the positive imaginary k-axis, although the corresponding Darboux transformation is iso-spectral.
In fact, this new pole at k = i(g + h + 1 + 2v) is cancelled by the zero coming from the third Gamma
function in the denominator:

1

0

(1 + h + g + ik)/2

 ∝ (g + h + 1 + 2v + ik)/2, k → i(g + h + 1 + 2v), v ∈ Z≥0.

Another pole created by the overshoot type I virtual state wavefunction (5.14) at k = i(g − h+ 2v) is
cancelled by the zero coming from the second Gamma function in the denominator:

1

0

(−h + g + ik)/2

 ∝ (g − h + 2v + ik)/2, k → i(g − h + 2v),

h − g < v < h +

1
2


.

The type II virtual state wavefunction, on the other hand, will add a pole on the negative imaginary
k-axis, which does not correspond to a bound state.

6. Coulomb potential plus the centrifugal barrier (C)

Coulomb potential plus the centrifugal barrier is defined in the interval 0 < x < +∞, but it needs
to be separately discussed from the others because of its long range character.
Original system. Unlike the other systems presented in this paper, the Coulomb system has infinitely
many discrete eigenstates in the specified parameter range:

λ = g, δ = 1, 0 < x < ∞, g >
3
2
,

U(x; λ) =
g(g − 1)

x2
−

2
x
,

En(λ) = −
1

(g + n)2
, n ∈ Z≥0, η(x) = x−1,

φn(x; λ) = e−
x

g+n xg L(2g−1)
n

 2
g+nη

−1, W+ =
1
g
.
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The scattering amplitude is given by:

r(k; λ) = e−iπg 0

g −

i
k


0


g +

i
k

 = e−iπg 0(g + iγ )
0(g − iγ )

, (6.1)

in which the constant γ = −1/k enters in the asymptotic form of the wavefunction (2.7). The
phase factor e−iπg is necessary to satisfy the shape invariance constraint (4.3). It is important to
note that this factor survives in the calculation of 1-dimensional Coulomb scattering, but not in
the standard 3-dimensional Coulomb scattering. The reflection amplitude has infinitely many poles
k = i/(g + n), n ∈ Z≥0, on the positive imaginary k-axis. In [2], the reported scattering amplitude
r(k) has extra factors 0(1 + i/k)/0(1 − i/k) instead of e−iπg . Because of the extra gamma function
factors, their reflection amplitude becomes trivial r(k) = 1 at g = 1, at which the potential is not free.
It is easy to see that |r(k; λ)|2 = 1 for k ∈ R>0. The potential is invariant under the discrete symmetry
g → 1− g transformation, but the reflection amplitude (6.1) and the eigenvalues and eigenfunctions
are not invariant.
Polynomial type seed solutions. The discrete symmetry g → 1 − g generates the pseudo virtual state
wavefunctions [37]:

φ̃v(x; λ) = e
x

g−v−1 x1−gL(1−2g)
v

 2
1−g+vη

−1 Ẽv(λ) = E−v−1(λ) < E0(λ),

x → +∞ φ̃v(x; λ) ≈ e
x

g−v−1 x1−g+v, (6.2)

∆+

v =
1

g − v − 1


pseudo virtual: ∆+

v > 0 0 ≤ v < g − 1
type II virtual: ∆+

v < 0 g − 1 < v < 2g − 1. (6.3)

In contrast with the other potentials, the asymptotic form of the polynomial type seed solutions (6.2)
has an extra power function of x multiplied to the asymptotic exponents (2.11).
Deformed scatterings. A type II virtual state wavefunction would give a pole on the negative imaginary
k-axis and a zerowith the opposite sign. As the others, the pseudo virtual statewavefunction produces
a pole on the positive imaginary k-axis.

7. Summary

The method of multi-indexed extensions has been successfully applied to confining and semi-
confining solvable potentials, revealing the interesting properties of the deformed discrete eigenfunc-
tions; e.g. the multi-indexed orthogonal polynomials and the exceptional orthogonal polynomials. In
this paper, scattering problem aspects of the same deformed systems are investigated. The results
are surprisingly rich, simple and beautiful. The asymptotic behaviours of each polynomial type seed
solution are characterised by two (full line) or one (half line) asymptotic exponents ∆±

v or ∆+
v , (2.9)–

(2.11), the explicit values of these exponents are given for each solvable potential in sections four,
five and six. The transmission amplitude t(k) (full) and the reflection amplitude r(k) (full and half)
obtain a new pole and a new zero on the imaginary k-axis determined by the asymptotic exponents,
(2.19)–(2.20), (2.23). The combinations of various polynomial type seed solutions determine the regu-
larity or singularity of the deformed potential (2.16), which is simply given by the second logarithmic
derivatives of the Wronskian of all the seed solutions. Various criteria for the non-singularity of the
deformed potentials are provided. Extension to QNM is also discussed.

It would be interesting to pursue the same problem from a different angle; deformed scattering
problemof the same solvable potentials, using the same or generalised polynomial type seed solutions
but by applying multiple Abraham–Moses transformations [24,25].
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