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Abstract It is in general challenging to characterize planar
mechanical properties of extremely soft tissues such as cell-
seeded collagen gels. One of the difficulties is related to
premature failure of specimens. This issue may be resolved
by employing fillets on stress-concentrated spots of the spec-
imen. The existence of fillets, however, complicates the esti-
mation of stress at the center of the specimen where stiffness
data are collected. In this study, cruciform rubber specimens
with two types of fillets (general vs. cut-in fillets) at the
intersections of perpendicular arms were prepared and sub-
jected to planar biaxial mechanical testing, aiming at investi-
gating how the fillets affect the estimation of mechanical
properties of cruciform specimens. Digital image correlation
was used to analyze full-field deformation in the central region
of the specimens. Finite element analysis with a Neo-Hookean
model was performed to simulate the full-field deformation
under the same experimental boundary conditions. The strain
distribution for each specimen geometry obtained by finite
element analysis was found to be in good agreement with that
analyzed by digital image correlation, validating the finite
element models. Finite element simulation showed that the
greatest value of the maximum principal strain decreased with

increasing the fillet radius regardless of the fillet type. Increas-
ing the fillet radius, in general, also reduced the strain field
uniformity in the central region. Compared with general fil-
lets, however, the use of cut-in fillets provided greater strain
field uniformity given the same fillet radius. Finite element
analysis was also used to estimate effective transverse length
required to convert tensile force at the boundary to local stress
at the center. It was found that the effective transverse length
for each specimen geometry remained relatively constant if
the specimen was not excessively deformed (i.e., global
equibiaxial stretch ≤ 1.2). We suggest using cut-in fillets at
the intersections of perpendicular arms when preparing cruci-
form specimens for testing extremely soft tissues.

Keywords Planar biaxial mechanical testing . Specimen
geometry . Fillets . Digital image correlation . Finite element
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Introduction

Cell-seeded collagen gels have been used as a model system to
study cell-matrix interactions in tissue morphogenesis and
wound healing [1–3]. In tissue engineering, the property of
directed contraction in uniaxially constrained, rectangular,
cell-seeded collagen gels has been used to engineer highly
anisotropic load-bearing tissues [4–6]. The mechanical prop-
erties of collagen gels in these studies were measured by
unaxial tensile testing, which, however, is insufficient to fully
characterize the mechanical behavior of the gel if the gel is
mechanically anisotropic. Recently, the model was further
used to study tissue development under various planar biaxial
mechanical constraints and planar biaxial mechanical proper-
ties of the gels were determined in these studies [7, 8].

It is in general challenging to characterize planar mechan-
ical properties of extremely soft tissues such as cell-seeded

Electronic supplementary material The online version of this article
(doi:10.1007/s11340-013-9826-2) contains supplementary material,
which is available to authorized users.

J.<J. Hu (*) :G.<W. Chen : S.<S. Hsu
Department of Biomedical Engineering, National Cheng Kung
University, #1 University Rd., Tainan, Taiwan 701
e-mail: jjhu@mail.ncku.edu.tw

J.<J. Hu
Medical Device Innovation Center, National Cheng Kung
University, Tainan, Taiwan

Y.<C. Liu
Department of Mechanical Engineering, National Chiao Tung
University, Hsinchu, Taiwan

Experimental Mechanics (2014) 54:615–631
DOI 10.1007/s11340-013-9826-2

http://dx.doi.org/10.1007/s11340-013-9826-2


collagen gels. These tissues usually have limited suture reten-
tion strength so that it is not practical to stretch specimens via
arrays of sutures; this method has been widely used for testing
soft tissues since its first use by Lanir and Fung [9]. Others
prepared cruciform specimens and used end-clamps to couple
the specimen to the loading system [8, 10]. For extremely soft
tissues, one of the difficulties related to this method is the
premature failure of specimens. This issue may be resolved by
employing fillets on stress-concentrated spots of the speci-
men. The existence of fillets, however, makes the cross-
sectional area of the central region ill-defined. Also, the non-
uniformity of stress/strain field may further complicate the
estimation of stress at the center of the specimen where
stiffness data are collected.

For standard uniaxial tensile testing, the conversion of
tensile force to stress is straightforward as in the central region
of a dumbbell-shaped specimen stress/strain field is uniform
and cross-sectional area is well-defined. Stiffness data can
thus be easily obtained. The geometry of cruciform specimens
used for planar biaxial mechanical testing, however, has not
been standardized. It has been shown that boundary effects
have significant influence on the estimation of the planar
biaxial mechanical properties of soft tissues [11, 12]. Little
has been done to improve cruciform specimen design with
respect to the reliability of stiffness data in the field of soft
tissue testing. Particularly for extremely soft tissues, it is
required to seek a compromise that the premature failure is
prevented and measured stress and strain reasonably reflects
the real mechanical behavior of the specimen.

In this study, we used rubber as a model material and
prepared cruciform specimens with two types of fillets (general
vs. cut-in fillets) at the intersections of perpendicular arms for
investigating how the fillets affect the estimation of mechanical
properties of cruciform specimens. Digital image correlation
was used to analyze full-field deformation in the central region
of the specimens. On the other hand, finite element analysis
with a Neo-Hookean model was performed to simulate the
full-field deformation under the same experimental boundary
conditions; the only material parameter of the Neo-Hookean
model was obtained by a simple inverse procedure prior to the
analysis. Finite element analysis was also used to estimate the
effective transverse length required to convert prescribed force
at the boundary to local stress at the center.

Methods

Mechanical Testing of Cruciform-Shaped Rubber Specimens

A modified version of a planar biaxial mechanical tester [13]
was used. Specifically, a high-resolution CCD (2448×2050;
GC2450, Prosilica, Germany) with a lens (HF25SA-1,
Fujinon) was used for tracking full-field deformation and a

pair of commercial load cells (WMCP-1000G, Interface,
Scottsdale, AZ) were used for measuring tensile forces in
perpendicular stretching directions. Cruciform specimens
with two fillet types (general fillets: R0625, R1250, R2500,
cut-in fillets: In_R03125, and In_R0625; see Fig. 1) at the
intersections of perpendicular arms were cut from thin, black
rubber sheets (0.3 mm thick) and subjected to mechanical
testing. Briefly, high-contrast speckles for tracking surface
displacement were created by spraying white paint on the
specimen. The specimen was clamped at the ends of its four
arms to the loading assemblies of the tester. When the speci-
men was unloaded, an image of the central regionwas taken as
the reference image. A displacement-controlled testing proto-
col, in which global stretches in the stretching directions were
kept the same, was then performed. Deformed images of the
central region were taken periodically and corresponding ten-
sile forces in the stretching directions were recorded. The full-
field deformation of the central region was analyzed by pro-
cessing the images as follows.

Digital Image Correlation and Strain Field Estimation

A custom code in LabVIEW was written to measure the full-
field deformation; coding in LabVIEW allows easy integra-
tion of strain field estimation with mechanical testing. The
code was initiated by opening the reference image, on which a
rectangular (nearly square) region of interest (ROI) was man-
ually selected. Nodes were created within the ROI (red dots in
Fig. 2(a)) and node-centered patterns (size varying from 24×
24 pixels to 34×34 pixels for different specimens) were saved
in memory for tracking the motion of nodes. The code then
began to analyze the first deformed image. Digital image
correlation (DIC) was performed by using pattern match
2.vi (a NI Vision function), which searched a nearby area of
the original position of a node in the image for the best fit of its
pattern. The function allows subpixel registration up to 1/25
pixel as well as in-plane rotation less than 4°. If a good fit was
found, then it became the new position of the node. The
searching process continued until new positions of all the
nodes were determined. For strain field estimation of the
deformed image, the (initial) positions of the nodes in the
reference image were used to mesh the ROI into triangular
elements by DelaunayTri.m (an embedded MATLAB func-
tion) (Fig. 2(b)). Given the respective positions of the three
vertices (nodes) of a triangular element in the reference image
and in the deformed image, the deformation gradient of the
element was determined (see Appendix A). Once deformation
gradients of all the elements were obtained, Green strain (E11,
E22, E12), rigid-body rotation angle (ϕ) [14], and the maxi-
mum and minimum principal strains (Ep, max, Ep, min) of all the
element were calculated, generating full-field strain distribu-
tions. Herein, Ep, max was used as a failure index while the
ratio of the principal strains (Ep, max/Ep, min) was used as an
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index for strain field uniformity. The code then analyzed the
next deformed image by the same algorithm with the new
positions of the nodes. The whole process repeated until the
full-field strain distributions of the last deformed image were
determined (Fig. 2(c)).

Constitutive Modeling of the Rubber Specimens

Partly because of the existence of fillets and hence the ill-
defined cross-sectional area in the central region, it is difficult
to estimate stress at the center of the specimen where stiffness
data are collected. The tensile forces in the stretching direc-
tions (f1 and f2) and the associated normal Green strains at the
center of the specimen (E11

exp and E22
exp) were thus used to

establish the constitutive relation with the help of finite ele-
ment analysis.

Finite element models were created and analyzed using
ABAQUS (Pawtucket, RI). The rubber was modeled as an
incompressible isotropic hyperelastic material using the Neo-
Hookean strain energy function, which is defined as:

W λ1;λ2;λ3ð Þ ¼ C10 λ2
1 þ λ2

2 þ λ2
3−3

� �
where C10 is a material parameter and λ i are the principal
stretches. The specimen, particularly around the fillets, was
first partitioned into shapes that are less complex for better
meshing results. Because the specimen is thin with negligible
bending stiffness, CPS8R, the 8-node quadratic plane stress

element with reduced integration, were used to mesh the
geometry. Based on a mesh convergence study (see Supple-
mental Figure 1), the approximate global size was set to be
0.3 mm and typically a total of ~20,000 elements were gen-
erated for each specimen geometry. Note that the clamped
portion of each arm was treated as rigid body. The tensile
forces in the stretching directions, which were simplified as
concentrated forces acting on the clamped portion of each
arm, were assigned as the boundary conditions. The large
deformation was taken into account in the simulation by using
the NLGEOM option. The full-field deformation was then
analyzed. As our desired strain measure is Green strain (the
default strain output of ABAQUS is the true strain, ε = ln λ ),
we extracted deformation gradient by calling GETVRM in
UVARM (an ABAQUS user subroutine). The Green strain
was then calculated.

As we had experimental data of f1 and f2 and associated
E11
exp and E22

exp in a number of equilibrium configurations, we
simulated the normal Green strains at the center of the spec-
imen (E11

fem and E22
fem) for each set of f1 and f2 with a guess

value of C10 and determined manually the best-fit C10 that
gives the minimum of the objective function:

e ¼ ∑
k¼1

m

E exp
11 −E fem

11

� �2
k þ E exp

22 −E fem
22

� �2
k

n o
where m is the

number of equilibrium configurations. Note that this approach
can be performedmanually because only one material parameter
is involved in the model and only interpolated strains at the
center of the specimenwere considered in the objective function.
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2.551”
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R0.1250”,
or R0.2500”

R0.03125”,
or R0.0625”

R0.125”

(a) (b) (c)

Fig. 1 Schematic diagram showing the dimensions of cruciform specimens with the general and the cut-in fillets at the intersections of perpendicular
arms (top and bottom panels, respectively) (a , b) and the meshes in the central region for finite element analysis (c). The center of curvature for the
general fillet is located away from the intersection of edges depending on the radius; three radii of curvature were tested in this group (R2500: R0.2500”,
R1250: R0.1250”, and R0625: R0.0625”) while that for the cut-in fillet is right at the intersection; two radii of curvature were tested in this group
(In_R03125: R0.03125” and In_R0625: R0.0625”). The dark shadow areas indicate the clamped portion of the specimen. Note that the meshes shown
here were created with approximate global size of 5 mm for illustration
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Validation of the Finite Element Models

We examined one sample for each specimen geometry. Given
the test results of a sample, we obtained the optimal C10 of the
sample by the inverse procedure and used the C10 to simulate
the full-field deformation of the sample. Therefore, the com-
parisons between DIC and FEM results were based on the
same sample and the same experiment; FEM results can thus
be validated.

Once the C10 of each sample was determined, finite ele-
ment analysis was used to simulate the full-field deformation
of each sample. Here the displacement of, instead of the
tensile force in, the clamped portion of each arm was specified
as the boundary conditions to match the experimental proto-
col. Specifically, to match the global equibiaxial stretch of 1.2,
the displacement of the clamped portion was set to be 5 mm
outward. The full-field E11, E22, E12, Ep, max, and Ep, max/Ep,
min were analyzed for comparison with the corresponding DIC
results. In order to better illustrate the distribution of strains
and their magnitudes, we plotted E11, E22, E12, and Ep, max

obtained by both DIC and FEM along centerlines and diago-
nal lines of the ROI. More importantly, such a plot allows
direct comparisons between DIC and FEM results based on
geometric locations.

Finite Element Simulation of the Strain Field

In addition to the five specimen geometries that were exper-
imentally tested, we created a finite element model of R03125

so that comparison can be made between the general
fillet and the cut-in fillet with the radius of 0.03125 in..
Finite element models of the six specimen geometries
with the same material parameter (C10=0.96 MPa) were
then used to estimate the influence of fillets on Ep, max

as well as the strain field uniformity. Particularly, for
quantification of strain field uniformity, we adopted the
definition used by Eilaghi et al. [15] and measured the
central, biaxially loaded area where Ep, max/Ep, min is
sensibly constant (Ep, max/Ep, min≤1.1) and normalized it
by a central square (the red outlined square in
Fig. 8(a)).

Estimation of Effective Transverse Length

Finite element simulation was also used to estimate the effec-
tive transverse length required to convert tensile force at the
boundary to local stress at the center; note that the effective
transverse length does not equal to specimen arm width large-
ly due to the incorporation of the fillets and non-uniform
stress/strain field in the central region. In this analysis, the
displacements in the clamped portions were prescribed as the
boundary conditions; four global equibiaxial stretches were
tested: 1.1, 1.2, 1.5, and 2. The simulated tensile force at the
clamped portion and the simulated Cauchy stress and simu-
lated local stretch ratios at the center of the specimen were
recorded for calculating the effective transverse length using

Leff1 ¼ eλ2
~f 2

H~σ22

� �
and Leff2 ¼ eλ1

~f 1
H~σ11

� �
, where ~f 1 and ef 2 are

the simulated tensile forces in the 1 and 2 directions,

λglobal=1.05 λglobal=1.1 λglobal=1.15 λglobal=1.2

E11

0.25

-0.02

(a)

(b)

(c)

1

2
−

−

Fig. 2 The procedure of digital
image correlation. (a) After man-
ually selected a rectangular ROI,
nodes (dots in red) are virtually
created over the ROI by a simple
algorithm. (b ) Triangular ele-
ments, on which the deformation
gradients are determined, are
established based on positions of
the nodes using DelaunayTri.m.
(c) Digital image correlation was
performed on deformed images
taken at a series of equilibrium
states
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respectively, H is the undeformed thickness of the specimen,eσ11 and eσ22 are the simulated Cauchy stress in the 1 and 2

directions, respectively, and eλ1 and eλ2 are the simulated local
stretch ratios in the 1 and 2 directions, respectively. Note that
the simulated Cauchy stress and stretch ratios were obtained
by averaging their values from four central elements. Normal-
ized effective transverse length was presented in results,
which was calculated by dividing the effective transverse
length by the specimen arm width.

In addition to the cruciform geometry, we constructed a
finite element model of the square geometry employed by
Knezevic et al. for testing the mechanical properties of colla-
gen gels [16]. Again, the effective transverse lengths required
to convert tensile force to local stress at the center at the four
global equibiaxial stretches were analyzed. We further exam-
ined the effect of reducing length of porous bars, which were
treated as rigid body, in that model on the normalized effective
transverse length.

Results

Strain Field Estimation by Digital Image Correlation

We focused on the ROI to evaluate the boundary effects
caused by the fillets. Figure 3 shows the experimental analysis
(DIC) of full-field distributions of E11, E22, E12, and ϕ when
the specimens were each loaded equibiaxially to a global
stretch of 1.2 (λglobal=1.2); numerical simulations (FEM) of
corresponding strains (but not ϕ) were placed in parallel for
easy comparison. The full-field distributions of E11 for the five
specimen geometries appeared to be in a similar sand-clock
shape pattern; E11 decreased gradually in the 1 direction from
both sides toward the center while it increased gradually in the
2 direction from both sides toward the center. The full-field
distribution of E22 for each specimen geometry showed a
similar but opposite pattern with the corresponding E11. Also,
the full-field distributions of E12 for the five specimen geom-
etries appeared to be similar. The shear strain at corners of the
ROI increased as the fillet radius decreased regardless of the
fillet type. The central shear strain for the five specimen
geometries was negligible, indicating the reliability of our
experimental results. On the other hand, E11, E22, and E12 in
the ROI appeared to be more uniform as the fillet radius
decreased regardless of the fillet type. Ideally, the specimen
subjected to equibiaxial stretching should not develop local
rigid-body rotation. The rigid-body rotation angle appeared to
be affected by the fillet radius; particularly in areas near the
corners of the ROI, the smaller fillet radius the greater rigid-
body rotation angle regardless of the fillet type. Also, cut-in
fillets developed more of rigid-body rotation than general
fillets. The central rigid-body rotation angle for the five

specimen geometries was found to be within 3.75°, again
indicating the reliability of our experimental results.

Figure 4 shows that the greatest value of Ep, max for the five
specimen geometries occurred at the edge of fillets while it
had the minimum at the center of the specimen. Specifically,
the smaller fillet radius the greater Ep, max regardless of the
fillet type. Figure 5 shows that Ep, max/Ep, min equal to one at
the center. The strain field uniformity decreased with increas-
ing fillet radius regardless of the fillet type. Note particularly
that cut-in fillets provided better strain field uniformity than
general fillets given the same fillet radius.

We found that as the specimen was gradually stretched, E11

and E22 increased at the center while E12 remained negligible
at the center but increased at the corners (Supplemental
Figure 2).

Constitutive Modeling of Cruciform Rubber Specimens
with Various Fillets

We found that slightly different values of the C10 were reached
for the samples (R2500: 0.951 MPa, R1250: 0.978 MPa,
R0625: 0960 MPa, In_03125: 0. 935 MPa, and In_0625:
0.972 MPa). Note again that we simulated full-field deforma-
tion of each sample with its corresponding C10.

Strain Field Estimation by Finite Element Analysis

Although shown in a similar but slightly different color scales,
the FEM results appeared to be in good agreement with the
DIC results (Figs. 3, 4, and 5); the similarity between FEM
and DIC validated the finite element models. Note that the
boundary conditions used for the simulation does not generate
rigid-body rotation (i.e., F12 = F21) and thus no simulated full-
field rigid-body rotation angle was shown.

Figure 6 shows E11, E22, E12, and Ep, max obtained by both
DIC and FEM along centerlines and diagonal lines of the ROI
for the five specimen geometries. Again, the FEM results
appeared to fit the DIC results well. For the five specimen
geometries E11 along the horizontal centerline had the mini-
mum at the center of the specimen while E11 along the vertical
centerline had the maximum at the center. E22 for each spec-
imen geometry showed a similar but opposite pattern with the
corresponding E11. Specifically, the E11 at the center of the
specimen increased gradually from R2500 to In_0625; recall
that the specimens were each loaded equibiaxially to a global
stretch of 1.2. No obvious change in E12 was observed in the
centerlines. E12, however, had the maximum or the minimum
at the two ends of the diagonal lines. The minimum of Ep, max

located at the center of the specimen and its value increased
from R2500 to In_06125. Generally, we found that DIC
results were in good agreement with FEA results at the center
of the specimen. The difference between DIC and FEM results
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were more notable at the two ends of centerlines or diagonal
lines.

The finite element simulations showed that Ep, max for the
five specimen geometries occurred at the intersections of

perpendicular arms. Figure 7 shows that the value of Ep, max

decreased with increasing fillet radius. Note, particularly, that
the values of Ep, max were similar for the two fillet types given
the same fillet radius.

R2500 R1250 R0625 In_R03125 In_R0625

E11

DIC

FEM

E22

DIC

FEM

E12

DIC

FEM

DIC

Fig. 3 The full-field distributions
of strains (E11, E22, E12) and rigid-
body rotation angle (ϕ) in the
central region analyzed experi-
mentally by digital image correla-
tion (DIC) and simulated numeri-
cally by finite element method
(FEM) for the five specimen ge-
ometries. The specimens were
e a c h l o a d e d t o a g l o b a l
equibiaxial stretch of 1.2. Note
that the color scale for DIC and
that for FEM are similar but
slightly different

R2500 R1250 R0625 In_R03125 In_R0625

DIC

FEM

p, maxE

Fig. 4 The full-field distributions of the maximum principal strain (Ep, max) in the central region analyzed experimentally by digital image correlation
(DIC) and simulated numerically by finite element method (FEM) for the five specimen geometries. The specimens were each loaded to a global
equibiaxial stretch of 1.2. Note that the color scale for DIC and that for FEM are similar but slightly different
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The uniform strain area, in which Ep, max/Ep, min is less than
1.10, increased as the fillet radius decreased (Fig. 8(a)). If the
area is normalized by the red outlined square in (Fig. 8(a)), it
appeared that cut-in fillets allowed greater normalized uniform
strain area than general fillets given the same fillet radius
(Fig. 8(b)). Note that this comparison was based on the same
global equibiaxial stretch; although not shown, we found that the
strain field uniformity decreased as the global stretch increased.

Figure 9 shows that the normalized effective transverse
length increased for general fillets but decreased for cut-in
fillets as the fillet radius increased. The normalized effective
transverse length for each specimen geometry was estimated
with three different mechanical properties ranging from soft
(C10=0.5 MPa), medium (C10=0.96 MPa) to stiff (C10

=.5 MPa). The normalized effective transverse length ap-
peared to approach the minimum for general fillets with
decreasing fillet radius. The normalized effective transverse
length nearly reached 1.0 for cut-in fillets with the fillet radius
of 0.0625 in.. For general fillets with larger radii, the normal-
ized effective transverse length decrease initially and then
increased as the global stretch increased while for cut-in fillets
and general fillets with smaller radii the normalized effective
transverse length increased as the global stretch increased. It
appeared that the normalized effective transverse length for
each specimen geometry variedwith the global stretch but was
not affected significantly by the mechanical properties exam-
ined. In general, however, the normalized effective transverse
length for each specimen geometry remained relatively con-
stant if the specimen was not significantly deformed (within a
global equibiaxial stretch of 1.2).

Finite element simulations illustrated that the square spec-
imen with shorter bars had significantly lower Ep, max at the
corners of the specimen compared to that with longer bars
when both were loaded equibiaxially to a global stretch of 1.2
(Fig. 10(a)). It was found that the specimen with longer bars
deformed only at the corners leaving the central region almost
undeformed when the tensile forces that the specimen with
shorter bars was subjected to in the previous setting were
assigned as the boundary conditions (Fig. 10(b)). Figure 11

shows that reducing length of porous bar significantly reduced
the normalized effective transverse length. Note that as the
global stretch increased the normalized effective transverse
length increased for the specimen with either longer or shorter
bars.

Discussion

In the fields of metal and plastic testing, cruciform specimens
are usually used for planar biaxial mechanical testing. For
instance, the design of cruciform specimen for composite
material testing has been investigated intensively [17–19].
Although most planar biaxial mechanical properties of soft
tissues are tested with square specimens loaded via arrays of
sutures, extremely soft tissues prohibit the use of suture at-
tachment and may only be tested using cruciform specimens.
Unlike metals or plastics, however, loaded soft tissues usually
undergo large deformation and associated shape changes of
specimen may have profound boundary effects on measured
stiffness data.

Not much has been done, however, in the field of soft tissue
testing with respect to cruciform specimen design. Sun et al.
demonstrated using finite element methods that clamp-based
methods have substantially stronger boundary effects in com-
parison to suture-based methods, which results in lower cen-
tral stress in clamped specimens than in suture-attached spec-
imens under the same equibiaxial loading [11]. For clamped
cruciform specimens, increasing specimen arm length allevi-
ates the clamp-related boundary effects. Note that our cruci-
form specimens had arms 200 % of the length of the central
square. Note also that the finite element models of their
cruciform specimens contain no fillets [11], which may result
in singular points at the intersections of perpendicular arms
and lead to extreme stress at these areas. Waldman and Lee
experimentally tested cruciform specimens with different
specimen arm lengths from fish skin, bovine pericardium
and model textile laminates, and found similarly that the
apparent mechanical properties of the materials is dependent

R2500 R1250 R0625 In_R03125 In_R0625

DIC

FEM

p, max

p, min

E

E

Fig. 5 The full-field distributions of the ratio of principal strains (Ep, max/Ep, min) in the central region analyzed experimentally by digital image
correlation (DIC) and simulated numerically by finite element method (FEM) for the five specimen geometries. The specimens were each loaded to a
global equibiaxial stretch of 1.2. Note that the color scale for DIC and that for FEM are similar but slightly different
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on the specimen arm length [12]. The geometric factor of
interest in these studies is specimen arm length. Little is
known about how the fillets in a cruciform specimen affect
the full-field strain distribution as well as the stiffness data
generated from a test. Very recently, Bell et al. used finite

element analysis to optimize the cruciform specimen geome-
try aiming at maximizing stresses within the central region
while diminishing stress concentrations at arm attachment
points [10]. The radius of the attachment arm junction was
the only design parameter; that is, other key geometric factors
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such as specimen arm width are dependent on the radius and
cannot be controlled. Furthermore, analysis in apparent me-
chanical properties was not conducted in their study.

The design criteria for the optimal geometry of cruciform
specimens should include, at least, the following: (1) Shear
strain and rigid body rotation angle must be negligible in the
central region of the specimen. For all of the specimens

examined in this study, both the shear strain and the rigid-
body rotation angle in the central region were negligible
throughout the test, suggesting that the experimental results
are reliable. Note that it is important not to infer shear infor-
mation from planar biaxial tests because of the inability to
impose defined shear stresses [20]. (2) The value of Ep, max

must be within the failure limit of tested materials during
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testing. Our results suggested that potential failure at the
intersections of perpendicular arms can be avoided by increas-
ing the fillet radius regardless of the fillet type. Note, however,
that cruciform specimens when stretched excessively might
fail at arms if not fail at the intersection of arms. That is, the

range of deformation in the central region is inherently limit-
ed. (3) The strain field in the central region must be sufficient-
ly uniform. The issue of strain field uniformity is more of a
concern if strain gauges or extensometers are used for strain
measurements. Even for some noncontact optical approach
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(e.g., video-dimension analyzer), the strain field uniformity in
the measuring area is also important. Our results suggested
using cut-in fillets for better strain field uniformity given the
same fillet radius. (4) At the center of the specimen where
stiffness data are collected, the corresponding stress can be
calculated without ambiguity. The last criterion is affected

mainly by the ill-defined cross-sectional area of the central
region as well as the non-uniform stress/strain field in the
central region; the latter is further degraded by the incorpora-
tion of fillets. It is therefore necessary to determine the effec-
tive transverse length and investigate how the fillets affect the
effective transverse length. Interestingly we found that
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effective transverse length for each specimen geometry
remained relatively constant if the specimen was not
excessively deformed (i.e., global equibiaxial stretch ≤
1.2). As the deformation becomes significant, which is
not uncommon for soft tissues, the shape of the speci-
men as well as the uniformity of strain field change;

both of which may contribute to the increased effective
transverse length. Note that the effective transverse
length for all the specimens with general fillets was
found to be greater than the specimen arm width; that
is, stress will be over-estimated if the arm width is used
to calculate stress.
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Generally a full-field strain measurement involves deter-
mination of motions of patterns/markers by DIC and estima-
tion of strain field based on results of DIC although some DIC
algorithms such as Newton–Raphson or Levenberg-Marquart
algorithms directly generate the displacement gradients (i.e.,
strains) [21]. In this study, a custom code in LabVIEW was
written for DIC and it appeared to provide satisfactory motion
data of speckles with sub-pixel accuracy. Regarding to strain
field estimation, we meshed the ROI with triangular elements
and specifically used a linear interpolation function to smooth-
en displacement field within each element, resulting in a
constant deformation gradient within the element. This ap-
proach is straightforward and fast but limited to analysis of a
relatively smooth strain field; the error of strains may be
significant in areas with steep deformation gradient. That is,
within the ROI the deformation gradient as well as Green
strain, principal strains, and rigid-body rotation angle near
the fillets may not be as accurate as that in the central region.
This may in part explain the discrepancy between DIC and
FEM at these areas. Nevertheless, the code allowed

determining the full-field strain rapidly and real-time evalua-
tion of strain distribution was possible; this grants the capa-
bility of strain-based controlled mechanical testing. Essential-
ly, the maximum number of elements analyzed by DIC is
limited by the capability of the computer.

The purpose of full-field strain measurement by DIC in this
study was to evaluate the strain distribution in the central
region and validate our finite element simulations. The anal-
ysis of DIC was restricted to the rectangular ROI. DIC inher-
ently cannot be performed at the very edge of fillets where the
greatest value of Ep, max is expected to occur. Therefore, we
relied on FEM to estimate Ep, max at these areas.

The slight variations in C10 for each specimen geometry
was expected considering the experimental errors, inter-
specimen variations, and that the Neo-Hookean model is far
from perfect for describing the mechanical behavior of the
rubber. We did not intend to find a single material parameter
for the five specimen geometries, which might be done by
grouping all the experimental and simulated data of the five
specimen geometries in a single objective function. The pur-
pose of using different C10, as pointed out in theMethods, was
to compare DIC and FEM results on the basis of the same
sample and the same experiment and thus FEM results can be
validated properly. Nevertheless, we used a single C10

(0.96 MPa) in analyzing Ep, max and Ep, max/Ep, min (strain
field uniformity index) so that the comparisons are totally
based on specimen geometries without the influence of mate-
rial behavior.

Standard uniaxial tensile testing allows generating stress–
strain data that can also be used to determine the C10 of the
rubber. We thus prepared rectangular specimens (50 mm×
5 mm×0.3 mm) from the rubber sheets for uniaxial tensile
tests. We found that the C10 of the Neo-Hookean model
depended on the range of the data used for fitting (Supple-
mental Figure 3). Nevertheless, the values of the C10 were
comparable to those obtained in this study. Note that a consti-
tutive model with material parameters obtained by fitting data
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of uniaxial tensile tests of a material may not predict well the
biaxial mechanical behavior of that material. Beda provided
such an example in his study of rubber [22].

Other constitutive models for rubber such as the Mooney-
Rivlin or Ogden strain energy function may serve better than
the Neo-Hookean model. Note again that in this study the C10
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of a sample can be obtained manually because only one material
parameter is involved in the Neo-Hookean model and the opti-
mization algorithm in the inverse procedure compares only
strains at the center of the specimen (not the full-field strain). If
the constitutive model containing more than one material param-
eter is used, a nonlinear regression algorithm will be needed and
particularly thematerial parameters obtainedmight not be unique
[23]. With respect to characterizing materials using full-field
strain data, a sophisticated optimization algorithm similar to the
one developed by Lecompte D. et al. will be needed [24]. Note
also that others have used the boundary element method [25] or
the virtual fields method [26] besides the finite element method
[24] in extracting material parameters of constitutive models
from full-field strain data.

The full-field strain distributions obtained by both DIC and
FEM were essentially derived from the deformation gradient
of each element. That is, large deformation of the specimen
was taken into account in both DIC and FEM analyses. This is
particularly important as loaded soft tissues usually undergo
large deformation and linear elasticity could lead to inaccurate
results. For example, rigid-body rotation does not affect the
calculation of Green strain. Note that we calculated rigid-body
rotation angle also from the deformation gradient. The rigid-
body rotation angle is not the angle change in the definition of
linear shear strain; shear strain at large deformation includes
contributions from both angle change and extension [27].

In addition to the cruciform geometry, we constructed a finite
element model of the square geometry employed by Knezevic
et al. for testing the mechanical properties of collagen gels [16].
The existence of relatively rigid bars appeared to prevent free
edge expansion in each of two lateral directions thus could lead

to artificially high stiffness. The problem may be resolved by
reducing the length of the bars; the square specimen with shorter
bars essentially behaves like a clamped cruciform specimen.

Instead of cell-seeded collagen gels, rubber specimens were
prepared and tested in this study. Rubber is considered to be an
incompressible, isotropic, elastic material and thus the results of
analysis can be interpreted easily. The constitutive models for
rubber are well-established and can be implemented in finite
element analysis with little effort. Furthermore, the mechanical
behavior of rubber, unlike that of general soft tissues which is
subjected to biological variations, is relatively consistent between
specimens. Nevertheless, testing on anisotropic soft materials/
tissues, which is beyond the scope of this study, may provide
more insights on cruciform specimen design and warrants further
investigation.

Conclusion

The Neo-Hookean model fit the experimental data reasonably
well and the associated finite element models of the specimen
geometries were validated well by digital image correlation. The
results of finite element simulation indicated that the greatest
value of the maximum principal strain as well as the strain field
uniformity in the central region was reduced by increasing the
fillet radius regardless of the fillet type, that the use of cut-in
fillets provided greater strain field uniformity compared with
general fillets given the same fillet radius, and that effective
transverse length for each specimen geometry remained relative-
ly constant if the specimen was not excessively deformed (i.e.,
global equibiaxial stretch ≤ 1.2).We suggest using cut-in fillets at
the intersections of perpendicular armswhen preparing cruciform
specimens for testing extremely soft tissues.
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Appendix A

A linear interpolation function for a triangular element was

used, which is defined as Ni ¼ aiþbiX 1þciX 2

2⋅Area ; i ¼ 1; 2; 3;

where
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and X2 are reference coordinates; the subscript indicates co-
ordinate in the 1 or 2 direction and the superscript indicates the
three vertices of the triangular element. With the interpolation
function, the position vector x ¼ x1 x2

� �
of a particle within

the triangular element in a deformed configuration was ap-
proximated in terms of the position vectors of the three verti-
ces of the triangular element in the deformed configuration
x j ¼ x1

j x2
j

� �
; j =1, 2, 3, as follows.

x1 X 1;X 2ð Þ≅ N1x
1
1 þ N2x

2
1 þ N3x

3
1

x2 X 1;X 2ð Þ≅ N1x
1
2 þ N2x

2
2 þ N3x

3
2

Because the interpolation functioin is a function of refer-
ence coordinates, the position vector is also a function of
reference coordinates. Then the components of 2-
dimentional deformation gradient F2D F¼dx

dX

� �
were calculat-

ed using

F11 ¼ dx1
dX 1

¼ b1
2⋅Area

x11 þ
b2

2⋅Area
x21 þ

b3
2⋅Area

x31;

F12 ¼ dx1
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x32;

F22 ¼ dx2
dX 2
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c2
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x22 þ

c3
2⋅Area

x32:

The deformation gradient is found to be constant within the
triangular element; that is, it does not vary with positions within
the element. Surprisingly, we found that the deformation gradient
calculated based on this algorithm is identical to the one calcu-
lated based on the idea of linear transformation with an assump-
tion of homogeneous strain field [28]. In fact, it can be shown that

x11−x
3
1 x21−x

1
1 x31−x

2
1

x12−x
3
2 x22−x

1
2 x32−x

2
2

" #
¼ F11 F12

F21 F22

� �
c2 c3 c1
−b2 −b3 −b1

� �
.

Nevertheless, although the same results were achieved, the inter-
polation approach that we used in this study significantly reduced
the computing time (1/10 of the linear transformation approach).
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