
Energy-efficient and cost-effective web API invocations
with transfer size reduction for mobile mashup applications

Chen-Che Huang • Jiun-Long Huang •

Chin-Liang Tsai • Guan-Zhong Wu •

Chia-Min Chen • Wang-Chien Lee

Published online: 20 June 2013

� Springer Science+Business Media New York 2013

Abstract Recently, the proliferation of smartphones and

the extensive coverage of wireless networks have enabled

numerous mobile users to access Web resources with

smartphones. Mobile mashup applications are very attrac-

tive to smartphone users due to specialized services and

user-friendly GUIs. However, to offer new services

through the integration of Web resources via Web API

invocations, mobile mashup applications suffer from high

energy consumption and long response time. In this paper,

we propose a proxy system and two techniques to reduce

the size of data transfer, thereby enabling mobile mashup

applications to achieve energy-efficient and cost-effective

Web API invocations. Specifically, we design an API query

language that allows mobile mashup applications to readily

specify and obtain desired information by instructing a

proxy to filter unnecessary information returned from Web

API servers. We also devise an image multi-get module,

which results in mobile mashup applications with smaller

transfer sizes by combining multiple images and adjusting

the quality, scale, or resolution of the images. With the

proposed proxy and techniques, a mobile mashup appli-

cation can rapidly retrieve Web resources via Web API

invocations with lower energy consumption due to a

smaller number of HTTP requests and responses as well as

smaller response bodies. Experimental results show that the

proposed proxy system and techniques significantly reduce

transfer size, response time, and energy consumption of

mobile mashup applications.

Keywords Mobile mashup applications � Web resource �
Web API � Energy efficiency � Transfer size reduction �
Smartphones

1 Introduction

1.1 Background

In recent years, the ubiquity of smartphones and the

widespread deployment of wireless networks have resulted

in more people using smartphones to access Web resources

[14]. Contrary to Web browsing by computer users,

smartphone users prefer utilizing mobile applications to

access Web services. By exploiting the advanced capabil-

ities of smartphones, mobile applications are able to pro-

vide intricate GUIs and can be tailored to meet the specific

needs of the users. Instead of visiting one particular Web

site, mobile mashup applications create new and special-

ized applications by integrating Web resources of various

Web sites [20]. Specifically, mobile mashup applications

are able to aggregate a variety of Web resources by

invoking the Web APIs released by well-known Web sites,

such as Google, Yahoo!, Facebook, and YouTube. A good

example of a mobile mashup application is HTC Friend

Stream, which aggregates up-to-date information about the

friends of a smartphone user from various social net-

working sites (i.e., Facebook, Twitter, and Plurk), as shown

in Fig. 1. With Friend Stream, a mobile user is able to

easily receive the latest status of his/her friends without

separately browsing these social networking sites.

C.-C. Huang � J.-L. Huang (&) � C.-L. Tsai � G.-Z. Wu �
C.-M. Chen

Department of Computer Science, National Chiao Tung

University, Hsinchu, Taiwan, ROC

e-mail: jlhuang@cs.nctu.edu.tw

W.-C. Lee

Department of Computer Science and Engineering, The

Pennsylvania State University, University Park, PA 16802, USA

e-mail: wlee@cse.psu.edu

123

Wireless Netw (2014) 20:361–378

DOI 10.1007/s11276-013-0608-7



Despite the benefits of mobile mashup applications,

Web API invocations are usually energy- and time-con-

suming for smartphones. Because the battery life of

smartphones remains constrained and the long response

times easily discourage mobile users [13], achieving fast

and energy-efficient Web API invocations is crucial to

mobile mashup applications. Shye et al. [19] reported in

that the wireless interface is one of the most energy-con-

suming components of a smartphone; this realization

motivates us to attempt to reduce energy consumption and

response time by reducing transfer sizes between mobile

applications and Web API servers. In addition, many users

continue to subscribe to usage-based pricing plans espe-

cially in developing regions [3]. Therefore, reducing

transfer size for Web resource retrieval will also reduce the

cost for these users. To the best of our knowledge, no prior

work has addressed the issue of transfer size reduction for

mobile mashup applications.

1.2 Observations

To better understand data transfer between smartphones

and Web API servers, we first analyze the data transfer

incurred by Web API invocations because invoking Web

APIs is the essence of mobile mashup applications. To

facilitate our analysis, we implement several mobile ma-

shup applications on top of the Google Android emulator

and use Wireshark1 to capture and study the packets among

the implemented mashup mobile applications and the Web

API servers. Considering the trend of and interests in

mobile mashup applications, we select the Web APIs

provided by social networking sites (Facebook and Twit-

ter), Web album sites (Picasa and Flickr), video sharing

sites (YouTube) and information provision sites (Yahoo!

Lifestyle). The Web APIs that are used are summarized in

Table 1. In the following, we elaborate our four main

observations.

• Observation 1: Excessive HTTP requests and

responses for API resource retrieval.

When a mobile mashup application extracts Web

resources from one Web API server, it has to invoke

the corresponding Web API method by sending an

HTTP request to the Web API server; the Web API

server will return at least one HTTP response.

Multiple HTTP requests and responses are required

for retrieving resources from multiple Web API

servers. Consider HTC Friend Stream mentioned

previously as an example. To integrate the latest

published messages of friends from several social

networking sites, the application invokes multiple

Web APIs by issuing multiple HTTP requests to

these Web API servers and then obtains the results

via multiple HTTP responses returned from these

Web API servers, as depicted in Fig. 2. Such

excessive HTTP requests and responses create sub-

stantial overhead for a mobile mashup application,

especially considering that each HTTP request con-

tains only one Web API invocation but incurs the

HTTP header overhead. This observation motivates

us to design mechanisms that allow a mobile mashup

application to invoke multiple Web APIs with only

one HTTP request.

• Observation 2: Parameter dependency of Web APIs.

To facilitate resource management, Web resources are

often organized into hierarchical structures. However,

such structures may cause dependency of parameters of

Web APIs. For instance, prior to listing the districts of

Taipei city by using Yahoo! Lifestyle APIs, the city ID

of Taipei is required because the resulting list of

districts depends on the city ID. Specifically, we have

to first call the Web API ‘‘Addr.listCity’’ to obtain the

city ID of Taipei, which is designated ‘‘A’’ here.

Subsequently, the replied ID allows us to obtain district

information by invoking the Web API ‘‘Addr.listDis-

trict?city=A’’ (see Fig. 3). Similarly, for YouTube

APIs, we have to retrieve the video ID prior to

accessing the desired videos. In these cases, the

dependency of parameters of Web APIs leads to an

additional pair of HTTP requests and responses. In our

experiment in Sect. 4.2, the overhead in transfer size is

about 43.2–88.4 %.

Fig. 1 A screenshot of HTC Friend Stream

1 http://www.wireshark.com

362 Wireless Netw (2014) 20:361–378

123

http://www.wireshark.com


• Observation 3: Unnecessary information in an

HTTP response.

Because Web API servers are unable to anticipate the

exact needs of mobile mashup applications, their Web

APIs usually return unnecessary/overly-detailed infor-

mation to mashup applications. Consider Twitter API

as an example. When a mobile mashup application

wants to extract the names and nicknames of a user’s

friends on Twitter, it calls the Web API

‘‘https://api.twitter.com/1/statuses/home_timeline.xml?

include_entities=true’’.

In addition to the desired names and nicknames, the

response also contains unnecessary information such as

background and text colors of the user’s Twitter page

(refer to Fig. 4). In our experiment in Sect. 4.1, about

88.4 % of information is unnecessary for our mobile

mashup applications. Therefore, we propose enabling

mobile mashup applications to specify the information

of interest to filter unnecessary information.

• Observation 4: Inflexible Web APIs for images and

multiple HTTP requests for multi-image retrieval.

Figure 5 illustrates the HTTP requests and responses

when downloading album images by calling a typical

Web album API. Rather than the images of interest, the

Web API server returns the corresponding URLs of the

images in the album. Thus, for a Web album that

consists of n images, n ? 1 HTTP requests and n ? 1

HTTP responses have to be issued to acquire those

images, incurring a significant transfer cost. We also

make two more observations. First, we find that the

returned images are usually identical to the original

user-uploaded images, which are typically much larger

than the display areas assigned by mobile mashup

applications. This causes a mobile mashup application

to suffer from large transfer sizes and long response

times. Unfortunately, most Web album APIs do not

allow mobile mashup applications to specify the

desired quality, scale or resolution. Second, the images

are transmitted separately and the album APIs do not

support batch image retrieval. Retrieving multiple

images in a batch manner is beneficial due to the

reduction in HTTP header overhead (23–34 % over-

head in our experiment in Sect. 4.3). In addition to Web

album APIs, image retrieval APIs for other types of

Table 1 Observed web APIs

Web site Web API Associated

observations

Yahoo! http://tw.lifestyle.yahooapis.com/v0.3/Addr.listDistrict 1, 2

YouTube http://gdata.youtube.com/feeds/projection/videos 1, 2

Facebook https://graph.facebook.com/me/home 1, 3

Twitter https://api.twitter.com/1/statuses/update.xml 1, 3

Picasa https://picasaweb.google.com/data/feed/api/user/userID/albumid/albumID 1, 4

Flickr http://www.flickr.com/services/api/explore/flickr.galleries.getPhotos 1, 4

Facebook Web 
API Server

Plurk Web 
API Server

Twitter Web 
API Server

Proxy

Internet

Friend Stream 
Like App

Fig. 2 Multiple HTTP requests

and responses for HTC Friend

Stream-like application

Yahoo! Lifestyle
Web API Server

Mobile Mashup 
Application

Addr.listCity

Addr.listDistrict?city=A

Return all districts of Taipei

Return all city IDs

A: ID of Taipei

Request District Information of Taipei

Fig. 3 An example of parameter dependency of Web APIs

Wireless Netw (2014) 20:361–378 363

123

https://api.twitter.com/1/statuses/home_timeline.xml?include_entities=true
https://api.twitter.com/1/statuses/home_timeline.xml?include_entities=true
http://tw.lifestyle.yahooapis.com/v0.3/Addr.listDistrict
http://gdata.youtube.com/feeds/projection/videos
https://graph.facebook.com/me/home
https://api.twitter.com/1/statuses/update.xml
https://picasaweb.google.com/data/feed/api/user/userID/albumid/albumID
http://www.flickr.com/services/api/explore/flickr.galleries.getPhotos


Web sites (e.g., Facebook and Twitter) have similar

issues. We develop a flexible image retrieval mecha-

nism for mobile mashup applications so that these

applications can receive images satisfying their criteria

at a lower transmission cost by performing image

adjustment and combination in the proxy.

To summarize, mobile mashup applications are

impaired by large transfer sizes when aggregating Web

resources of interest via Web API invocations. Large

transfer sizes cause significant energy consumption and

response time for mobile mashup applications, and high

costs for subscribers of usage-based pricing plans. To

enable fast, energy-efficient, and cost-effective Web API

invocations, we aim to reduce the transfer size in four

facets as follows: (1) reduce the number of HTTP requests

and responses; (2) eliminate the extra Web API invocations

caused by parameter dependency; (3) filter unnecessary

information of HTTP responses; (4) enable the proxy-side

adjustment of quality, scale and resolution of images, as

well as batch image retrieval.

1.3 Our contributions

In this paper, we propose a proxy system and several

techniques to reduce the transfer size of mobile mashup

applications by addressing the observed problems. In the

proposed system, a proxy is deployed on the Internet and

serves as an intermediate node between mobile mashup

applications and Web API servers. The proxy and mobile

mashup applications are implemented with the following

techniques.

Fig. 4 The result returned by

the Twitter API

‘‘home_timeline’’

Web API 
Server

Web Image
Server

Mobile Mashup 
Application

Web Album API Method Call

A List of Image URLs

Get Images

Image 1

Get Image 
URLs

Image 2

Image n

Fig. 5 Retrieve album photos

by calling Web album APIs

364 Wireless Netw (2014) 20:361–378

123



• API Query Language (AQL). To eliminate the problem

of unnecessary information (Observation 3) of Web

API invocations, we propose the use of AQL to enable

mobile mashup applications to specify the information

of interest with SQL-like instructions. With AQL, the

proxy is able to filter unnecessary information and

return only the desired information to mobile mashup

applications, thereby reducing HTTP response sizes.

Mobile mashup applications can also invoke multiple

Web APIs by sending one AQL message that contains

multiple AQL instructions to the proxy. Thus, the

number of HTTP requests and responses can be greatly

reduced (Observation 1). In addition, AQL also enables

mobile mashup applications to describe the dependency

of successive Web API invocations. By doing so,

mobile mashup applications are able to ask the pro-

posed proxy system to invoke multiple Web APIs with

dependency of behalf of them, thereby overcoming the

problem resulting from parameter dependency of Web

APIs (Observation 2).

• Image Multi-Get (IMG) Module. To make retrieved

images compatible with mobile mashup applications

(Observation 4), we present the IMG module for proxy-

side adjustment in quality, scale and resolution of

images. Also, the IMG module provides image com-

bination, allowing the proxy to transmit images in a

batch manner to alleviate the overhead of multiple

HTTP requests and responses (Observation 1).

To take advantage of AQL and the IMG module,

developers of mobile mashup application have to imple-

ment mobile mashup applications to retrieve Web resour-

ces via AQL and IMG instructions rather than direct Web

API invocations. With the proposed proxy and techniques,

when intending to retrieve some Web API resources, a

mobile mashup application puts corresponding AQL or

IMG instructions in a single HTTP request to the proxy.

According to the received AQL and/or IMG instructions,

the proxy then extracts the desired resources and filters

and/or adjusts the resources, so that the application will

receive only the exactly interesting parts of the resources.

With the proxy together with the proposed techniques, a

mobile mashup application benefits from substantial

transfer size reduction since fewer HTTP requests and

responses as well as smaller response sizes are incurred. As

a result, the application can obtain the desired information

rapidly with less energy consumption. For performance

evaluation, we have implemented a prototype of the pro-

posed proxy system and conducted experiments using a

smartphone over a Wi-Fi network. A wide range of Web

APIs are employed and several mashup applications are

created to measure the performance. The extensive experi-

mental results show that the proposed system and techniques

are able to significantly reduce the transfer size, thereby

increasing battery life and shortening the response time for

mobile mashup applications.

The rest of this paper is organized as follows. Section 2

reviews the prior work related to transfer size reduction. In

Sect. 3, we describe the proposed proxy system and elab-

orate the techniques for transfer size reduction. The

experimental results are presented in Sect. 4. Finally, Sect.

5 concludes this paper and presents our future work.

2 Related work

Since the first generation of smartphones was released,

smartphones have been accepted at a blistering pace.

Because of their immense popularity, smartphones have

received considerable attention from the research com-

munity [2, 5, 6, 12, 18]. Since battery life is crucial for their

operation and remains limited, a significant number of

studies have focused on energy savings for smartphones

[16, 17]. Some previous studies have concentrated on

reduced energy consumption for different smartphone

components such as user interface [22], wireless interface

[4, 8], and backlight [11].

As reported in [19], the wireless interface is one of the most

energy-consuming components of a smartphone. To reduce

energy consumption, most smartphones will convert the

wireless interface (e.g., Wi-Fi, 3G) into doze mode when there

is no data transfer; transfer size reduction is an important

method for reducing the energy-consumption of smartphones.

Han et al. [9] proposed an image transcoding proxy which is

able to control response time to meet user requirements by

transcoding images into proper resolutions and quality. The

proposed transcoding proxy can use the lossy compression

method to adaptively adjust the transfer sizes of images. An

analytical framework is also proposed to determine whether to

transcode an image and how to transcode the image to meet

reponse time that is acceptable to the user.

In Housel et al. [10] proposed a client/intercept based

approach to reduce the transfer sizes of HTTP requests and

responses. With the cooperation of client side intercepts

and server side intercepts, the sizes of the headers of HTTP

requests and responses can be reduced. Housel et al. also

proposed the use of caching and differencing techniques to

eliminate unnecessary portions in HTTP responses, which

greatly reduces the transfer sizes between mobile clients

and Web servers.

Zhao et al. [21] proposed in a virtual machine-based

proxy (VMP) approach to reduce the computation overhead

and transfer size by shifting the computing of complex Web

page retrieval and rendering from smartphones to virtual

machines in cloud computing environments. Specifically,

Wireless Netw (2014) 20:361–378 365

123



when the Web browser in a smartphone sends a Web page

request to the corresponding proxy, the proxy will retrieve

all components (e.g., images, flash, javascript) of the

requested Web page, render the Web page to an image, and

send the image to the smartphone. Experimental results

show that the retrieval time and transfer size of complex

Web pages can be greatly reduced with VMP. Opera has

developed two Web browsers for smarphones, Opera

Mobile and Opera Mini [15]. Opera Mobile and Opera Mini

are capable of utilizing Opera’ servers to compress Web

content before it reaches smartphones, thereby reducing the

transfer sizes. Google has proposed a new protocol, SPDY

[7], for faster Web access. With the proposed techniques

such as multiplexed streams and HTTP header compres-

sion, SPDY is able to achieve faster Web page load time

and smaller transfer size. Amazon has developed a new

Web browser, Silk [1], to reduce the Web page load time

and energy consumption of mobile devices by offloading

some Web content processing (such Web object retrieval

and rendering) from mobile devices to AWS (Amazon Web

Services) cloud platform.

Although transfer size reduction for mobile devices/

smartphones has been well studied, to the best of our

knowledge, most previous studies focus on transfer size

reduction in Web browsing in mobile environments and no

prior work has focused on transfer size reduction for Web

API invocations. As the popularity of mobile mashup

applications increases, we believe that transfer size

reduction for Web API invocations will become a research

emphasis.

3 Proposed proxy system

In this section, we first introduce the system architecture

and describe how mobile mashup applications can benefit

from the proposed proxy system and techniques that can

reduce the number of HTTP requests and responses as well

as HTTP response sizes. Then, we detail the proposed

techniques, namely API query language (AQL) and image

multi-get (IMG) module, for mobile mashup applications

to reduce transfer size in Web API invocations.

3.1 System architecture

Figure 6 depicts the architecture of the proposed proxy

system. The proposed system consists of three compo-

nents: mobile mashup applications, an intermediate proxy,

and Web API servers. An intermediate proxy acts as an

aggregator server for mobile mashup applications and is

deployed on the Internet. To achieve transfer size reduc-

tion, mobile mashup applications and the proxy should be

implemented with the proposed AQL and IMG module.

With the proposed techniques, mobile mashup applica-

tions focus only on specifying the resources of interest.

The proxy is responsible for requesting resources from

Web API servers by invoking the corresponding Web

APIs and processing the resources according to the

requirements of the applications. Note that no modifica-

tion to Web API servers is required in the proposed

system, indicating easy deployment of the proposed

system.

Web API Server

Web API Server

Proxy

Internet

Mobile Mashup 
Applications

Web API
Adapter

Web API 
Adapter

Execution Engine

Base Station/ 
Access Point...

Smartphone

IMG Module

HTTP Request with 
AQL/IMG 
Instructions

HTTP Response

IMG ModuleHTTP Request 
Handler

HTTP Response 
Handler

HTTP Request Handler

HTTP Response Handler

Fig. 6 System architecture

366 Wireless Netw (2014) 20:361–378

123



To use the proposed system to reduce transfer size, the

mobile mashup applications should utilize AQL and IMG

instructions, rather than Web APIs, to retrieve resources of

interest. Each AQL or IMG instruction is sent to the proxy

as a parameter of an HTTP request. In the proxy, for each

Web API server, there is a Web API Adapter to encapsulate

all Web APIs provided by the Web API server. The goal of

the Web API Adapters is to provide uniform interfaces/data

formats for the execution engine. Thus, when receiving an

AQL or an IMG instruction, the proxy will use the exe-

cution engine to run the instruction with the assistance

from the underlying Web API adapters.

The procedure of using AQL and IMG instructions to

retrieve Web resources is below.

• Step 1: When retrieving Web resources, a mobile ma-

shup application creates an HTTP request and adds the

corresponding AQL/IMG instruction to the HTTP

request as the body of the HTTP request. To reduce the

number of HTTP requests, the application wraps the

AQL and/or IMG instructions into a single HTTP

request. The mobile mashup application then sends the

HTTP request to the proxy-side HTTP request handler

via the client-side HTTP request handler.

• Step 2: On receiving an HTTP request, the proxy-side

HTTP request handler first checks whether the HTTP

request is an AQL instruction, an IMG instruction or a

normal Web API invocation. When the HTTP request is

an AQL instruction or an IMG instruction, the proxy-

side HTTP request handler asks the execution engine to

handle the HTTP request by Step 2-1 or Step 2-2,

respectively. Otherwise, the proxy-side HTTP request

handler will execute Step 2-3 to handle the normal Web

API invocation.

– Step 2-1: (AQL Instruction Handling)

* Step 2-1-1: When the HTTP request is an AQL

instruction, the execution engine extracts the

corresponding Web API information from the

AQL instruction and invokes these Web

API(s) to retrieve resources with the aid of the

corresponding Web API Adapter(s). With the

uniform data formats provided by these Web API

Adapters, these resources are then combined into

one message.

* Step 2-1-2: The execution engine then pro-

cesses the message by removing unnecessary

information based on the AQL instruction.

* Step 2-1-3: Finally, the execution engine sends

the reduced resources to the proxy-side HTTP

response handler as the resource requested by the

application.

– Step 2-2: (IMG Instruction Handling)

* Step 2-2-1: When the HTTP request is an IMG

instruction, the execution engine extracts the

corresponding Web API information from the

IMG instruction, and invokes these Web API(s) to

obtain the URLs of the desired images with the

aid of the corresponding Web API Adapter(s).

* Step 2-2-2: After obtaining these URLs, the

execution engine retrieves each image by sending

the corresponding HTTP request to the corre-

sponding Web image server.

* Step 2-2-3: When these images are ready, the

execution engine asks the proxy-side IMG mod-

ule to adjust these images based on the IMG

instruction and to apply the proposed image

combination method (described in Sect. 3.3) to

combine these images into one message.

* Step 2-2-4: Finally, the execution engine sends the

resultant message to the proxy-side HTTP response

handler as the resource requested by the application.

– Step 2-3: (Normal Web API Invocation Handling)

When the HTTP request is a normal Web API

invocation, the proxy-side HTTP request handler

invokes the Web API by issuing a new HTTP

request to the corresponding Web API server, and

sends the received resource to the proxy-side HTTP

response handler as the resource requested by the

application.

• Step 3: The proxy-side HTTP response handler creates

a new HTTP response and adds the resource requested

by the application as the body of the HTTP response.

The proxy-side HTTP response handler then sends the

HTTP response to the corresponding client-side HTTP

response handler.

• Step 4: When receiving an HTTP response, the client-

side HTTP response handler first determines whether the

HTTP response is for an IMG instruction. If so, the client-

side HTTP response handler asks the client-side IMG

module to split the content of the HTTP response into

single/multiple image(s), and returns the image(s) to the

mobile mashup applications. Otherwise, the client-side

HTTP response handler simply returns the content of the

HTTP response to the mobile mashup application.

With the assistance of the proxy and the proposed tech-

niques, a mobile mashup application consumes less energy

and experiences shorter response time for Web API resource

retrieval due to a smaller number of HTTP requests and

responses and a compact HTTP response body. For back-

ward compatibility, the proposed system supports existing

mobile mashup applications using Web APIs directly by

Wireless Netw (2014) 20:361–378 367

123



simply relaying their requests to the corresponding Web API

servers, as described in Sep 2-3. Note that these applications

can function normally in the proposed system but are unable

to benefit from it. In addition, since the proposed proxy is

able to forward normal Web API invocations, it is possible

for developers to implement mobile mashup applications in

a hybrid manner. That is, the developers are able to invoke

some heavy Web APIs by AQL/IMG instructions and

invoke other light Web APIs by the normal Web API

invocations. The above hybrid implementation is able

to reduce the cost of re-implementing existing mobile

mashup applications to enjoy the advantages of the proposed

proxy.

3.2 API query language

To address the problems of unnecessary information and

parameter dependency of Web APIs, we design API Query

Language, abbreviated as AQL, to enable mobile mashup

applications to specify the information of interest. Specif-

ically, mobile mashup applications can use AQL instruc-

tions to create filters that allow the proxy to remove

unnecessary information and to send only information of

interest to mashup applications.

The current Web APIs are implemented using four

HTTP methods: POST, GET, PUT, and DELETE. In

accordance with the implementation, the design of AQL is

based on these four HTTP methods. Table 2 displays the

format, which represents a Web API invocation into the

corresponding AQL instruction. In what follows, we

elaborate the usage of the AQL through examples to pro-

vide a better understanding of the AQL.

• Insert:

When a mobile mashup application wants to create a

new resource on the Web API server, it creates an AQL

insert instruction because resource creation is realized

using an HTTP POST method. After receiving the AQL

insert instruction, the proxy reverts to the original Web

API and invokes the Web API for the application. For

example, consider that a mobile mashup application

wants to create a message ‘‘Tweet’’ on the mobile user’s

Twitter webpage. This application sends the AQL insert

instruction

INSERT INTO https://api.twitter.com/1/statuses/update.

xml?status= VALUES (Tweet) to the proxy to invoke

the Web API

https://api.twitter.com/1/statuses/update.xml?status=

Tweet.

After receiving this AQL query, the proxy invokes the

corresponding Web API to create the new message for

the requesting application. Finally, the proxy will

reply with the HTTP response received from the API

server to the mobile mashup application. To handle

large data, a mobile mashup application should use

the POST method to send a multipart HTTP request

with two parts: the first part is the AQL instruction

while the second part is the data.

• Select: If a mobile mashup application wants to retrieve

the desired information from a Web API server through

a Web API invocation, it composes an AQL select

instruction because resource retrieval is implemented

using an HTTP GET method. As mentioned in

Observation 3, a Web API server may return the result

with unnecessary information. Thus, the AQL select

instruction allows the application to create a filter to

remove unnecessary information. For instance, in case

that a mobile mashup application wants to obtain only

the names and nicknames of a user’s friends who

tweeted most recently on Twitter, it sends the SQL

select instruction

SELECT name, nickname FROM https://api.twitter.com/

1/statuses/home_timeline.xml?include_entities=true

WHERE *.

to the proxy to invoke the Web API

https://api.twitter.com/1/statuses/home_timeline.xml?

include_entities=true.

When receiving the AQL select instruction, the proxy

will extract only the desired names and nicknames

after acquiring the response from the Twitter Web

API server. Figure 7 shows the concise result for the

requesting application after the proxy filters undesir-

able information using the AQL select instruction.

With the AQL select instruction, the problem of

Observation 3 can be resolved by enabling a mobile

mashup application to obtain only the interested

Table 2 Format of AQL

Action AQL HTTP Query format

Create Insert POST INSERT INTO [API].[Method] ([Parameter Key(s)]) VALUES ([Parameter Value(s)])

Read Select GET SELECT [Field]//[Attribute] FROM [API].[Method] WHERE A or B A: [Key Value Parameters] B: [Key] IN
([SubSelect])

Update Update PUT UPDATE [API].[Method] SET [New Value] WHERE [Key Value Parameters]

Delete Delete DELETE DELETE FROM [API].[Method] WHERE [Key Value Parameters]

368 Wireless Netw (2014) 20:361–378

123

https://api.twitter.com/1/statuses/update.xml?status=
https://api.twitter.com/1/statuses/update.xml?status=
https://api.twitter.com/1/statuses/update.xml?status=Tweet
https://api.twitter.com/1/statuses/update.xml?status=Tweet
https://api.twitter.com/1/statuses/home_timeline.xml?include_entities=true
https://api.twitter.com/1/statuses/home_timeline.xml?include_entities=true
https://api.twitter.com/1/statuses/home_timeline.xml?include_entities=true
https://api.twitter.com/1/statuses/home_timeline.xml?include_entities=true


information without unnecessary information.

Moreover, the extra HTTP requests and responses

caused by parameter dependence of Web APIs

(mentioned in Observation 2) can be eliminated for

mobile mashup applications through the use of an

advanced AQL select instruction. As depicted in

Fig. 8, when a mobile mashup application would like

to know the districts of Taipei by Yahoo! Lifestyle

API methods, the application uses the advanced AQL

select instruction

SELECT FROM http://tw.Lifestyle.yahooapis.com/

v0.3/Addr.listDistrict?

WHERE city= in

(SELECT ID FROM http://tw.Lifestyle.yahooapis.

com/v0.3/Addr.listCity? WHERE name=Taipei).

Upon receipt of such an instruction, the proxy first

invokes the Web API

http://tw.Lifestyle.yahooapis.com/v0.3/Addr.listCity? to

retrieve the IDs of cities in Taiwan. Next, after receiving

the returned IDs, the proxy invokes the following Web

API with Taipei’s ID A:

http://tw.Lifestyle.yahooapis.com/v0.3/Addr.listDistrict?

city=A.

After receiving the districts of Taipei, the proxy sends an

HTTP response to inform the requesting application of its

desired result. With the advanced AQL select instruction,

the application is able to obtain the desired information

with only one HTTP request and one HTTP response.

• Update:

To update a resource on the Web API server, a mobile

mashup application composes an AQL update instruc-

tion because a resource update is provided via an HTTP

PUT method. After receiving an AQL update instruc-

tion, the proxy reverts to the original Web API and

invokes the Web API for the application. For example,

if a mobile mashup application wants to update one

image in a Picasa Web album, the application sends the

proxy the AQL update instruction

UPDATE https://picasaweb.google.com/data/media/api/

user/userID/albumid/ SET photoID WHERE photoID to

ask the proxy to send the HTTP request

PUT https://picasaweb.google.com/data/media/api/user/

userID/albumid/albumID/photoid/photoID

to the Picasa server. Similarly, the proxy invokes the

corresponding Web API on behalf of the application and

then sends the result from the Picasa Web API server

back to the application.

• Delete:

If a mobile mashup application wishes to delete certain

resources on a Web API server, it composes an AQL

delete instruction since an HTTP DELETE method is

used for resource removal. Consider that a mobile

mashup application wants to delete a specific Picasa

album image. This application sends the proxy the AQL

delete instruction

DELETE FROM https://picasaweb.google.com/data/

entry/api/user/userID/albumid/albumID WHERE photoID

to ask the proxy to send the HTTP request

DELETE https://picasaweb.google.com/data/entry/api/

user/userID/albumid/albumID/photoid/photoID

to the Picasa server. Similarly, the proxy calls the desired

Web API for the application and then replies the requesting

application with the response from the Picasa Web API

server.

3.3 Image multi-get module

As mentioned in Observation 4, image retrieval APIs for Web

albums or other type of Web sites that involve images (e.g.,

social networking sites) usually return a list of image URLs

rather than the images themselves. As such, downloading

n images of an album or from an online social page requires a

total of n ? 1 HTTP responses and n ? 1 HTTP requests,

incurring a substantial transfer cost for a mobile mashup

application. Besides, the lack of options for quality, scale, and

resolution of images may cause bandwidth waste and addi-

tional image processing time for applications. To address

Mobile Mashup 
Application

Addr.listCity

Addr.listDistrict?city=A

Return all city IDs
AQL Select Instruction

Proxy A: ID of Taipei

Yahoo! Lifestyle
Web API Server

Return all districts of Taipei

Request District Information of Taipei

Return All Districts
of Taipei

Fig. 8 AQL subselect

instruction to address parameter

dependence of Web APIs

Fig. 7 The result of using the AQL select instruction to extract the

desired information

Wireless Netw (2014) 20:361–378 369

123

http://tw.Lifestyle.yahooapis.com/v0.3/Addr.listDistrict?
http://tw.Lifestyle.yahooapis.com/v0.3/Addr.listDistrict?
http://tw.Lifestyle.yahooapis.com/v0.3/Addr.listCity?
http://tw.Lifestyle.yahooapis.com/v0.3/Addr.listCity?
http://tw.Lifestyle.yahooapis.com/v0.3/Addr.listCity?
http://tw.Lifestyle.yahooapis.com/v0.3/Addr.listDistrict?city=A
http://tw.Lifestyle.yahooapis.com/v0.3/Addr.listDistrict?city=A
https://picasaweb.google.com/data/media/api/user/userID/albumid/
https://picasaweb.google.com/data/media/api/user/userID/albumid/
https://picasaweb.google.com/data/media/api/user/userID/albumid/albumID/photoid/photoID
https://picasaweb.google.com/data/media/api/user/userID/albumid/albumID/photoid/photoID
https://picasaweb.google.com/data/entry/api/user/userID/albumid/albumID
https://picasaweb.google.com/data/entry/api/user/userID/albumid/albumID
https://picasaweb.google.com/data/entry/api/user/userID/albumid/albumID/photoid/photoID
https://picasaweb.google.com/data/entry/api/user/userID/albumid/albumID/photoid/photoID


these issues, we devise an image multi-get (IMG) module for

mobile mashup applications. As illustrated in Fig. 9, the IMG

module enables a mobile mashup application to download all

images with only one HTTP request and response. When a

mobile mashup application wants to download multiple

images, it creates an IMG instruction that describes

• how to get the URLs of these images by Web API

invocation, and

• how to adjust these images,

and sends the IMG instruction to the proxy. When

receiving an IMG instruction, the proxy will request all

images from the Web API server. Specifically, the proxy

will send an HTTP request to the Web API server to

retrieve the URLs of these images, and send n HTTP

requests to the Web image server to retrieve the desired

images. After obtaining all images, the proxy then proceeds

to adjust these images according to the IMG instruction.

The format of an IMG instruction is ‘‘SELECT [IMG].

[Q].[S].[X].[Y] FROM [API].[Method] WHERE [Key

Value Parameters]’’. The options of an IMG instruction are

quality (Q), scale (S), and resolution (X and Y), which are

detailed below.

• Quality ([Q]):

The parameter Q is used to enable a mobile mashup

application to specify the desired quality of images

(i.e., the degree of compression) for values of Q in the

range of 1–100. If a mobile mashup application wants

to obtain 80 % quality for the images returned from a

Web image server, the application sets the IMG

instruction to SELECT [IMG].[80].[0].[0].[0] FROM

[API].[Method] WHERE [Key Value Parameters].

• Scale ([S]):

The parameter S is used to allow a mobile mashup

application to shrink the received images for values of S in

the range of 1–100. If a mobile mashup application would

like to obtain images of 50 % scale for the images returned

from a Web image server, the application sets the IMG

instruction to SELECT [IMG].[0].[50].[0].[0] FROM

[API].[Method] WHERE [Key Value Parameters].

• Resolution ([X].[Y]):

These two parameters X and Y are used to allow a

mobile mashup application to specify the desired

resolution (X pixels high by Y pixels wide) of images.

If a mobile mashup application wants to receive images

that are 60 pixels high by 90 pixels wide, the appli-

cation sets the IMG instruction to SELECT [IMG].

[0].[0].[60].[90] FROM [API].[Method] WHERE [Key

Value Parameters].

According to the received IMG instruction, the proxy

adjusts the quality, scale, and resolution successively. Note

that a parameter set to 0 or a value outside the defined

range will be ignored by the proxy. The procedure of

handling quality (parameter Q), scale (parameter S) and

resolution (parameters X and Y) operations is as bellow.

• Step 1: If the value of the parameter S is not zero, the

IMG module will resize the image with the same aspect

ratio accordingly and then execute Step 3.

• Step 2: If none of the values of the parameters X and Y

is zero, the IMG module will resize the image with

width X pixels and height Y pixels.

• Step 3: The IMG module compresses the new image

with the specified compression ratio.

After processing all images, the proxy will perform

image combination by concatenating these images prior to

transmitting the images to the requesting application. The

motivation of image combination is to reduce the number

of HTTP responses. To ensure that the requesting appli-

cation realizes how to split the combined images, the proxy

attaches the offsets of the concatenated images to the

beginning of the payload of the HTTP response. Then, the

images are concatenated at the end of the offsets (see

Fig. 10). With the offset information, a mobile mashup

application can obtain each separated image from the

returned combined images while incurring lower packet

overhead.

Web API Server
Mobile Mashup 

Application Web Image ServerProxy

IMG Instruction Web Album API 
Invocation

A List of 
Image URLs

Image 1

Image n

Image 2

Combined images

Get Image 
URLs

Get Images

Fig. 9 Image Multi-Get Module

Header offset1,offset2, ,offsetn Image1 Image2 Imagen

Payload

HTTP response

offset1 offset2 offsetn

…

Fig. 10 HTTP response of the result of an IMG instruction

370 Wireless Netw (2014) 20:361–378

123



4 Performance evaluation

In this section, we conduct extensive experiments to

evaluate the proposed proxy system and techniques. We

implement a prototype of the proposed proxy on a desktop

PC running Ubuntu 10.04.1 LTS with a P4 2.8 GHz pro-

cessor and 4GB RAM. The experiments are conducted over

a Wi-Fi network. To measure performance, we employ a

wide variety of Web APIs and create several mobile ma-

shup applications for an HTC Desire smartphone. The

adopted performance metrics are listed below.

• Transfer size: We capture the HTTP request(s) sent

from and HTTP response(s) received by the mobile

mashup application using tcpdump installed on the

HTC Desire smartphone. The HTTP request (labelled

HReq) and response (labelled HRes) transfer sizes are

used to validate the effectiveness of the proposed proxy

system and techniques.

• Response time: Response time is defined as the elapsed

time from the moment the mobile mashup application

submits the first HTTP request to the moment all HTTP

responses are received. To provide a better understand-

ing of the benefit and overhead of the proposed system,

we provide a breakdown of response time by dividing

response time into the following three components:

1. Wireless transmission time (labelled WT): Wireless

transmission time is the time spent sending the HTTP

request(s) to and receiving HTTP response(s) from

the proxy.

2. Proxy processing time (labelled PP): Proxy pro-

cessing time is the time spent processing requests

from the mobile mashup application and responses

from the Web API server(s).

3. Resource access time (labelled RA): Resource

access time is the time beginning from submission

of HTTP request(s) to the Web API server(s) to the

proxy receives all HTTP responses.

• Energy consumption: To evaluate the energy savings

achieved by the proposed system and techniques, we use a

hardware power monitor2 to measure the energy con-

sumption. The power monitor is attached to the battery of

the HTC Desire smartphone and samples the current

drawn from the battery at a frequency of 5,000 Hz. The

energy measurement environment is shown in Fig. 11.

All experimental results are averaged over ten runs. The

experimental results of the direct access approach are

labelled ‘‘Direct’’, whereas those of the proposed system

are labelled ‘‘AQL.’’

4.1 Experiment on unnecessary information filtering

Our first experiment investigates the effect of the proposed

system on unnecessary information filtering (i.e., Obser-

vation 3). We select Web APIs from 10 top Web sites in

the social, search, video and album categories based on the

popularity of the Web sites. For social Web sites, we create

multiple user accounts where each account subscribes to

the social networking pages of celebrities and well-known

companies (as listed in Table 3), and use Web APIs to

retrieve their names, messages and URLs. For each search,

video and album Web site, we use ‘‘Jeremy Lin’’ as the

search keyword and the desired information as listed in

Table 4.

Figure 12(a) shows that the proposed system reduces the

total transfer size of the HTTP requests and responses by an

average of 88.4 %. Specifically, the average reductions in

transfer sizes of HTTP requests and responses achieved by

the proposed system are 66.3 and 88.9 %, respectively.

Regarding HTTP requests, the proposed system greatly

reduces the transfer sizes for these Web APIs because the

proxy handles some required parameters (e.g., the API key

and the access token) for accessing Web resources that may

be even larger than the parameters of some Web APIs. The

transfer sizes of HTTP responses are significantly reduced

due to the effective filtering of unnecessary information

received from the Web API servers. Note that the result in

Fig. 12(a) indicates that most Web API servers return a vast

amount of unnecessary information to mashup applications.

Although the proposed system is able to significantly

reduce the transfer size of Web API invocations, as

depicted in Fig. 12(b), (c), the response time reduction

and energy saving are only 9.2 and 22.1 %, respectively.

As shown in Fig. 12(b), for the response time for the

proposed system, wireless transmission time is a very

Fig. 11 Energy measurement environment

2 Monsoon Power Monitor, http://www.msoon.com/.

Wireless Netw (2014) 20:361–378 371

123

http://www.msoon.com/


small part while resource access time accounts for the

majority. Because the proposed system is only able to

reduce wireless transmission time, the performance gain

of the proposed system regarding response time is lim-

ited. Figure 12(b) also indicates that proxy processing

time is almost negligible and thus introducing the inter-

mediate proxy does not result in significant overhead.

Finally, because the energy consumption for accessing

Web resources is mainly proportional to the active time

Table 3 List of subscribed social pages

Category Social page

Celebrity Jeremy Lin, Kobe Bryant, Jennifer Lopez, Carmelo Anthony, Lady Gaga, Bon Jovi, Michael Jordan, Christina Aguilera, John

Nash

Company/

Service

CNN, Nike, Adidas, New York Times, Audi, Sony, HBO, ESPN, Starbucks, YouTube, iTunes Music

Table 4 List of desired information

Category Service Desired information

Album Flickr, Picasa Title, URL

Video YouTube Title, ID, Picture,

URL

Search eBay, Google, Bing Title, URL

Social Facebook, Plurk, Twitter,

Google?

Name, Message, URL

(a) Transfer size (b) Response time

(c) Energy consumption

Fig. 12 Experimental results of unnecessary information filtering

372 Wireless Netw (2014) 20:361–378

123



of wireless interfaces, which is in proportion of the

response time, the energy savings achieved by the pro-

posed system is not as significant as reduction in transfer

sizes.

4.2 Experiment on parameter dependency

This experiment studies the effect of AQL for resolving

the problem of parameter dependency (i.e., Observation

2). We use Web APIs of YouTube, Facebook, and Picasa

that require specific IDs prior to retrieving the desired

information. We use ‘‘Jeremy Lin,’’ ‘‘Starbucks’’ and

‘‘Olympics’’ as keywords to search the related videos, fan

pages and albums. As shown in Fig. 13(a), the proposed

system reduces total transfer sizes by 43.2–88.4 %. For

HTTP requests, the proposed system reduces transfer

sizes by 84 % on average. This is because the direct

access approach requires two HTTP requests with large

parameters whereas the AQL enables one HTTP request

with lower parameter overhead. With respect to HTTP

responses, the proposed system significantly improves

performance, particularly for the YouTube and Facebook

APIs. The reason for this is that those two APIs return

considerable information in addition to the required IDs.

Due to the reduction in HTTP responses, the proposed

system achieves substantial reductions in transfer size that

are similar to the results shown in Fig. 12(a). As

explained previously, due to long resource access time,

the significant reduction in transfer size of the proposed

system results in relatively slight improvements in

response time and energy consumption, as depicted in

Fig. 13(b), (c), respectively.

4.3 Experiment on multi-image retrieval

In this experiment, we measure the effect of the IMG

module on multi-image retrieval. We collect 30 images

related to Olympics 2012 from Google Images, store them

(a) Transfer size (b) Response time

(c) Energy consumption

Fig. 13 Experimental results on parameter dependency

Wireless Netw (2014) 20:361–378 373

123



in Picasa, and adopt the Picasa Web APIs to retrieve the

images. The number of the images ranges from 6 to 30 in

increments of 6. To observe the effect of image adjustment,

we also conduct the experiment with adjusted images.

Parameterizations of the quality and the scale of requested

images for AQL are denoted by IMG:Q,S where Q denotes

the desired quality and S denotes the specified scale. For

instance, IMG:100,75 signifies that the application asks the

proxy to return the images with 100 % quality and 75 %

scale. We separately adjust the quality and the scale of the

images; the average sizes of the adjusted images are pre-

sented in Table 5. Note that IMG:100,100 does not adjust

the images and is used to identify the benefit of image

combination.

Figure 14 reveals that transfer size, response time and

energy consumption all increase as the number of the

images increases, as expected. From Fig. 14(a), it can be

found that the transfer sizes of HTTP requests in the direct

access approach are proportional of the number of images,

whereas the transfer sizes of HTTP requests of the pro-

posed system remain constant and are much smaller than

those of the direct access approach. This finding is because

the direct access approach requires n ? 1 HTTP requests

to download n images whereas only one HTTP request is

submitted in the proposed system regardless of the

requested number of images. Regarding the transfer sizes

of HTTP responses, IMG:100,100 reduces the transfer size

by 23–34 % due to the benefit of image combination.

Additionally, the transfer size of HTTP responses is sig-

nificantly smaller when the images with degraded quality

or small scales are accepted by the mobile mashup

applications.

As depicted in Fig. 14(b), (c), it is interesting that, unlike

the previous results, the proposed system achieves sub-

stantial reductions in response time and energy consump-

tion. For response time, the proxy system shortens response

time by 45.6–77 % and the performance gain is more sig-

nificant with an increasing number of images. Due to the

decrease in response time, energy consumption for the

proposed system is as low as 23–48.8 % of the direct access

approach, indicating the energy efficiency is achieved by

the proposed system. Another interesting result is that

IMG:100,100 has shorter response times than IMG:100,75

and IMG:75,100 in spite of its larger transfer size, resulting

from that IMG:100,100 avoids the processing time for

image adjustment (see Fig. 14(b)). Thus, the scheme using

image combination only (i.e., IMG:100,100) is suitable for

users that subscribe to unlimited data plans, whereas the

schemes with image adjustment and image combination

(e.g., IMG:100,75, IMG:75,100) are suitable for users that

subscribe to usage-based pricing plans.

4.4 Experiment on the Friend Stream-like application

Finally, we implemented a Friend Stream-Like mashup

application, which is shown in Fig. 15 to evaluate the

overall benefit of the proposed system in this experi-

ment. Our Friend Stream-like application separately

fetches the most recently updated statuses of friends of

mobile users from Facebook, Twitter, and Plurk. The

number of fetched statuses varies from 5 to 20 in

increments of 5. Note that we change neither the quality

nor the scale of profile images (i.e., IMG:100:100 is

used) in this experiment. Figure 15 demonstrates that the

proposed system reduces approximately 52.6 % of the

total transfer size on average. Such a significant saving

shows that the proposed system can effectively reduce

the total transfer size for mobile mashup applications.

For HTTP requests, the transfer size reductions achieved

by the proposed system are approximately 73.5 % on

average because only two HTTP requests (one Web API

invocation for initialization and the other for retrieving

profile image URLs) are submitted in the proposed

system. Due to the increase in the number of image

URLs, the transfer size of the proposed system becomes

larger when the number of profile images increases. Due

to the relatively slight improvement in the transfer size

of images and the total image size that accounts for the

majority of HTTP response sizes, the proposed system

reduces the transfer size of HTTP responses by only

51.8 % on average. With smaller transfer sizes, the

proposed system can reduce response time and energy

consumption by 52.3 and 43.6 %, respectively, as plot-

ted in Fig. 15(b), (c).

4.5 Remarks

From the above experimental results, we have the follow-

ing two observations.

• AQL is able to greatly reduce the transfer size. How-

ever, the reductions in response time and energy con-

sumption are not as significant as the reduction in

transfer size.

Basically, AQL is designed for text-based Web

resource retrieval. Since text processing is usually of

low complexity, the processing overhead resulting from

the proposed proxy (i.e., proxy processing time) is

negligible. The sizes of text-based Web resources are

Table 5 Average sizes of the original and adjusted images

Original 230,799 bytes

IMG:100,100 230,799 bytes

IMG:75,100 49,751 bytes

IMG:100,75 146,676 bytes

374 Wireless Netw (2014) 20:361–378

123



usually small (usually several kilobytes), thus, the

wireless transmission time is much shorter than the

resource access time. The resource access time is

related to the capability of Web API servers, and cannot

be reduced by proxy-side transfer size reduction.

Therefore, the performance gain of the proposed system

regarding response time is limited. Because the energy

consumption for accessing Web resources is mainly

proportional to the active time of wireless interfaces,

which is in proportion of the response time, the energy

savings achieved by the proposed proxy is not as sub-

stantial as the reduction in transfer sizes.

• Although the performance of IMG module in transfer

size reduction is fair, the IMG module is able to greatly

reduce the response time and energy consumption.

Retrieving multiple images with only one HTTP request

for the proposed system is particularly advantageous in a

wireless environment, since the proxy is able to launch

several threads to retrieve multiple images in a parallel

manner. Therefore, the resource access time can be

greatly reduced. In addition, with the IMG module, the

reduction in energy consumption is also great since the

wireless interfaces can quickly go to doze mode to save

energy consumption due to short response time.

Another interesting result is that although being able to

achieve smaller transfer size, enabling image processing

will incur longer response time and higher energy

consumption. The reason is that enabling image process-

ing will result in additional image processing overhead

which is usually of high complexity. Therefore, the users

subscribing to unlimited data plans are recommended to

disable image processing for shorter response time and

lower energy consumption, while the users subscribing to

usage-based pricing plans are recommended to enable

(a) Transfer size (b) Response time

(c) Energy consumption

Fig. 14 Experimental results of multi-image retrieval

Wireless Netw (2014) 20:361–378 375

123



image adjustment for lower transfer size as well as lower

costs.

5 Conclusions and future work

In this paper, we proposed a proxy system and two tech-

niques that enable energy-efficient and rapid Web API

invocations for mobile mashup applications. We first

studied the characteristics of Web APIs and made several

observations about the cost of Web API invocations. Then,

we proposed the use of an intermediary proxy combined

with an API query language (AQL) and image multi-get

(IMG) module to address the identified issues. The API

query language allows mobile mashup applications to

specify the information of interest and to address parameter

dependency of APIs. On the other hand, the image multi-

get module offers the adjustment of quality, scale, and

resolution of images, and utilizes image combination to

reduce HTTP header overhead. The proposed proxy system

and techniques enable mobile mashup applications to

receive the desired resources with fewer HTTP requests

and responses as well as smaller HTTP responses. The

extensive experimental results show that the proposed

proxy system and techniques effectively mitigate the

identified cost of Web API invocations and, thus, achieve

significant improvement in transfer size, response time, and

energy consumption for real applications.

Although the proposed approach is able to reduce

response time and energy consumption by means of

transfer size reduction, in order to take advantage of the

proposed approach, a mobile mash application should be

(a) Transfer size (b) Response time

(c) Energy consumption

Fig. 15 Experimental results for the Friend Stream-like application

376 Wireless Netw (2014) 20:361–378

123



implemented to use AQL to invoke Web APIs. In fact, the

benefits of the proposed approach are expected to be

attractive to mobile network operators (e.g., AT&T) and

smartphone makers (e.g., HTC and Samsung). In recent

years, some major smartphone makers implement some

featured mobile mashup applications (e.g., HTC’s Friend

Stream) to differentiate their smartphones from other

smartphones. With the proposed approach, one mobile

network operator can deploy several AQL-enabled proxies

in its network and cooperate with a smartphone maker to

design a dedicated smartphone with several AQL-enabled

mobile mashup applications. Therefore, the mobile net-

work operator’s customers can use these AQL-enabled

applications with the advantages of energy efficiency and

short response time. With transfer size reduction, the

mobile network operator is able to use the same wireless

bandwidth to serve more customers. In future work, we

will develop a set of tools to help developers to compose,

execute and debug AQL and IMG instructions. We believe

that these tools will be able to relieve the difficulties of

adopting the proposed approach. In addition, with the

increasing popularity of smartphones, the scalability is an

important factor of deploying the proposed approach.

Thus, we will revise the proposed architecture to be able to

utilize multiple servers to handle massive requests. We

will also design a method to make the proposed architec-

ture be able to dynamically add or shutdown severs on

cloud computing platforms according to the sever load for

better scalability.

Acknowledgments This work was supported by the National Sci-

ence Council of Taiwan, ROC, under contracts 99-2221-E-009-140-

MY2, 99-2219-E-002-029 and 101-2221-E-009-133.

References

1. Amazon. Amazon Silk. http://amazonsilk.wordpress.com/.

2. Carroll, A., & Heiser, G. (2010). An analysis of power con-

sumption in a smartphone. In Proceedings of the USENIX con-

ference on USENIX annual technical conference.

3. Chava, S., Ennaji, R., Chen, J., & Subramanian, L. (2012). Cost-

aware mobile web browsing. IEEE Perversive Computing 11(3),

34–42.

4. Dogar, F. R., Steenkiste, P., & Papagiannaki, K. (2010). Catnap:

Exploiting high bandwidth wireless interfaces to save energy for

mobile devices. In Proceedings of the 8th ACM international

conference on mobile systems, applications, and services,

pp. 107–122.

5. Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S., &

Estrin, D. (2010). A first look at traffic on smartphones. In Pro-

ceedings of the 10th ACM international conference on internet

measurement, pp. 281–287.

6. Falaki, H., Mahajan, R., Kandula, D., Lymberopoulos, R., Go-

vindan, & Estrin, D. (2010). Diversity in smartphone usage. In

Proceedings of the 8th ACM international conference on mobile

systems, applications, and services, pp. 179–194.

7. Google. SPDY: An experimental protocol for a faster web.

http://www.chromium.org/spdy/spdy-whitepaper.

8. Han, H., Liu, Y., Shen, G., Zhang, Y., & Li, Q. (2012). DozyAP:

Power-efficient Wi-Fi Tethering. In Proceedings of the 10th

international conference on mobile systems, applications, and

services, pp. 421–434.

9. Han, R., Bhagwat, P., Lamaire, R., Mummert, T., Perret, V., &

Rubas, J. (1998). Dynamic adaptation in an image transcoding

Proxy for mobile web browsing. IEEE Personal Communications

5(6), 8–17.

10. Housel, B. C., Samaras, G., & Lindquist, D. B. (1998). WebEx-

press: A client/intercept based system for optimizing web

browsing in a wireless environment. Mobile Networks and

Applications, 3(4), 419–431.

11. Hsiu, P. -C., Lin, C. -H., & Hsieh, C. -K. (2011). Dynamic

backlight scaling optimization for mobile streaming applications.

In Proceedings of the 17th IEEE/ACM international symposium

on low-power electronics and design, pp. 309–314.

12. Huang, J., Xu, Q., Tiwana, B., Mao, Z. M., Zhang, M., & Bahl, P.

(2010). Anatomizing application performance differences on

smartphones. In Proceedings of the 8th ACM international

conference on mobile systems, applications, and services,

pp. 165–178.

13. Kohavi, R., Henne, R. M., & Sommerfield, D. (2007). Practical

guide to controlled experiments on the web: Listen to your cus-

tomers not to the Hippo. In Proceedings of the 13th ACM inter-

national conference on knowledge discovery and data mining,

pp. 959–967.

14. NetMarketShare. http://www.netmarketshare.com/report.aspx?

qprid=61&sample=37.

15. Opera. Opera Mini & Opera Mobile. http://www.opera.com/

mobile/specs/.

16. Pathak, A., Hu, Y. C., & Zhang, M. (2012). Where is the energy

spent inside my app? Fine grained energy accounting on smart-

phones with Eprof. In Proceedings of the 7th ACM European

conference on computer systems, pp. 29–42.

17. Pathak, A., Jindal, A., Hu, Y. C., & Midkiff, S. P. (2012). What is

keeping my phone awake? Characterizing and detecting no-sleep

energy bugs in smartphone apps. In Proceedings of the 10th ACM

international conference on mobile systems, applications, and

services, pp. 267–280.

18. Qian, F., Quah, K. S., Huang, J., Erman, J., Gerber, A., Mao, Z.,

Sen, S., & Spatscheck, O. (2012). Web caching on smartphones:

ideal vs. reality. In Proceedings of the 10th international

conference on mobile systems, applications, and services,

pp. 127–140.

19. Shye, A., Scholbrock, B., & Memik, G. Into the Wild: Studying

real user activity patterns to guide power optimizations for

mobile architectures. In Proceedings of the 42nd IEEE/ACM

international symposium on microarchitecture, pp. 168–178,

December.

20. Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008). Under-

standing mashup development. IEEE Internet Computing, 12(5),

44–52.

21. Zhao, B., Tak, B. C., & Cao, G. (2011). Reducing the delay and

power consumption of web browsing on Smartphones in 3G

networks. In Proceedings of the IEEE international conference

on distributed computing systems, pp. 413–422.

22. Zhong, L., & Jha, N. K. (2005). Energy efficiency of handheld

computer interfaces: Limits, characterization and practice. In

Proceedings of the 3rd ACM international conference on mobile

systems, applications, and services, pp. 247–260.

Wireless Netw (2014) 20:361–378 377

123

http://amazonsilk.wordpress.com/
http://www.chromium.org/spdy/spdy-whitepaper
http://www.netmarketshare.com/report.aspx?qprid=61&sample=37
http://www.netmarketshare.com/report.aspx?qprid=61&sample=37
http://www.opera.com/mobile/specs/
http://www.opera.com/mobile/specs/


Author Biographies

Chen-Che Huang received the

B.S., M.S. and Ph.D. degrees

in Mathematics from National

Central University, in Computer

Science and Information Engi-

neering from National Dong

Hwa University and in Com-

puter Science from National

Chiao Tung University, Taiwan,

in 2004, 2006 and 2012,

respectively. His research inter-

ests include mobile computing

and spatial query processing

Jiun-Long Huang received his

B.S. and M.S.degrees in Computer

Science and Information Engi-

neering Department in National

Chiao Tung University in 1997and

1999, respectively, and his Ph.D.

degree in Electrical Engineering

Department in National Taiwan

University in 2003. Currently, he is

an associate professor in Computer

Science Department in National

Chiao Tung University. His

research interests include: mobile

computing, wireless networks and

data mining

Chin-Liang Tsai received the

B.S. and M.S. degrees in

Department of Information

Management in National Tai-

wan University of Science and

Technology and in Industrial

Technology R&D Master Pro-

gram of Computer in National

Chiao Tung University, Taiwan,

in 2006 and 2010, respectively.

His research interests include

mobile computing and Web

services

Guan-Zhong Wu received the

B.S. and M.S. degrees in Depart-

ment of Computer Science and

Information Engineering in

National Chi-Nan University and

in Department of Computer Sci-

ence in National Chiao Tung

University, Taiwan, in 2009 and

2012, respectively. His research

interests include mobile comput-

ing and Web services

Chia-Min Chen received the

B.S. in Department of Computer

Science in National Chiao Tung

University, Taiwan in 2010, and

he is studying M.S. degree in

Institute of Network Engineer-

ing, National Chiao Tung Uni-

versity, Taiwan currently. His

research interests include mobile

computing and P2P networks‘‘

Wang-Chien Lee is an Associ-

ate Professor of Computer Sci-

ence and Engineering at the

Pennsylvania State University,

University Park. He received a

Ph.D. degree in Computer and

Information Science from the

Ohio State University and spent

five years as a member of the

technical staff at Verizon/GTE

Laboratories, Inc. Dr. Lee per-

forms cross-area research in

data management, pervasive/

mobile computing, and net-

working, with a special interest

in spatial, temporal and multi-dimensional aspects. His work involves

development of various techniques (including accessing, routing,

indexing, caching, aggregation, dissemination, query processing,

mining, and knowledge discovering) for supporting location-based

services, recommendation services, social networking services, and

complex queries in a wide spectrum of networking and mobile

computing environments (such as mobile networks, wireless sensor

networks, peer-to-peer networks, and wireless broadcast systems).

Meanwhile, he also works on information retrieval, social computing,

security, and Big Data. He has published more than 200 technical

papers on these topics. He serves on the Editorial Board of IEEE

Transaction on Service Computing, co-founded the IEEE Interna-

tional Conference on Mobile Data Management, and recently served

as the technical program co-chair of the IEEE 2012 International

Conference on Distributed Computing Systems

378 Wireless Netw (2014) 20:361–378

123


	Energy-efficient and cost-effective web API invocations with transfer size reduction for mobile mashup applications
	Abstract
	Introduction
	Background
	Observations
	Our contributions

	Related work
	Proposed proxy system
	System architecture
	API query language
	Image multi-get module

	Performance evaluation
	Experiment on unnecessary information filtering
	Experiment on parameter dependency
	Experiment on multi-image retrieval
	Experiment on the Friend Stream-like application
	Remarks

	Conclusions and future work
	Acknowledgments
	References


