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Abstract: This work presents an efficient approach us-
ing time-varying autoregressive with exogenous input
(TVARX) model and a substructure technique to iden-
tify the instantaneous modal parameters of a linear time-
varying structure and its substructures. The identified
instantaneous natural frequencies can be used to iden-
tify earthquake damage to a building, including the spe-
cific floors that are damaged. An appropriate TVARX
model of the dynamic responses of a structure or sub-
structure is established using a basis function expan-
sion and regression approach combined with continu-
ous wavelet transform. The effectiveness of the proposed
approach is validated using numerically simulated earth-
quake responses of a five-storey shear building with time-
varying stiffness and damping coefficients. In terms of
accuracy in determining the instantaneous modal param-
eters of a structure from noisy responses, the proposed
approach is superior to typical basis function expan-
sion and regression approach. The proposed method is
further applied to process the dynamic responses of an
eight-storey steel frame in shaking table tests to iden-
tify its instantaneous modal parameters and to locate
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mail.nctu.edu.tw.

the storeys whose columns yielded under a strong base
excitation.

1 INTRODUCTION

Increased operational loads, design complexity, and
building lifetimes of civil, mechanical, and aerospace
structures have increased economic and societal de-
mands to monitor the safety of structures against long-
term deterioration or under severe loading events such
as earthquakes. Early detection of structural degrada-
tion is essential for preventing catastrophic failure. A
structure under damage typically shows nonlinear dy-
namical behaviors (Adeli et al., 1978) in which struc-
tural stiffness and damping are implicitly dependent on
time (Adeli and Jiang, 2006). The time dependence of
structural stiffness and damping in a damaged structure
results in the instantaneous modal parameters of the
structure varying with time. Thus, instantaneous modal
parameters of the structure based on its dynamic re-
sponses under a single severe loading event can be used
to detect whether a structure is damaged and to de-
tect the location of the damage. System identification
of structures has been a subject of active research in re-
cent years (Schoefs et al., 2011; Stratman et al., 2011;
Marano et al., 2011; Kang et al., 2012; Hazra et al.,
2012; Yan and Ren, 2012; Cho et al., 2012; Theodoridis
et al., 2012). This research has application in dam-
age detection of structures (Figueiredo et al., 2011;
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Osornio-Rios et al., 2012; Qiao et al., 2012; Xiang and
Liang, 2012; Nishikawa et al., 2012; Raich and Liszkai,
2012), which can then be used for health monitoring of
structures (Adeli and Saleh, 1997; Yuen and Katafygio-
tis, 2006; Park et al., 2007; Moaveni et al., 2009; Bocca
et al., 2011; Cusson et al., 2011; Xia et al., 2011;
Gangone et al., 2011; Bitaraf et al., 2012) currently a
very important area of structural engineering research.
The main purposes of this work are to propose an ef-
ficient approach for accurately estimating the instanta-
neous modal parameters of a structure from its dynamic
responses and further apply the approach to locate the
possible damaged storeys of a building.

The time-varying autoregressive with exogenous in-
put (TVARX) model is often utilized to establish an
input–output relationship of a time-varying linear sys-
tem from its dynamic responses and input forces (Loh
et al., 2000; Niedźwiecki, 2000; Jiang and Adeli, 2005,
2007; Jiang et al., 2007; Poulimenos and Fassois, 2006,
2009). However, a continuing challenge is establishing
a sufficiently precise TVARX model. Two main classes
of approaches have been typically employed to develop
the TVARX model, namely, recursive least-squares ap-
proach and basis function expansion and regression
approach.

Recursive least-squares approach is an online ap-
proach that is computationally efficient in estimating
time-varying parameters in TVARX model (Ljung and
Gunnarsson, 1990; Ljung, 1987). However, the disad-
vantages in the typical recursive least-squares approach
are slow tracking capability for time-varying coefficients
and high sensitivity to initial conditions. Proposed tech-
niques for using recursive least-squares approach to
minimize such shortcomings include variable forgetting
factors (Fortescue et al., 1981; Toplis and Pasupathy,
1988; Leung and So, 2005), covariance matrix resetting
(Jiang and Cook, 1992; Park and Jun, 1992), the slid-
ing window technique (Choi and Bien, 1989; Belge and
Miller, 2000), the Kalman filter (Loh et al., 2000), and
the random walk Kalman filter (Morbidi et al., 2008).

Basis function expansion and regression approach has
the advantage of excellent capability on tracking coef-
ficients changing with time. This approach expands the
time-varying coefficients of the TVARX model into a fi-
nite sequence of predetermined basis functions such as
the Fourier series (Marmarelis, 1987), Legendre poly-
nomial (Niedźwiecki, 1988), Walsh function (Zou et al.,
2003), wavelets (Tsatsanis and Giannakis, 1993; Adeli
and Samant, 2000; Zheng et al., 2001; Karim and Adeli,
2003; Ghosh-Dastidar and Adeli, 2003; Zhou and Adeli,
2003; Jiang and Adeli, 2004; Kim and Adeli, 2005a, b, c;
Adeli and Kim, 2004; Adeli and Ghosh-Dastidar, 2004;
Ghosh-Dastidar and Adeli, 2006; Adeli et al., 2008; Wei
et al., 2010; Li et al., 2011; Lin et al., 2012; Acharya

et al., 2012), and shape functions constructed by mov-
ing least-squares approach (Huang et al., 2009). In
practice, selecting an appropriate set of basis functions
is essential for the success of this approach. From a
mathematical perspective, however, any complete set
of basis functions used to approximate the coefficient
functions can obtain a TVARX model with acceptable
accuracy as long as the number of basis functions is suf-
ficient. Nevertheless, using high-order polynomials of-
ten causes numerical difficulties in an analysis. Numer-
ical experiments by Zou et al. (2003) showed that the
Legendre polynomial is effective for coefficients that
change smoothly over time, whereas Walsh functions
are effective for piecewise stationary time-varying co-
efficients. To approximate the step-function-type co-
efficient functions in the TVARX model, Asutkar et
al. (2010) demonstrated that Haar basis functions are
superior to Cosine and Legendre basis functions. Li
et al. (2011) reduced the difficulties on selection of basis
function by combining cardinal B-splines wavelet func-
tion with a block least mean square or orthogonal least
square algorithm, and both rapid and slow variations
of time-varying coefficients can be effectively tracked.
In a study of a system with a single degree of freedom
(DOF), Huang et al. (2009) showed that a set of ba-
sis functions consisting of moving least-squares inter-
polation functions can accurately identify instantaneous
modal parameters that smoothly change with time, re-
gardless of whether the change is rapid or slow. Su
(2008) further illustrated that the approach of Huang
et al. (2009) is reasonably accurate for finding instanta-
neous modal parameters that are not smooth functions
of time.

The literature on structural health monitoring (Cruz
and Salgado, 2009; Adewuyi and Wu, 2011; Talebine-
jad et al., 2011; Jiang et al., 2012) reveals that vibration-
based damage detection methods are widely used
because they are simple and easily applied. Vibration-
based methods typically detect damage based on the
modal frequencies, damping ratios, and modal shapes
of the overall structure. Most of the vibration-based
methodologies reported in the literature require struc-
tural data before the damage occurs (reference data)
and after the damage occurs. The reference data are of-
ten unavailable or difficult to obtain because they are
affected by environmental conditions such as tempera-
ture (Moser and Moaveni, 2011) and humidity (Wood,
1992). Experimental modal analyses of the Alamosa
Canyon Bridge showed that daily temperature change
can cause a variation larger than 5% in the estimated
fundamental frequency (Sohn et al., 1999). Such envi-
ronmental effects reduce the reliability of damage iden-
tification methods. Therefore, a method is needed to
determine whether a building is damaged even when
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reference data are unavailable and to identify damage
to specific floors of the building based on the dynamic
responses of the building to a single severe event such
as a strong earthquake.

The proposed approach for using the TVARX model
and a substructure technique efficiently identifies the in-
stantaneous modal parameters of a full structure and its
substructures. The identified instantaneous modal pa-
rameters of an entire building cannot only reveal pos-
sible earthquake damage to a building, but also in-
dicate the accuracy of the mathematical model such
as finite element model established in design stage if
such information is available and modify the model if
necessary. Since the identified substructural instanta-
neous natural frequencies of a building reflect its lo-
cal behaviors, the frequencies can be further applica-
ble for identifying damage in each floor of the building
after an earthquake occurs. An appropriate TVARX
model is established by adopting the method of Huang
et al. (2009) and continuous wavelet transform to pro-
cess the dynamic displacement responses of a struc-
ture. The proposed approach is validated in a five-storey
shear building with time-varying stiffness and damp-
ing under base excitation and comparisons with typi-
cal basis function expansion and regression approaches
using wavelet basis functions. The present approach
is further employed to process the measured dynamic
displacement responses of an eight-storey steel frame
in shaking table tests. Some columns of the frame
were observed to yield from the measured strain re-
sponses under large base excitation, and the storeys
whose columns yielded are exactly located from the sub-
structural instantaneous natural frequencies obtained
from the responses of the frame under such large base
excitation.

2 METHODOLOGY

A time-varying structural system encountered in civil
and mechanical engineering can be described by the fol-
lowing equations of motion:

Mẍ + Cẋ + Kx = f (1)

where M, C, and K are the mass, damping, and stiffness
matrices, respectively, and C and K are the functions of
time, while x and f are displacement and force vectors,
respectively. A building may show a nonlinear response
to a large earthquake, and its C and K are implicit func-
tions of time. The instantaneous modal parameters of
the building are therefore time-dependent.

The equations of motion in a discrete form are equiv-
alent to

y(t) =
I∑

i=1

�i (t)y(t − i) +
J∑

j=0

� j (t)f(t − j) + an(t)

(2)
where y(t−i) ∈ Rn̄ and f(t−i) ∈ Rn̄′

are the vectors of
measured responses and input forces at time t−i �t ,
respectively; 1/�t is the sampling rate of the measure-
ment, �i (t) and � j (t) are the matrices of coefficient
functions to be determined in the model, and an(t) is
a vector representing the residual error accommodat-
ing the effects of measurement noise, modeling errors,
and unmeasured disturbances. In Equation (2), which is
known as the TVARX(I, J) model, the measured dis-
placement responses used for y(t−i) ensure that the
instantaneous modal parameters are directly identifi-
able from �i (t) without systematic error (Huang et al.,
2009).

This study combined the method of Huang et al.
(2009), who studied a single degree of freedom system,
with continuous wavelet transform to estimate the in-
stantaneous modal parameters of a structure. Huang
et al. (2009) confirmed that their approach is more
efficient than a recursive least-squares technique with
variable forgetting factor and a weighted basis func-
tion approach (Niedźwiecki, 2000). Here, the use of
continuous wavelet transform is proposed for enhanc-
ing the accuracy of Huang et al.’s (2009) approach in
determining the instantaneous modal parameters of sys-
tems with multiple degrees of freedom, especially when
processing noisy data.

Each coefficient function in �i (t) and � j (t) is linearly
expanded by the so-called shapes functions constructed
through a moving least-squares approach with a set of
polynomial basis functions, which is a popular technique
in the mesh-free finite-element method (Lancaster and
Šalkauskas, 1990; Liu, 2003). The φi

kl(t) and θ i
kl(t), which

are (k, l) elements of �i (t) and � j (t), respectively, can
be expressed as

φi
kl(t) = ϕ(t)φ̄i

kl and θ i
kl(t) = ϕ(t)ϑ̄ i

kl (3)

where ϕ(t) = pT (t)A−1(t)Q(t) is a row vector of shape
functions,

A(t) =
l∑
l

w(t, tl)p(tl)pT (tl)

Q(t) = [q1, q2, . . . , ql ]

ql = w(t, tl)p(tl), pT = (1, t,t2, . . . , t N )



282 Su, Liu & Huang

Fig. 1. The shape function corresponding to the node
t = 21 seconds.

w is a weight function, l is the number of nodal points
used for each coefficient function, and φ̄i

kl and ϑ̄ i
kl are

two unknown column vectors of coefficients for φi
kl(t)

and θ i
kl(t), respectively; N̄ denotes the highest order of

polynomial in the set of basis functions, p. The deriva-
tion of Equation (3) is briefly given in the Appendix.
Many weight functions can be used in the above formu-
lation (Liu, 2003). Here, the exponential weight func-
tion is used as follows:

w(tm, tp) =
{

e−((tm−tp)/0.3d)2 |tm − tp|/d ≤ 1

0 |tm − tp|/d > 1
(4)

where d is the length of the support of the weight func-
tion. This weight function is usually used in curve fitting
(Lancaster and Šalkauskas, 1990) or constructing shape
functions in the mesh-free method (Liu, 2003). Accord-
ing to Huang et al. (2009), who investigated the effects
of N̄ , d, and l̄ on the identified instantaneous modal
parameters of a single degree of system, this study set
N̄ = 2, d = 3 seconds and a nodal point in a second.

Figure 1 shows a typical shape function, which cor-
responds to node t = 21 seconds and is constructed
by setting d = 3 seconds (in Equation 4) and N̄ = 2.
The shape function is global smooth and vanishes out-
side a time interval specified by the support of the
weight function. A smaller d improves the resulting
shape function in expressing better local behaviors of
the function to be expanded into the set of such shape
functions.

After expanding time-varying coefficients matri-
ces �i (t) and � j (t) into a set of shape functions,
Equation (2) is rewritten as

y(t) =
I∑

i=1

�̄i�i,t +
J∑

j=0

�̄ j� j,t + an(t) (5)

where

�̄i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
ϕ̄i

11

)T (
ϕ̄i

12

)T · · · (
ϕ̄i

1n

)T

(
ϕ̄i

21

)T (
ϕ̄i

22

)T · · · (
ϕ̄i

2n

)T

...
...

. . .
...(

ϕ̄i
n1

)T (
ϕ̄i

n2

)T · · · (
ϕ̄i

nn

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�̄ j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
ϑ̄

j
11

)T (
ϑ̄

j
12

)T · · · (
ϑ̄

j
1n′

)T

(
ϑ̄

j
21

)T (
ϑ̄

j
22

)T · · · (
ϑ̄

j
2n′

)T

...
...

. . .
...(

ϑ̄
j
n1

)T (
ϑ̄

j
n1

)T · · · (
ϑ̄

j
nn′

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�i,t = y(t − i) ⊗ ϕ(t)T, � j,t = f(t − j) ⊗ ϕ(t)T, and ⊗
denotes Kronecker product. Equation (5) can be
treated as a time invariant model with unknown coef-
ficient matrices �̄i and �̄ j .

The above formulations simply extend Huang et al.
(2009) to multiple DOF. Conventional least-squares
technique is used to find the unknown coefficient ma-
trices �̄i and �̄ j by minimizing aT

n (t)an(t), and this ap-
proach is denoted “MLS” approach in the following
sections.

It is well known that noise has significant influence
in correctly determining �i (t) and � j (t) as well as in-
stantaneous modal parameters. Huang and Su (2007)
demonstrated that continuous wavelet transform can
efficiently reduce the effects of noise in accurately
estimating the modal parameters of a linear time invari-
ant system. Consequently, continuous wavelet trans-
form is further introduced into Equation (5). Treating
the columns of �i,t and � j,t as vector functions and ap-
plying the continuous wavelet transform to Equation
(5) yields

Wψy(a, b) =
I∑

i=1

�̄i Wψ�i,(a,b) +
J∑

j=0

�̄ j Wψ� j,(a,b)

+ Wψan(a, b) (6)

where the continuous wavelet transform of a function
g(t) is defined as

Wψ g(a, b) = 1√
a

∫ ∞

−∞
g(t)ψ∗

(
t − b

a

)
dt (7)

where the superscript ∗ denotes the complex conjugate;
a and b are the scale and translation parameters, re-
spectively; ψa,b(t) = (

√
a)−1ψ((t − b)/a), and ψ(t) is a

mother wavelet function. The translation parameter b
is set to b̄�t , and b̄ is an integer because b must be a
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discrete number when the transformation is applied to
discrete responses. In the following, b̄ is set to 1.

After constructing Equation (6) for different values
of a and b, a least-squares approach is applied to deter-
mine φ̄i

kl and ϑ̄
i
kl by minimizing

Ē =
M∑

m̄=1

N∑
n̄=1

[Wψan (am̄, bn̄)]T Wψan (am̄, bn̄) (8)

where M and N are the numbers of scale parameters a
and data points used in establishing the TVARX model,
respectively. The φ̄

i
kl and ϑ̄

i
kl are then easily obtained by

C̃ = (VT V)−1VT Ỹ (9)

where

C̃ = [ �̄1 �̄2 · · · �̄I �̄0 �̄1 · · · �̄J ]

Ỹ = [ Ỹa1 Ỹa2 · · · ỸaM
]

Ỹam̄ = [ Wψy(am̄, b1) Wψy(am̄, b2) · · · Wψy(am̄, bN ) ]

V = [ Va1 Va2 · · · VaM ]

Vam̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wψ�1,(am̄ ,b1) Wψ�1,(am̄ ,b2) · · · Wψ�1,(am̄ ,bN )

Wψ�2,(am̄ ,b1) Wψ�2,(am̄ ,b2) · · · Wψ�2,(am̄ ,bN )

...
...

. . .
...

Wψ� I,(am̄ ,b1) Wψ� I,(am̄ ,b2) · · · Wψ� I,(am̄ ,bN )

Wψ�0,(am̄ ,b1) Wψ�0,(am̄ ,b2) · · · Wψ�0,(am̄ ,bN )

Wψ�1,(am̄ ,b1) Wψ�1,(am̄ ,b2) · · · Wψ�1,(am̄ ,bN )

...
...

. . .
...

Wψ�J,(am̄ ,b1) Wψ�J,(am̄ ,b2) · · · Wψ�J,(am̄ ,bN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If only one value of a is used to establish
Equation (9), the responses y(t), �i,t , and � j,t within
a certain frequency range are used to find the time-
varying coefficients in the TVARX model. The fre-
quency range is determined by the mother wavelet func-
tion and the chosen scale parameter. For considering a
wide frequency range of responses y(t), �i,t , and � j,t ,
several values of a can be entered in Equation (9).

After determining φ̄
i
kl and substituting them into

Equation (3), the coefficient matrices �i (t) are ob-
tained. Similar to the procedure of obtaining modal
parameters from an ARX model (Huang, 2001), a

matrix [G] is constructed from �i (t) as follows:

[G] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0

0 0 I · · · 0

...
...

...
. . .

...

0 0 0 · · · I

�I (t) �I−1(t) �I−2(t) · · · �1(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

where 0 is a zero matrix and I is an identity matrix.
Instantaneous modal parameters (natural frequencies,
damping ratios, and mode shapes) of the structure can
then be estimated from the instantaneous eigenvalues
and eigenvectors of [G]. Let λk(t) and {φk(t)} represent
the kth eigenvalue and eigenvector of [G] at time t, re-
spectively. Eigenvalue λk(t), which is normally a com-
plex function, is set to ãk(t) + i b̃k(t). The instantaneous
frequency and damping ratio of the system are com-
puted, respectively, by

ωk(t) =
√

α2
k (t) + β2

k (t), ξk(t) = −αk(t)/ωk(t)

where

βk(t) = 1
�t

tan−1
[

b̃k(t)
ãk(t)

]
,

αk(t) = 1
2�t

ln
[
ã2

k (t) + b̃2
k (t)

]
The procedure developed by Huang (2001) for time

invariant systems can then be used to determine the kth
instantaneous mode shape.

As a brief summary, the procedure of estimating in-
stantaneous modal parameters from the measured dis-
placement responses of a time-varying system is as
follows:

(1) Set the parameters l̄, N̄ , and d in constructing
shape functions for the coefficient functions in a
TVARX model.

(2) Choose I and J for TVARX(I,J).
(3) Set the appropriate values of a in continuous

wavelet transform.
(4) Follow Equations (3)–(6), construct Equation (9)

and determine φ̄
i
kl .

(5) Find φi
kl(t) from Equation (3) and construct �i (t).

(6) Determine eigenvalues and eigenvectors of [G] in
Equation (10) and estimate instantaneous modal
parameters.

Notably, the whole process must be gone through for
some values of I and J, and the accurate modal parame-
ters are determined from the stabilization diagrams for
modal parameters. In Step (3), the appropriate values
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of a can be roughly determined from the wavelet power
spectra of measured responses. They can also be deter-
mined from the ranges of the instantaneous natural fre-
quencies estimated roughly by using several values of a
to cover a wide range of frequencies.

3 VERIFICATION AND COMPARISON

Numerical simulation responses for a five-storey shear
building were processed to confirm the accuracy and
effectiveness of the proposed approach in determining
instantaneous modal parameters of the building, espe-
cially for noisy responses. The material properties of the
five-storey shear building are

mi = 0.25 ton for i = 1 ∼ 5 (11a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = 600
[

1 + 0.2 sin
(

π t

5

)]
N · sec

/
m

ci = 300N · sec
/
m (for i= 2 and 3)

ci = 300
[

1 + 0.2 sin
(

π t

5

)]
N · sec

/
m

(for i = 4 and 5)

(11b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ki = 80
[

1 − 0.2 sin
(

π t

5

)]
kN

/
m

(for i = 1, 4 and 5)

ki = 80 kN
/
m (for i= 2 and 3)

(11c)

where subscript “i” indicates the ith floor or storey. The
material properties of the first, fourth, and fifth storeys
are periodic functions of time. Notably, periodic func-
tions were often used for the coefficient functions in a
TVARX or TVAR model to verify the efficiency of the
approaches in published papers (i.e., Niedźwiecki, 2000;
Zheng et al., 2001; Li et al., 2011). The Runge–Kutta
method gave the dynamic responses of Equation (1) for
time increments (�t) of 0.001 second. The responses
and base excitation with �t = 0.001 second were resam-
pled with �t = 0.01 second for further analyses to iden-
tify modal parameters. Figure 2 gives the time histories
of base excitation and displacement responses at the
second and fifth floors.

Huang et al. (2009) showed that a TVARX model
constructed using velocity or acceleration responses
produces systematic errors when identifying instanta-
neous natural frequencies and damping ratios and that
the size of the error depends on the change rates of stiff-
ness and damping of the structure under consideration.
For this reason, the displacement responses of the five

Fig. 2. Time histories of base excitation and simulated
displacement responses of the second and fifth floors.

storeys and the input base excitation during 5–35 sec-
onds (see Figure 2) were used to establish TVARX(2,1)
models. The TVARX models were constructed us-
ing four different approaches: the proposed approach
and typical basis function expansion and regression ap-
proaches with three different sets of basis functions. The
three sets of functions were “db2” and “db4” wavelets
(Daubechies wavelets with vanishing moments 2 and
4, respectively) (Daubechies, 1988, 1992) and shape
functions constructed by the moving least-squares tech-
nique (simply denoted as “db2” and “db4” and MLS
approaches, respectively). Notably, these basis function
expansion and regression approaches shared the same
analysis procedure except that different sets of func-
tions were used to expand the coefficient matrices in the
TVARX model.

Figure 3 compares the identified instantaneous natu-
ral frequencies and modal damping ratios obtained by
the proposed approach and by the MLS approach. The
support of the weight function (d in Equation 4) and the
number of nodal points (l̄ in Equation 3) are 3 seconds
and 31, respectively. The nodal points are uniformly dis-
tributed for t = 5–35 seconds. The continuous wavelet
transform in the present approach was carried out us-
ing Meyer wavelet function with scale parameters a =
(3/5)0, (3/5)1, (3/5)2, (3/5)3, and (3/5)4. Figure 4 plots
the Fourier transform modulus of the Meyer wavelet.
The figure clearly shows that the Meyer wavelet is
not an ideal bandpass filter. If the preserved frequency
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Fig. 3. Instantaneous modal parameters identified from responses without noise via “MLS” and the proposed approaches.
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Fig. 4. The Fourier transform modulus of Meyer wavelet.

range for the wavelet is defined simply as the frequency
interval in which the Fourier transform modulus of the
wavelet exceeds 90% of its maximum value, the Meyer
wavelet has the preserved frequency range [0.5348/a,
0.9311/a]. Consequently, when a = (3/5)0, (3/5)1, (3/5)2,
(3/5)3, and (3/5)4 are used, Wψy(a, b), Wψ�i,(a,b), and
Wψ� j,(a,b) in Equation (6) mainly contain the contents
in the frequency range of [0.5149, 7.1844] Hz, so the
instantaneous natural frequencies in this range should
be accurately identifiable. Figure 3 indicates that the
identified results by the present approach and MLS ap-
proach are highly consistent with the actual values.

Figure 5 gives the identified instantaneous natural
frequencies and modal damping ratios obtained by the
“db2” and “db4” approaches, which expand each coef-
ficient function in the TVARX model into the following
set of wavelet functions:

{ φ̃a,b1 (t) φ̃a,b2 (t) · · · φ̃a,bN (t) ψa,b1 (t) ψa,b2 (t) · · · ψa,bN (t) }
where φ̃a,bi (t) = 1/

√
aφ̃((t − bi )/a), ψa,bi (t) =

1/
√

aψ((t − bi )/a), ψ(t), and φ̃(t) are a mother wavelet
function (here, a “db2” or “db4” wavelet function) and
the corresponding scale function, respectively. In the
analyses, the scale and translation parameters were
set to a = 1 and bi = i(sec), respectively, and N = 30.
The identified results for “db4” are consistent with
the actual values, while the results for “db2” are
less accurate than those for “db4.” The maximum
differences between results obtained from “db2” and
the actual values are approximately 2% and 10% in
the instantaneous natural frequencies and damping
ratios, respectively. Therefore, the discontinuous and
fractured “db2” wavelets are unsuitable for expanding
the smooth time-varying functions considered here.

In reality, measured responses always contain some
level of corrupted noise. To simulate this fact, inde-
pendent Gaussian white noise with a 5% variance of
the noise-to-signal ratio (NSR) was randomly added to
the computed displacement responses of five DOFs and
the base excitation input. Figure 6 displays the instan-
taneous natural frequencies and modal damping ratios

identified from these noisy data when using the same
approaches used to obtain the results in Figures 3 and 5.
Since Figures 3 and 5 showed that the worst identifica-
tion results were obtained when using “db2” basis func-
tions, Figure 6 excludes the results for “db2” basis func-
tions. Other than the order of the TVARX model, all
parameters applicable in Figure 6 are identical to those
in Figures 3 and 5. The instantaneous modal parameters
plotted in Figure 6 were determined from the stabiliza-
tion diagrams, as shown in Figure 7, which displays the
variations of the identified frequencies with the orders
of TVARX model and shows the stable appearances of
the real mechanical frequencies in different orders of
TVARX model.

As expected, the agreement between the identified
results and the true values shown in Figure 6 is not as
good as that in Figures 3 and 5 due to noise effects. No-
tably, the instantaneous frequencies and damping ratios
of the third to fifth modes and those of the fourth and
fifth modes were not completely identified by the “db4”
and MLS approaches, respectively, and they are there-
fore not given in Figure 6. Apparently, Figure 6 reveals
that the present approach is substantially superior to the
typical basis function expansion approaches with “db4”
basis functions and shape functions constructed by mov-
ing least-squares technique. The present identified in-
stantaneous natural frequencies and modal damping ra-
tios are different from the exact values by less than 2%
and 20%, respectively.

To further demonstrate the capability of the present
approach in dealing with noisy responses, Figure 8 de-
picts the identified instantaneous natural frequencies
and modal damping ratios obtained from the noisy re-
sponses and input with NSR = 10%. As expected, the
agreement between the identified results and true val-
ues is a little bit worse than that shown in Figure 6 for
the case with NSR = 5%. Nevertheless, the differences
between the identified instantaneous natural frequen-
cies and modal damping ratios and the exact values are
still less than 2% and 20%, respectively.

4 APPLICATION TO SHAKING TABLE TESTS

To validate the applicability of the proposed approach
when using actual measurement, the responses of an
eight-storey symmetrical steel frame were measured in
shaking table tests (see Figure 9). Shaking table tests
are vital to understand the dynamical behaviors, espe-
cially nonlinear behaviors, of structures under earth-
quakes. The eight-storey steel frame analyzed in this
test was 1.8 m long, 1.2 m wide, and 8.5 m high (see
Figure 9). Lead plates were piled on each floor such
that the total mass of steel frame was approximately
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Fig. 5. Instantaneous modal parameters identified from responses without noise via “db2” and “db4” basis functions.

4,519 kg. The columns of the first and third storeys
were formed from steel plates with cutoff shown in
Figure 10, and the others are formed from intact steel
plates.

In the shaking table tests, two accelerometers and two
linear displacement transducers were installed in the
long-span direction on the two edges of each floor to
measure acceleration and displacement responses of the
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Fig. 6. Instantaneous modal parameters identified from noisy responses (NSR = 5%).

floors, respectively. The average measured responses of
the two accelerometers at the base and two displace-
ment transducers on each floor were used in the follow-
ing analyses. Strain gauges were also installed on one
of the four columns in each of the first, second, and
third storeys to measure the time history of axial strains.

The frame was subjected to base excitations of the 1999
Chi-Chi earthquake, which occurred on September 21,
1999 in Chi-Chi, Nantou County, Taiwan, with differ-
ent reduced levels, which include 500 gal (5 m/s2) and
1,200 gal of base excitation levels. Data were recorded
at a sampling rate of 200 Hz. Both the acceleration
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Fig. 7. Identified instantaneous natural frequencies varying with the order of TVARX models at t = 12.5 (seconds) and t = 27.5
(seconds).

responses of the base and the displacements of all floors
at t = 5–35 seconds were used in evaluating instanta-
neous modal parameters of the frame. Figure 11 dis-
plays the base excitations and the displacement re-
sponses of the first, third, fifth, and seventh floors in
the long-span direction of the frame, subjected to 1,200
gal of the 1999 Chi-Chi earthquake. The strain records
shown in Figure 12 for different levels of earthquake in-
put confirm that the columns of the first to third storeys
yielded when the frame was subjected to 1,200 gal base
excitation.

Figure 13 shows the variations of the identified in-
stantaneous natural frequencies and modal damping ra-
tios of eight modes with time for the steel frame un-
der 500 and 1,200 gal of the Chi-Chi earthquake. Since
the frame is a symmetric frame with eight storeys, it
is expected to have eight vibration modes in the long-
span direction of the frame. Theoretically, the natural
frequencies and modal damping ratios should be con-
stants since no nonlinear behaviors were observed for
the frame under 500 gal base excitation. Figure 13 in-
deed reveals that, under 500 gal base excitation, vari-
ation in the identified natural frequencies over time is
lower than 0.01%, and the variations of the identified
damping ratios with time are also minor. Figure 13 also
illustrates that under 1,200 gal base excitation, highly
significant variations of instantaneous natural frequen-
cies and damping ratios with time occur. The minimum
natural frequencies and maximum damping ratios for
some modes happen at approximately t = 12 seconds,
which is the approximate time when maximum strains
occur (see Figure 12).

5 APPLICATION FOR LOCATING DAMAGED
FLOORS OF A SHEAR BUILDING

Sections 3 and 4 have validated the capabilities of the
present approach in accurately identifying the instanta-
neous modal parameters of a structure. The accurately

identified instantaneous modal parameters can be em-
ployed to determine whether or not the structure has
been damaged after a severe earthquake. These iden-
tified results can be further used to locate the dam-
aged members or storeys of the structure by apply-
ing vibration-based damage detection methods for time
invariant systems, e.g., frequency response curvature
function method (Sampaio et al., 1999) and flexibility-
based methods (Pandey & Biswas, 1994; Patjawit and
Knaok-Nukulchai, 2005; Gao et al., 2007). Here, the
proposed approach is combined with the substructural
approach developed by Su et al. (2012) for time invari-
ant systems to locate the floors of a shear building that
are damaged after a severe earthquake.

For most buildings, the assumptions of rigid floors
and three DOFs (two horizontal displacement compo-
nents and one torsion angle) are valid for describing
horizontal motion in each floor during an earthquake.
In a symmetrical building, the horizontal displacement
components and torsion angle of each floor are uncou-
pled. In this case, its behavior resembles that of a shear
building subjected to an earthquake along its symmetric
plane.

A shear building with n DOFs is easily decomposed
into substructures that have two or three DOFs. If the
jth substructure is defined as having j−1th, jth, and
j+1th DOFs (or floors) when j �= n and j �= 1, then the
first substructure is associated with the first and second
DOFs, while the nth substructure has the (n−1)th and
nth DOFs. The following equations in terms of relative
acceleration, velocity, and displacement of two floors
can be developed:

mn ẍr
n + cn ẋr

n + kn xr
n = fn − mn ẍn−1 for j = n (12a)

m j ẍ
r
j + c j ẋ

r
j + k j x

r
j = f j − m j ẍ j−1 + c j+1 ẋr

j+1

+ k j+1xr
j+1 for j = 2 ∼ (n − 1) (12b)

m1 ẍ1 + c1 ẋ1 + k1x1 = f1 + c2 ẋr
2 + k2xr

2 for j= 1 (12c)
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Fig. 8. Instantaneous modal parameters identified from noisy responses (NSR = 10%).

where xr
j = x j − x j−1. If a multiple input/single output

(MISO) TVARX model with output of xr
j and inputs

of f j (= −m j ag , and ag is base excitation acceleration),
x j−1 and xr

j+1 for each j = 2 to (n−1), then the instanta-

neous natural frequency of the jth substructure (storey),
which is theoretically

√
k j (t)/m j (Hz), should be obtain-

able. Similarly, MISO TVARX models can be estab-
lished for the first and nth substructures.
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Fig. 9. Photograph and simple sketch of eight-storey frame.

Fig. 10. A photograph of a steel plate with cutoff.

Notably, Su et al. (2012) demonstrated that an ARX
model constructed by using xr

j as output and f j , x j−1

and xr
j+1 as inputs for j = (n−1) may not be exactly

equivalent to Equation (12b) in a linear time invariant
system. This observation also applies to a linear time-
varying system. Hence, the procedure proposed by Su
et al. (2012) for identifying the natural frequency of
the (n−1)th substructure in a linear time invariant sys-
tem is simply extended to the linear time-varying sys-
tem herein. A multiple input/multiple output (MIMO)
TVARX model for (n−1)th and nth storeys are con-
structed with outputs of xn and xn−1 and inputs of ag and
xn−2. The established MIMO gives two instantaneous
natural frequencies ω1(t) and ω2(t) (rad/s), which are re-
lated to material properties of (n−1)th and nth storeys
by

ω1ω2 =
√

kn−1kn

mn−1mn
(13)

Fig. 11. Responses of frame under 1,200 gal of the Chi-Chi
earthquake.

Notably,
√

kn/mn (rad/s) is the theoretical natural fre-
quency of the nth substructure and is identifiable by the
MISO TVARX model established with an output of xr

n
and inputs of ag and xn−1. Consequently,

√
kn−1/mn−1

(rad/s), which is the theoretical natural frequency for
the (n−1)th substructure, can be obtained through
Equation (13). However, it is not able to identify the
instantaneous modal damping ratio of the (n−1)th sub-
structure.

The numerically simulated responses of the five-
storey shear building with noise considered in Section 3
and the responses of the eight-storey steel fame un-
der the shaking table tests considered in Section 4 were
again processed to confirm the feasibility of the method
for directly locating the damaged floors of a shear
building under an earthquake based on variations of
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Fig. 12. Strain responses at columns of first, second, and third
floor.

substructural instantaneous natural frequencies of the
building over time. Excluding the damping ratio for the
fourth floor, Figure 14 depicts the identified instanta-
neous natural frequencies and damping ratios for each
substructure of the five-storey shear building. The in-
stantaneous modal parameters of the second and third
substructures (storeys) do not significantly change with
time, and the identified frequencies and damping ratios
differ from the actual values by less than 2% and 4%, re-
spectively. The instantaneous modal parameters of the
first, fourth, and fifth storeys vary periodically over time,
and the identified instantaneous natural frequencies and
damping ratios are different from the exact values by
less than 2% and 20%, respectively.

Figure 15 illustrates the variations of the identified in-
stantaneous natural frequencies and damping ratios of
each substructure of the eight-storey steel frame under
500 and 1,200 gal of the Chi-Chi earthquake, except for
the damping ratios for the seventh storey. When the
frame was subjected to 500 gal of the Chi-Chi earth-
quake, no nonlinear behaviors were observed, and, as
expected, the identified instantaneous natural frequen-
cies of each storey do not significantly alter with time.
The variations of natural frequencies with time are
less than 0.2% of the mean values. In contrast, when
the frame was subjected to 1,200 gal of the Chi-Chi

earthquake, the instantaneous natural frequencies of
the first to fourth storeys significantly change with time,
but the instantaneous natural frequencies of the other
storeys do not. The instantaneous natural frequencies
and damping ratios of the first to fourth storeys clearly
decrease and increase, respectively, at t = 10–12 sec-
onds as the displacement responses of each floor grad-
ually increase (see Figure 11). These results indicate
that the stiffness of the first to fourth storeys signifi-
cantly changed with time when the frame was under
1,200 gal of the Chi-Chi earthquake, and these storeys
were somewhat damaged. Notably, Figure 12 shows the
measurements obtained by strain gauges installed on
the columns of the first to third stories, which also indi-
cated that the columns yielded during such base excita-
tion. This agreement indicates the practical applicability
of this procedure to locate the possible damaged storeys
of a real building with symmetry under a single severe
earthquake.

6 CONCLUDING REMARKS

This work presented an approach to accurately deter-
mine the instantaneous modal parameters of a time-
varying linear structure through a TVARX model. By
expanding the time-dependent coefficient functions in a
TVARX model with moving least-squares interpolation
functions, a time-varying identification problem is trans-
formed into a time invariant one. Continuous wavelet
transform is further employed to the model to correctly
identify the instantaneous modal parameters in the fre-
quency ranges of interest. By incorporating a substruc-
tural technique, the proposed approach can accurately
locate potentially damaged floors of a shear building
subjected to an earthquake. The main advantages of
the present procedure of locating the possibly damaged
storeys are simple and no reference data (such as the
data of the building without damage) needed. Certainly,
an appropriate measuring system for substructures that
are very susceptible to damage in a large earthquake
should be carefully designed and installed in real appli-
cations.

A five-storey shear building under base excitation
was numerically simulated to confirm the validity of
the proposed approach for accurately determining
the instantaneous modal parameters of the building
and for locating the storeys with time-varying stiff-
ness and damping. The numerically simulated shear
building showed periodically time-varying stiffness and
damping in the first, fourth, and fifth storeys. The
numerical results clearly confirm that the approach
indeed improves capability for using basis function
expansion and regression approaches for accurately
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Fig. 13. Instantaneous modal parameters identified from the responses under 500 and 1,200 gal of the Chi-Chi earthquake.

determining the instantaneous modal parameters of a
structure from noisy responses. The storeys with time-
varying stiffness and damping and the behaviors of the
stiffness and damping changing over time were easily
located and determined from the identified substruc-
tural instantaneous natural frequencies and damping
ratios.

The applicability of the proposed approach in
processing the measured responses in a practical
engineering was illustrated on an eight-storey steel
frame, which is 1.8 m long, 1.2 m wide, and 8.5 m high,
in shaking table tests. The frame behaved linearly and
nonlinearly under 500 and 1,200 gal of the Chi-Chi
earthquake, respectively. The identified instantaneous
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Fig. 14. Identified substructural instantaneous natural frequencies and damping ratios of a five-storey shear building.

natural frequencies and damping ratios of the full frame
under the large base excitation significantly vary with
time, while the identified instantaneous modal param-
eters for the small base excitation do not. Measured

strain responses indicated that the columns of the first
to third storeys yielded when the frame was under the
large base excitation. The floors with yielding columns
were correctly located from the identified substructural
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Fig. 15. Identified substructural instantaneous natural frequencies and damping ratios of an eight-storey steel frame.

instantaneous natural frequencies and damping
ratios.
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APPENDIX

Using polynomial basis functions to express φi
kl(t) yields

φi
kl(t) =

N̄∑
n=0

āi
klntn = pT ai

kl (A.1)

where pT = (1, t,t2, . . . , t N̄ ), (ai
kl)

T = (āi
kl0, āi

kl1,

āi
kl2, . . . , āi

kl N̄
) and āi

kln are the coefficients to be
determined. A weighted least-squares technique is ap-
plied to determine coefficients āi

kln in Equation (A.1).
Let φ̄i

kln represent the true value of φi
kl(tn). Vector ai

kl
is determined by minimizing the error function defined
by

E(t) =
l̄∑

n=1

w(t, tn)
(
pT (tn)ai

kl − φ̄
i
kln

)2 (A.2)

where w(t, tn) is a weight function that must be positive,
and l̄ is the number of nodal points for φi

kl(t). Minimiz-
ing E yields

∂ E

∂ai
kl

= 0 (A.3)

Solving for ai
kl from Equation (A.3) and substituting it

into Equation (A.1) gives φi
kl(t) = ϕ(t)φ̄

i
kl , where φ̄

i
kl =

(φ̄i
kl1, φ̄

i
kl2, . . . , φ̄

i
kll̄

)T .


