
Trajectory Entropy of Continuous Stochastic Processes at
Equilibrium
Kevin R. Haas,† Haw Yang,*,‡ and Jhih-Wei Chu*,§,∥

†Department of Chemical and Biomolecular Engineering, University of California-Berkeley, 201 Gilman Hall, Berkeley, California
94720, United States
‡Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
§Department of Biological Science and Technology, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, Taiwan, ROC
∥Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, ROC

ABSTRACT: We propose to quantify the trajectory entropy of a dynamic system as the
information content in excess of a free-diffusion reference model. The space−time
trajectory is now the dynamic variable, and its path probability is given by the Onsager−
Machlup action. For the time propagation of the overdamped Langevin equation, we
solved the action path integral in the continuum limit and arrived at an exact analytical
expression that emerged as a simple functional of the deterministic mean force and the
stochastic diffusion. This work may have direct implications in chemical and phase
equilibria, bond isomerization, and conformational changes in biological macromolecules
as well transport problems in general.

SECTION: Molecular Structure, Quantum Chemistry, and General Theory

A dynamic system subjected to both random fluctuations
and variations in the energy surface explores its possible

outcomes during the evolution over time. We see such
examples in areas including physics, chemistry, biology, as
well economics. It would therefore be of great interest to have a
quantitative measure that elucidates the manner by which the
deterministic and the stochastic forces acting on the system
affect the dynamics.
The general features of the problem are as follows. Let x be

some continuous observable that characterizes the outcome of a
system that is under stochastic thermal agitation; for example, x
could be the distance characterizing the conformational change
of a protein, the angle of a chemical bond isomerization
process, the reaction coordinate of a chemical equilibrium, the
relative population of a phase equilibrium, or the spatial
coordinate of an electron diffusing classically in a periodic
potential, to name a few. Without loss of generality, here x is
designated as the spatial coordinate in this Letter. The system
with an initial condition x0 at time zero will evolve to trace out
a trajectory function X(t) that gives a value of xt at time t, with t
going from 0 to the finite observation time of tobs. A trajectory
thus records how the system changes as a function of time and
contains the dynamics information as Figure 1 illustrates. This
Figure shows four different trajectories with the respective
initial conditions marked by filled circles on the leftmost plane.
The contours on the same plane mark the potential V(x) of the
mean force, F(x) = −dV(x)/dx, which drives the system
deterministically. In this work, we nondimensionalize the
potential of mean force (PMF) by kBT, where kB is the
Boltzmann constant and T is the temperature. A rugged PMF,
for example, a V(x) with many local minima and maxima, will

encode complicated features in the resulting trajectories that
are composed of various dynamical processes such as waiting in
different wells and making transitions between them.
In the presence of stochastic forces, the trajectories become

even more complex to exhibit zigzags: One realization of the
trajectory X1(t) will be different from the next, X2(t), even if the
initial conditions are identical. The combined actions of both
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Figure 1. Space−time trajectories of a dynamic system under the
influences of both deterministic and stochastic forces. The equilibrium
entropy is determined by the potential of mean force (PMF, the left-
most plane with contour lines) of the static distribution (the shaded
gradients on the PMF plane). Jaynes’s caliber evaluates the extent, over
which the system can explore over a slice of finite time width, Δt, such
as between the two gray panes. The trajectory entropy focused in this
work resolves both the static and dynamical contributions to the
apparent variation in dynamics over the observation time from t = 0 to
tobs and quantifies them analytically. This Figure serves as a pictorial
representation of space−time trajectories and does not correspond to
the model systems later studied.
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the deterministic and the stochastic forces thus power the
system to explore a specific space−time volume (cf. Figure 1)
and both forces contribute to this apparent feature of
trajectories. Because of the presence of stochastic forces, any
description of the system dynamics needs to be statistical,1 and
the problem of quantitatively characterizing the dynamics
becomes evaluating the statistics of the ensemble of all
trajectories that can be realized by the system.
In this Letter, we use the entropy measure defined in eq 1

∫≡ − X t X t
X t
X t

( ) [ ( )] ln
[ ( )]
[ ( )]

t

0

obs

(1)

to quantitatively evaluate the trajectory ensemble, where
X t[ ( )] is the probability density of obtaining the trajectory

X(t), X t( ( )) is the probability density of obtaining the same
trajectory but from a reference dynamics, and the integration
over X t( ) is a path-integral over all realizable X(t) from the
dynamics. In one limiting case that only the deterministic forces
are present, the initial condition sets the future and the
dynamics is precisely known. In the other limiting case, that the
system is influenced by stochastic forces only, the time
propagation is the purely diffusive Brownian dynamics (BD).
In this work, the latter case is chosen to be the reference
dynamics for determining X t( ( )). Therefore, if the system is
solely influenced by random fluctuations, the trajectory entropy
follows = 0. If the system is driven by deterministic forces
without stochasticity, → −∞ for fully predictive trajectories.
In general, the trajectory entropy will be bound by these two
limiting cases.
As an illustration, we consider the three model PMFs shown

in Figure 2. Their equilibrium probability density functions,

peq(x) = exp(−V(x))/Zeq and Zeq, the equilibrium partition
function,2 have identical values of the equilibrium entropy, Seq =
−∫ dx peq(x) ln peq(x) = −1.683. However, visual inspection of
the sample trajectories generated with identical diffusion
coefficients shown in Figure 2 indicates that their dynamics
are obviously distinctive. Although Model 1 appears to be the
most simplistic with a single minimum, the well is wider than

those of Models 2 and 3 that have two and three minima,
respectively. One can also tell that the space−time paths of the
three models seem to carry specific information about the
differences in time propagation, for which the equilibrium
entropy is an irrelevant measure.3−7 The trajectory entropy
measure of eq 1 could, in principle, allow a quantitative
understanding of the dynamical behaviors of different models.
An immediate difficulty one encounters, however, is that a
direct numerical integration of eq 1 leads to divergence. In this
work, we illustrate that the physical origin of different dynamics
in trajectories can be made transparent to clearly resolve the
contributions from deterministic versus stochastic forces. Our
main result is an analytical expression of for the overdamped
Langevin dynamics, dxt = DF(xt) dt + (2D)1/2 dWt. D is the
diffusion coefficient, and the Wiener process of stochastic
forces, dWt, satisfies ⟨dWtdWt′⟩ = δ(t − t′)dt. The ergodic limit
distribution of the Langevin equation is peq(x).

2

We show that the trajectory entropy for this widely used
model of dynamics is given analytically as the following
functional
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In eq 2, Δt is the time resolution for recording the trajectories,
and the initial conditions of which are assumed to follow peq(x).
In terms of the three models in Figure 2, an important outcome
of eq 2 is the explicit quantification of the physics underlying
the intuition that the three sample trajectories differ in their
dynamics. It is now clear how their differences come from the
deterministic forces physically: Having more wells in the PMF
would cause the time propagation to be more complex because

would take a lower value with the excess magnitude in force
contributed as ⟨DF2(x)⟩eq. Equation 2 also describes how
stochastic diffusion contributes to the trajectory entropy by
itself and relative to the deterministic mean forces. In the
remainder of this Letter, we present the essential ideas and
steps of deriving eq 2, followed by comparing the analytical
expression with numerical calculations to further illustrate the
underlying physical picture.
The trajectory entropy defined in eq 1 is the negative of the

Kullback−Leibler (KL) divergence that measures the extra
information required to encode a probability density, X t( ( )),
relative to the reference distribution of X t( ( )). Each
trajectory in the integral is weighted by the equilibrium
probability density X t( ( )) of the system dynamics. is thus
negative and becomes zero only when the queried distribution
is identical to that of the reference and is often used to
characterize the relaxation of nonequilibrium states back to
equilibrium and the entropy production involved.8,9 The choice
of reference dynamics is thus important to accentuate the
information content in X t( ( )) through the path integral of eq
1. Our strategy is to use the most structureless BD with zero
force Fref(x) = 0. The diffusion coefficient Dref for the reference
BD is arbitrary and only contributes to a constant in . The
procedure we designed for evaluating can be understood as a
two-step thermodynamic integration (1) along the mean force
coordinate as the negative KL divergence between the
trajectory probabilities for the Langevin dynamics and those
for the BD at the same diffusion coefficient Dref = D and (2)
along the diffusion coefficient coordinate as the negative KL
divergence of the BD with D to that of Dref:

Figure 2. Three dynamic models have identical values of equilibrium
entropy but different dynamics. (left) The potential of mean force,
V(x), of Model 1: 247.15(x − 1)2, Model 2: 17302.265(x − 1)4 −
611.347(x − 1)2, and Model 3: (1/15.47)[((x − 1)/13.9)6 − 15((x −
1)/13.9)4 + 53((x − 1)/13.9)2 + 2((x − 1)/13.9) − 15]. Models 1− 3
have 1, 2, and 3 minima in V(x), respectively. (right) A sample
Langevin trajectory for each of the three models with D = 1 in the
dimensionless unit.
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This design allows us to separate out the deterministic and
stochastic contributions, as will be seen shortly.
Path Integral of the Onsager−Machlup (OM) Action. Here our

evaluation of the trajectory entropy begins with the probability
density of a Langevin path of duration tobs that is proportional
to the OM action EOM[X(t)] as10−12
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Applying eqs 4−6 to eq 1 with the BD reference and collecting
terms leads to the following expression (for the Fref = 0
reference dynamics, we have discarded Vref and set (Zeq)ref = 1
to ignore the unnecessary scalar offsets)
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The terms in eq 7 are taken over the distribution of
trajectories of the system dynamics. For an arbitrary functional
of X(t), ∫⟨ ⟩ =g X t X t X t g X t[ ( )] ( ) [ ( )] [ ( )]X t( ) . An impor-
tant consequence of equilibrium dynamics is that the path-
integral expectation of single-time functions can be obtained by
switching the order of integrating over time ∫ dt and path

∫ X t( ) s u c h t h a t ⟨ ∫ d t g ( x t ) ⟩ X ( t ) b e c ome s
∫ dt ∫ dxt g(xt)peq(xt) = tobs⟨g(x)⟩eq.

13 Applying this result
together with the fact that ⟨V(x)⟩eq + ln Zeq = Seq, eq 7
becomes
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The remaining terms can be obtained from the trajectory
partition function defined in eq 5. Because the origin of
stochastic forces of the Langevin equations is the same as that
of random diffusion without the deterministic forces, the value
of is identical to the result of Brownian dynamics14,15

π= Δ ΔD D t( ) (4 )t t/2obs (9)

The exponent is the number of time steps used to discretize the
trajectory and hence the dimensionality of the path integral in
eqs 1 and 5. The result of eq 9 can also be reached by taking
the functional derivative of eq 5 with respect to F(x) and
observing that the result is zero.16 Because is the cumulant
generator of the OM action defined in eq 6, the velocity-
squared terms in eq 7 can be obtained by applying

d d Dln( )/ (1/ ) to eq 9 and imposing the definition of eq 6
to arrive the following expression
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The nondifferentiability of Langevin trajectories does cause the
velocity-squared term to diverge in the continuum limit of Δt
→ 0+, as expected, but one immediately sees that the procedure
of eq 3 removes the divergence with that of the BD reference.
Applying eq 10 to eq 8, the dependence of trajectory entropy

on F(x) reads

= + − ⟨ ⟩→

⎡
⎣⎢

⎤
⎦⎥S t D

D
D

F x
4

1
2

( )F F x( ) eq obs
ref

2
eqref

(11)

Along the diffusion coefficient coordinate, taking the ratio of
trajectory partition functions and adding the ∼2D/Δt terms
from the path integral of square velocity leads to the asymptote
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It ought be noted that extending the result of eqs 11 and 12 to
multiple dimensions only requires a generalized path action and
careful integration by parts to give the force expectation term
⟨F⃗(x)·F⃗(x)⟩eq. The arbitrariness of reference dynamics in the
trajectory entropy functional previously derived can in fact be
eliminated by employing the most disordered dynamics of
Fref(x) → 0 and Dref → ∞ as the reference model. Discarding
the scalar constants irrelevant to F(x) and D in eqs 12 and 11
gives the trajectory entropy functional presented in eq 2.
Numerical Studies. We next use eq 2 to illustrate how the

three model PMFs previously shown in Figure 2 give rise to
different levels of complexity in dynamics despite their identical
values of Seq = −1.683. The results of numerical calculations
can also serve as an independent validation for the analytical
expression previously derived. In this regard, it is instructive to
contrast our results with Jaynes’s caliber that considers the
statistics of dynamics according to the conditional propagator,
p(xΔt|x0)

17−19 with the trajectory entropy. The contours of
p(xΔt|x0) at an informative time lag for the three model systems
listed in Figure 2 are shown in Figure 3. Caliber was originally
defined for finite-state Markov models20 and may be
generalized to the continuous space as the conditional entropy
for the propagator p(xΔt|x0) at a time resolution Δt

∫Δ = − |Δ Δ ΔS t x x p x x p x x( ) d d ( , ) ln ( )t t t0 0 0 (13)

The caliber thus quantifies both the static and the dynamical
complexity of the system within a time slice of Δt (Figure 1).
At a specified value of Δt, eq 13 can be evaluated by solving

the corresponding Fokker−Planck equation using standard
numerical schemes or averaging over Langevin trajectories.2 As
shown in Figure 3, variation of the caliber with Δt can be used
to gain insight into the system dynamics. As Δt → ∞, the
conditional probability density converges to peq(x) and the
information about dynamics is lost. In the continuum limit of
Δt → 0+, the conditional entropy diverges at a rate of
∼ln(DΔt) due to the nondifferentiability of the Weiner
process.14,15 By scanning Δt, the caliber does reveal differences
in the dynamical contents of the three distinct models at
intermediate Δt. However, the relative contributions from the
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deterministic and stochastic forces to dynamics are obscure in
the caliber integral.
Because the caliber represents a temporal slice of the

trajectory entropy (cf. Figure 1),16,17,21 applying eq 11 indicates
the KL divergence of the caliber

∫Δ = − | |Δ Δ Δ ΔS t x x p x x p x x q x x( ) d d ( , ) ln ( )/ ( )t t t tKL 0 0 0 0

(14)

Here q(xΔt|x0) is the conditional probability density of the time
propagation of BD, which would follow SKL(Δt)/Δt →
−D/4⟨F2(x)⟩eq in the continuum limit when D = Dref.
Therefore, numerical calculations of SKL(Δt)/Δt can be used
to compare with the values given by eq 11 that constitutes the
deterministic part of the trajectory entropy, and Figure 4
illustrates the quantitative agreement as Δt → 0+. Table 1
summarizes this numerical validation of eq 11 for the three
models shown in Figure 2. The dynamics of Model 3 is
approximately 10 times more “complex” than that in Model 1

due to the greater mean forces in having two additional wells. It
is clear that the trajectory entropy enables a direct and
immediate identification for the origin of the differing
complexity in dynamical trajectories
Concluding Perspective. This work illustrates how the path

integral of the entire continuous stochastic trajectory ensemble
can be compressed into an analytic functional. The results
provide a foundation for understanding the dynamics due to
fluctuations in systems that can be modeled by an overdamped
Langevin equation. In addition to the examples noted in the
introductory paragraph of this Letter, a potential application is
using the expression of the trajectory entropy in design
equations of information processing for dynamic systems. For
systems that propagate quantum information, for example, the
commonly employed modeling equations are isomorphic to the
Langevin equation discussed here.22 For future works general-
izing the ideas to nonequilibrium cases and to more complex
dynamics such as those with memory effects, the analytical
result presented here, which is valid for an arbitrary potential of
mean force, can serve as a general starting reference.

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: hawyang@princeton.edu (H.Y.).
*E-mail: jwchu@nctu.edu.tw (J.-W.C.).
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the University of California,
Berkeley, the Princeton University, and the National Chiao
Tung University, Taiwan, Republic of China. The funding from
the National Science Council of Taiwan, Republic of China via
grant number 102-2113-M-009-022-MY2 is acknowledged. We
also thank Gavin Crooks, Chris Jarzynski, and David Sivak for
helpful discussions.

■ REFERENCES
(1) Seifert, U. Stochastic Thermodynamics, Fluctuation Theorems,
and Molecular Machines. Rep. Prog. Phys. 2012, 75, 126001.
(2) Gardiner, C. W. Handbook of Stochastic Methods for Physics,
Chemistry, And the Natural Sciences; Springer Verlag: New York, 2004.
(3) Tome,́ T.; de Oliveira, M. J. Entropy Production in Irreversible
Systems Described by a Fokker-Planck Equation. Phys. Rev. E 2010,
82, 021120.
(4) Latora, V.; Baranger, M. Kolmogorov-Sinai Entropy Rate versus
Physical Entropy. Phys. Rev. Lett. 1999, 82, 520−523.
(5) Pattanayak, A. Lyapunov Exponents, Entropy Production, And
Decoherence. Phys. Rev. Lett. 1999, 83, 4526−4529.
(6) Kleeman, R. Information Theory and Dynamical System
Predictability. Entropy 2011, 13, 612−649.

Figure 3. Conditional entropy of the time propagator. (top) The
contours of the transition probability density p(xΔt|x0) for the time
propagation of models 1−3 with Δt = 10−3. (bottom) The conditional
entropy as a function of Δt for the three model systems. In all cases, D
= 1 in the dimensionless unit.

Figure 4. Comparison of numerical and analytical SKL(Δt) for the
three model systems at different levels of time resolution Δt. The
horizontal lines indicate the analytic prediction of −D/4⟨F2(x)⟩eq in
the continuum limit. In this comparison, D = Dref.

Table 1. Numerical Calculations of SKL(Δt) for the Three
Model Systems Discussed in This Lettera

functionals model 1 Model 2 Model 3

−∫ dx peq(x) ln peq(x) −1.683 −1.683 −1.683
Δt−1SKL(Δt)b −123.6 −558.6 −1210
−D/4⟨F2(x)⟩eqc −123.5 −558.7 −1211

aq(xΔt|x0) is the reference time propagator of BD with the same
diffusion constant D = 1 in the dimensionless unit. When Dref = D, the
relation between the trajectory entropy and SKL(Δt) leads to SKL(Δt)/
Δt → −D/4⟨F2(x)⟩eq in the continuum limit, as discussed in the text.
bNumerically evaluated at Δt = 10−5. cSF=0→F(x)/tobs when D = Dref.

The Journal of Physical Chemistry Letters Letter

dx.doi.org/10.1021/jz500111p | J. Phys. Chem. Lett. 2014, 5, 999−10031002

mailto:hawyang@princeton.edu
mailto:jwchu@nctu.edu.tw
http://pubs.acs.org/action/showImage?doi=10.1021/jz500111p&iName=master.img-003.jpg&w=220&h=205
http://pubs.acs.org/action/showImage?doi=10.1021/jz500111p&iName=master.img-004.jpg&w=213&h=142


(7) Plastino, A. R.; Plastino, A. Non-Extensive Statistical Mechanics
and Generalized Fokker-Planck Equation. Physica A 2002, 222, 347−
354.
(8) Bach, A.; Dürr, D. Entropy Density in Function Space and the
Onsager-Machlup Function. Phys. Lett. A 1978, 69, 244−246.
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