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Fall accidents contribute to nearly half of all fatalities in the construction industry in Taiwan. Detecting fall por-
tents using a smartphone, which many people carry daily, may help reduce fall accidents if the accuracy is accept-
able. We designed two experiments with three algorithms to evaluate how well a smartphone can detect both
falls and fall portents in a tiling operation scenario. The experiments show that work-related motions barely af-
fected the detection of falls, and the result had a sensitivity and specificity of 100% and 96.1%, respectively. How-
ever, for detecting portents, the work-related motions had quite a large impact on the gyroscope-based
algorithm, which demonstrated an accuracy rate of only 4.3%, but had only limited impact on the
accelerometer-based algorithm, which still show acceptable accuracy rates of 73.5% and 88.5%. We conclude
that using a smartphone to detect falls and portents in a construction site is feasible.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Fall accidents in the construction industry

Fall accidents in the construction industry have been studied and
identified as a common hazard and the leading cause of fatalities for
several decades [1-7]. This problem is severe and common in many
countries. The Council of Labor Affairs (CLA), the highest administrative
office responsible for labor affairs and safety in Taiwan, reported that
falls contributed to approximately 49.62% (930 of 1874) of construction
work-related fatalities from 2000 to 2011 [8]. The U.S. Bureau of Labor
Statistics reported that 33.45% of fatalities (4151 of 12,409) were related
to falling from high elevations in the U.S. construction industry from
2000 to 2011 [9].

Falls from high elevations cause the highest number of fatalities in
the European construction industry, accounting for 52% of all accidents
[10]. Approximately 40% of fatal accidents are caused by falls in the
Japanese construction industry [11]. Falls from high elevations also
represent the largest share of work-related fatalities (181 of 606) in
the Korean construction industry [12]. Falls were the most frequently
occurring construction accidents resulting in fatalities or severe injuries.
Furthermore, fall accidents accounted for the largest percentage of all
recorded accidents, approximately 52%, and are often associated with
workers on roofs, scaffolds, ladders, and floors with openings [13].
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1.2. Loss of balance and falls

The factors contributing to fall accidents are numerous and compli-
cated [6,14,15]. Previous research has reported the major contributors
to fall accidents, including activities, the environment, safety facilities
(e.g., guardrails, screens, and safety nets), equipment (especially
personal protective equipment, PPE), management (e.g., training,
education, and inspection), and individual factors (mental and physical
demand). Most studies have focused on safety facilities and PPE (e.g.,
safety helmet and belt) inspection and have promoted training and
education to increase safety and hazard awareness. However, minimal
information is available on the physiological status of construction
workers.

Due to the heavy physical requirements of construction activities,
workers are liable to fatigue, distraction, drowsiness, muscle pains,
and loss of balance (LOB), which may further impair performance and
increase safety risk and fall accidents. Chi et al. [15] studied the causes
of falls and observed that the individual factors included bodily actions,
distraction, and insufficient capacities. Mao et al. [16] noted that the
self-reported rates of “unsteady footsteps”, “waist pain”, and “dyspnea”
are considerably higher in high-elevation workers than in ground-level
workers, and differences were also observed between the two groups in
measurements of balance function, calf circumference, and response
time. Construction workers operating at high elevations experience
fear, panic, and shivering, which often reduce their judgment capacity
and increase the risk of falls [17].

With a growing body of evidence indicating the importance of
physiological status to the safety of construction workers in addition
to PPE and safety training, researchers have also reported that posture
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stability and balance help prevent fall accidents. Thus, improving
workers' balance may reduce the risk of fall accidents and injuries [1].
The ability to maintain balance and postural stability in upright postures
is a critical factor for successful task performance and minimization of
LOB and falls [18]. LOB or postural instability is often a contributing
factor in fall accidents during construction work at high elevations,
and postural sway generally increases when a healthy individual is on
an elevated platform with a minimal risk of falling [19]. Indeed, falls
from high elevations have received the most critical attention among
the various LOB-related accidents [20]. The majority of fatal falls from
scaffolding, building girders, and non-moving vehicles can be attributed
to LOB [21]. The strong correlation between fall accidents and LOB
demonstrated by the reviewed literature implies that the real-time
monitoring and analysis of the balance conditions of workers may
help identify fall portents and thus prevent falls from happening.

2. Scientific background
2.1. Fall detection algorithm

Researchers have successfully identified falls using devices such as
accelerometers, and their fall detection models may be applied to this
study even though they focus on falling on the ground instead of falling
from elevated heights. Several researchers have used motion measure-
ment systems, force plates, pressure-sensitive insoles, and kinematic
sensors (accelerometers and gyroscopes) to detect falls [22,23]. Many
studies have addressed fall detection using accelerometers [24-28].
The use of accelerometers to monitor daily activities or evaluate body
kinematics has the advantages of low cost, portability, small size, and
ease of operation [29].

In the detection of falls in real life or long-term monitoring, most
researchers have used threshold algorithms. Bourke et al. [24] evaluated
various algorithms for a waist-mounted-accelerometer-based system
and concluded that using an algorithm that employs thresholds is the
most suitable method. Nyan et al. [27] employed a threshold algorithm
with accelerometers and gyroscopes to detect falls with an average lead
time of 700 ms before an impact occurs, a sensitivity of 95.2%, and a
specificity of 100%. Kangas et al. [30] used tri-axial accelerometers
worn at the waist or on the head to detect falls, producing a sensitivity
of 97-98% and a specificity of 100%. It should be noted that although
these developments detect falls with high accuracy, they focus on pre-
designed falls from a still position instead of moving conditions. More-
over, they target elderly people or patients whose motions are not as
dynamic as those of construction workers. As a result, the feasibility of
applying these developments to construction workers is still
questionable.

Several studies have begun to establish activity recognition and fall
detection systems using smartphone-embedded accelerometers and
gyroscopes for the elderly and patients. Ismail et al. [31] compared
the abilities of 7 categories of classifier algorithms to classify human
activities using a mobile phone. Fuentes et al. [32] implemented a
motion recognition process using a mobile phone. Zhao et al. [33]
established a smartphone-based fall detection and positioning system
to provide healthcare to the elderly. Abbate et al. [34] presented a
smartphone-based fall detection system that monitored the move-
ments of patients.

2.2. On-site safety monitoring

In the construction industry, falls from high elevation often lead to
fatality or serious injury. Unlike applications for the elderly or patients,
in which detecting their falls helps notify their guardians, detecting
falls in a construction site is much less meaningful. Thus, instead of
only detecting falls, the goal of our research is to detect fall portents
(i.e., behaviors preceding a fall) to predict and prevent falls. Additional-
ly, whereas elderly persons and patients requiring fall detection systems

usually have limited mobility, construction workers are usually in a
state of constant motion during work, which creates signal noise, inter-
fering with the accuracy of detection. These two factors make our
research challenging and different from previous studies.

Construction sites are very complex working environments due to
their dynamic nature and the concurrent involvement of numerous
resources and supply components [35]. Furthermore, the characteristics
of the working environment (e.g., high temperatures, large-scale
jobsites, changeable workplaces, and high-motion activities) and
the construction industry (e.g., many subcontractors and high labor
mobility) are unfavorable for jobsite safety training and management.
Traditional safety management approaches, such as education training,
safety inspection, and surveillance cameras, have limitations. For
example, checklists are commonly used on jobsites, but continuous
checking and follow-up are abandoned after the list is checked. The
detection of fall portents using surveillance cameras is also not feasible
or economical due to the nature of the construction site, which features
a large number of workers with different trades working in parallel over
a wide area with continuous movement and a constantly changing
environment.

Monitoring the movement of workers plays an important role in
safety management on construction jobsites. Lee et al. [36] established
a mobile safety monitoring system consisting of a mobile sensing device
for detecting workers approaching hazardous areas. Park and Brilakis
[37] presented a method for detecting the safety tools (e.g., vest) of
construction workers in video frames. Cheng et al. [38] identified differ-
ent types of worker activities (e.g., productivity, working, traveling,
idling, and material handling) over time based on workers' spatial-
temporal and thoracic posture data using ultra-wideband and physio-
logical status monitoring technologies. Naticchia et al. [39] developed
a real-time monitoring system to help health and safety inspectors.
The system is able to log any unexpected behavior, such as moving
to an unexpected area using, location-tracking technologies. Teizer
and Vela [40] automated location tracking and monitoring of work-
force using the proposed four types of algorithms based on video
cameras.

2.3. Individual monitoring

Based on the literature review above, over half of construction occu-
pational injuries and fatalities can be attributed to fall-related accidents.
However, real-time individual safety monitoring systems are difficult to
implement due to the dynamic nature of the construction site, and most
fall prevention measures mainly focus on mitigating the injury after a
fall instead of preventing the fall itself.

Several monitoring techniques have been proposed to improve
safety or jobsite management using location-tracking technologies,
such as RFID, GPS, and ultra-wideband, or pattern recognition technolo-
gies to monitor whether a worker is entering a hazardous area, wearing
PPE, or moving. However, they cannot determine whether a worker is
losing balance, suddenly swaying, or stepping unsteadily, which are
good fall portents.

Alwasel et al. [41] helped construction workers to reduce their risk
for musculoskeletal disorder by using anisotropic magnetoresistive
sensors to track the angle of the upper arm relative to the trunk and
to decrease the number of incidents resulting from prolonged, forceful
overhead work. Similarly, predicting the physiological status of a work-
er based on motion monitoring and generating appropriate alerts may
help workers maintain alertness and on-site safety.

Smartphones are currently gaining popularity, and built-in motion
sensors have long become standard. The corresponding posture identi-
fication techniques are also well developed. Thus, individual motions
can be monitored for workers who may already wear a smartphone,
and fall portents can be detected without requiring them to wear
additional sensors.
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Fig. 2. System architecture and information flow.

3. Research objective

Fig. 1 depicts the factors and processes associated with fall hazards. A
construction worker may be working under a given status, such as
normal, fatigue, or sleepiness. At work, the worker may continuously
perform motions, such as work-required motions (e.g., picking up a
tile, tiling a tile, moving to a different work position) and non-work-
related motions (e.g., smoking, coughing, chatting, scratching).
Either type of motion may occasionally create dangerous situations
(e.g., suddenly swaying, stepping unsteadily) for the worker and be

considered as fall-prone motions. These motions create sways, which
provide various types of signals (e.g., small, large, gradual, and abrupt)
that can be detected by an accelerometer.

In the construction scenario, detecting fall portents is more mean-
ingful than detecting falls because detecting falls cannot prevent falls.
Thus, the primary objective of this study was to detect fall portents
instead of falls. The difficulty of detecting portents lies in the fact that
the existence of a portent may be ambiguous. However, some portents
can still be identified by self-awareness, outsider observations, or
actually performing hazardous actions. In this study, the portents
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monitored were limited to those that can be detected by any of the
aforementioned three approaches, which were used to evaluate the
performance of accelerometer-based detection algorithms.

4. System model
4.1. Conceptual model

As shown by the thick-outlined rectangle in Fig. 2, this paper
presents the first stage of research work towards the use scenario.

This research focuses on using a smartphone (e.g., Apple's iPhone)
consisting of an accelerometer, gyroscope, processor, wireless receiver,

~ S

Flannelette-covered A _a}}l

Fig. 5-1

and alarm (with both sound and vibrating abilities) to detect the fall
and fall portents of a construction worker. The objective is to detect
potentially dangerous motions of a worker, such as sudden swaying,
unsteady footsteps, and LOB, so that the worker or the supervisor may
enact a prevention measure.

Fig. 2 shows the architecture of the proposed model and its informa-
tion flow. The entire system consists of a personal safety monitoring
system (PSMS) and jobsite safety monitoring system (JSMS). The target
user of the PSMS is the worker with a task involving a fall risk, and the
user of the JSMS is the supervisor or jobsite administrator. The worker
is equipped with stand-alone external accelerometers or a smartphone
installed with PSMS.

Velcro-tiles

Fig. 5. Experiment environment.



R.-J. Dzeng et al. / Automation in Construction 38 (2014) 74-86 79

The real-time analysis module continuously receives accelerometer
data from more accurate exterior sensors wirelessly using Bluetooth
technology and the sensors built into the smartphone, and analyzes
the data based on the selected threshold algorithms. These data includes
3-axis accelerometer and gyroscope data and represent the physiologi-
cal status of the worker. There are several different detection algorithms
with different thresholds, as will be discussed later. The best threshold
algorithm may vary depending on the type of job. When a fall or a fall
portent is detected, the PSMS activates a warning signal comprising a
series of sounds, vibration, or a message, and passes the data to the
JSMS. The JSMS may consider multiple indexes (e.g., multiple acceler-
ometers and gyroscopes) and performs a more complex analysis, such
as trend analysis. The result is a recommended action for the supervisor.

4.2. Detection algorithms

As mentioned in the introduction section, most fall detection studies
have used fall threshold (t) algorithms to detect falls and have proven to
be effective. Threshold algorithms are based on a formula composed of
sensor data, such as those from accelerometers or gyroscopes, and
emit a warning when the formula value exceeds a threshold. Different
researchers may use different weights for the data or different thresh-
olds for the target use scenario.

Such an algorithm is also suitable for the proposed PSMS due to its
simplicity and minimum computing power requirements. The
algorithm could accurately represent the degree of sway and is thus
suitable for detecting motion. We implemented three algorithms in
the prototype system, as depicted in Fig. 3. It should be noted that the
threshold values in parentheses are values adopted from those with
the best accuracy in our experiments described later in Section 6.2
Results.

The first algorithm is adopted from Mathie et al. [28] and is shown in
Eq. (1).

SVM, (signalmagnitudevector) = 1/ |Ax|* + |Ay|* + |Az|?, (1)

where Ay, Ay, and Az are the acceleration in the x-, y-, and z-axes
(shown in Fig. 4), respectively.

The second algorithm is adopted and modified from Bourke and
Lyons [26] and is shown in Eq. (2). Bourke and Lyons [26] used a bi-
axial gyroscope to detect falls and found the thresholds for angular
acceleration, angular velocity, and angular change. We only applied a
part of this algorithm (i.e., the angular velocity) in the x (roll), y
(pitch), and z (yaw) dimension. Although this algorithm may not be
as effective as the first according to previous fall detection research,
we still incorporate it in our system because we are focused on portents
instead of direct falls.

SVM,, = /I + [y ? + o2, @)

where my, ®y, and ®z are the angular velocity along the x-, y-, and
z-axes (shown in Fig. 4), respectively.

Table 1
Simulated fall types.

Falling type Tiling posture Pickup posture Falling direction
I Squat Nil Back

Il Squat Nil Lateral

il Stand Squat Back

\% Stand Squat Lateral

\Y Stand Stoop Back

VI Stand Stoop Lateral

We also developed a modified version of Eq. (1), as shown in Eq. (3),
which monitors the change in the SVM,.

SVM, = SVM,,—SVM,,_;, (3)

where (SVM,, — SVM,, _ 1) is the difference between two consecutively
sampled accelerations. SVM;, is positive if the wearer's motion is
increasing and negative otherwise.

4.3. Prototype implementation

The application that we developed for this study runs on Apple's iOS
5 on iPhone 4/iPod, which includes an LIS302DL accelerometer with a
scale of +2/+8 g and a 100/400-Hz sample rate and an L3G4200D gy-
roscope with a scale of 250/500/2000 dps and a 100/200/400/800-Hz
sample rate. These two sensors are capable of measuring acceleration
and angular velocity in three directions (X, y, and z). The daily motion
frequency of a human body is approximately 8 Hz [42]. Based on the
Nyquist-Shannon sampling theorem, the equipped sample rate satisfies
the experimental and analytical needs because the rate is more than
twice the daily motion frequency of 8 Hz. The sensor data collected for
each subject during the experiment was sent to a computer server via
Wi-Fi.

5. Experimental setup

We designed two experiments to evaluate the effectiveness of the
proposed system. Experiment I focused on the detection of falls during
movement and compared the results with previous research targeting
falls from a still position. The experiment was expected to answer the
question regarding whether the signal noise emanating from working
operations will significantly affect the detection accuracy. Experiment
Il focused on evaluating the effectiveness of detecting fall portents,
such as swaying, unsteady footsteps, and LOB, and compared the detec-
tion accuracy under normal and abnormal statuses. The abnormal
statuses in this experiment included sleepiness and fatigue.

Based on the report of CLA [43], workers in almost all construction
trades are subject to a risk of falling. Because this is a pioneering
study, a suitable operation for this experiment should be a common
construction operation without a significant learning effect or over-
whelming noise that is easily repeatable so that multiple subjects can
perform the same task. We chose tiling as the primary task for the
two experiments due to its simplicity and regularity in terms of gesture
and movement. To facilitate repetition, we set up a wall covered with
flannelette and prepared different types of tiles, each of which was
glued with Velcro on the back so that the tile could be attached to the
wall and later detached easily.

Fig. 5 shows the experimental environment setup, whose objective
was to simulate a scenario in which a worker performs tiling on a
scaffold. Fig. 5-1 shows an overview of the environment, including the
experiment area, monitoring area, and rest area (separately shown in
Fig. 5-2). In the experiment area, a flannelette-covered wall was set
up for use with Velcro tiles (Fig. 5-3) so that different subjects could
repeat the same tiling tasks. Each subject, equipped with a safety helmet
and a belt (S1 and S2 in Fig. 5-1), was asked to attach the tiles to the wall
according to the designed patterns using reference lines for guidance.
The scaffold was painted white in the center and yellow on the sides.
The white area (30 cm wide) represents the safe zone, and the yellow
areas (20 cm and 30 cm wide) represent the watch zones.

The experiment facilitator, sitting behind the partition in the
monitoring area, monitored the experiment using a computer and
surveillance cameras (C1, C2, C3 in Fig. 5-1). The cameras monitored
the experiment from different angles: C1 and C2 monitored from the
top with a bird's-eye view and from the axial direction, focusing on
the subjects' steps, respectively. A rest area was provided for subjects



80 R.-J. Dzeng et al. / Automation in Construction 38 (2014) 74-86

Staggered brickwork

Total 50 pieces

97.6 48.8
I

[ n n

146.4
Checkerboard Total 144 pieces
60

60

Fig. 6. Scaffold, tiling wall, and tile patterns (unit: cm).

who felt tired, fatigued, or uncomfortable during or after the
experiment.

Four graduate students (three males and one female) from the
construction management program of National Chiao-Tung University
volunteered to participate in the experiments. The average age of the
participants was 24.75, with a standard deviation of 1.30. The average
height and weight were 170.75 cm (S.D. = 9.28) and 61.5 kg
(S.D. = 14.31), respectively.

6. Experiments
6.1. Design of experiments

The objective of Experiment I was to detect falls. In Experiment I,
each subject repeated six types of simulated falls three times onto a
24-cm-thick soft mattress attached to the side of the scaffold. Each of
the subjects completed Experiment I within 30 min. Table 1 summa-
rizes the six types of falls based on the subject’s tiling postures
(ie., stand and squat), tile pick-up postures (i.e., squat and stoop), and
falling direction (i.e., back and lateral).

Most experiments in the literature have focused on direct falls, i.e.,
asking subjects in a standing position to fall deliberately. Although
vertical velocity is an important indication of fall detection [24], the
dynamic nature of a construction worker's posture at work is also
subjected to high and dramatic changes in vertical velocity. Therefore,
we designed the simulated falls of Experiment I to include vertical
posture transitions, such as from standing to squatting and from stand-
ing to stooping. The other objective was to examine the effect of these
transition postures on the fall detection accuracy and collect signal
patterns of these postures that may help distinguish normal postures
such as squatting and stooping from fall portents in Experiment II.

The objective of Experiment Il was to detect fall portents. In Experi-
ment II, each subject executed a tiling task with two different design

Table 2

Tiling tasks.
Unit size Color Pattern # of pieces
47 x 4.7 cm? White/beige Checkerboard 144
24.1 x 53 cm? Brown Staggered brickwork 50

patterns in three different statuses (i.e., normal, sleepiness, and fatigue).
To achieve the sleepiness and fatigue statuses, the subject was request-
ed to stay up all night before the experiment (held at 7:00 AM) or to
perform the tiling task twice to achieve relative fatigue.

The abnormal statuses were included because we expected few
portents (e.g., swaying, unsteady footsteps, and LOB) for the normal
status and more portents for the abnormal statuses. In addition, we
were also interested in determining whether differences existed
among the portent signal patterns induced by sleepiness and fatigue.
It should be noted that working overtime and the night shift are
common in Taiwan. As reported by the CLA [43], insufficient rest is
common for high-elevation construction workers.

The tiling task environment was composed of a scaffold and a wall,
as shown in Fig. 6. The scaffold was painted with two colors to distin-
guish between the safe (white) and watch (yellow) zones. Subjects
were told to keep their feet within the safe zone during the task (as
shown in the scaffold in Fig. 6). The task was to tile the wall according
to the designated patterns (i.e., staggered brickwork and checkerboard)
using the provided Velcro tiles (Table 2 and Fig. 6). A single task
required a subject to attach 194 pieces of tiles in approximately 1 h.

Experiment Il concerned two incidents, i.e., falls and fall portents.
Whereas a fall was obvious and could easily be determined, we defined
a fall portent as being any of the following three scenarios. First, a
subject self-reported a portent by raising a hand when he/she lost
balance or awareness during the experiment. Second, the experiment

Table 3
Results of Experiment I.

Fall type Fall event Accuracy (%)

SVM, SVM,, SVM;

(t=138) (t=45) (t=0.7)

Sen. Spe. Sen. Spe. Sen. Spe.
I 12 100 97.9 100 93.8 100 95.8
Il 12 100 95.8 100 91.7 100 89.6
I 12 100 95.8 100 94.8 100 94.8
v 12 100 90.6 100 88.5 100 94.8
\Y 12 100 97.9 100 94.8 100 95.8
VI 12 100 99.0 100 99.0 100 96.9
Overall 72 100 96.1 100 93.6 100 94.6

Sen: sensitivity and Spe: specificity.
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Table 4
Fall-portent and non-fall-portent events in Experiment II.

Status Number of events

Non-portent event Fall portent

Squat Stand-up Stoop Move Tile Total Self-report Obvious-sway Cross-line Union
Normal 610 621 239 1526 1943 4939 9 16 16 17
Sleepiness 456 480 189 1091 1379 3595 20 30 25 36
Fatigue 629 638 259 1564 1989 5079 22 40 33 47
Overall 1695 1739 687 4181 5311 13,613 51 86 74 100

facilitator identified an obvious sway using surveillance cameras. Third,
a subject stepped over to the watch zone by more than 15 cm, which is
more than half of the average man's foot length in Taiwan (26 cm).
These portents indicated that a subject could not maintain balance or
awareness, causing sudden swaying or unsteady footsteps, and was
prone to falling.

6.2. Results

In Experiment I, we collected data for 72 (=12 x 6) falls and 480
non-fall (including squatting, standing up, stooping, and tiling)
events and applied different thresholds for each of the three
algorithms. Table 3 shows the threshold for each algorithm with the
best accuracy in terms of sensitivity and specificity. Sensitivity is the
percentage of fall detections over the total number of falls that actually
occurred, and specificity is the percentage of non-fall detections over
the total number of non-fall events.

The “Overall” row shows the average performance of the six types of
simulated falls. Under the best threshold, SVM,, SVM,,, and SVM; reach
100% sensitivity. The primary performance difference is in specificity.
SVM, showed the highest specificity and SVM,, the lowest, albeit with
an acceptable value of 93.6%. SVM calculated the difference between
two consecutive events and demonstrated a specificity similar to that
of SVM,.

The specificity of the system was not as good as its sensitivity.
In other words, the problem with the fall detection was the false-
detection rate instead of the hit rate. The best performer, SVM,, demon-
strated a false-detection rate of 3.9% (=1-96.1%), whereas the worst
performer showed a false-detection rate of 6.4% because it was more
sensitive. Relative to previous studies on the detection of falls experi-
enced by the elderly and patients in the healthcare domain, where the
sensitivity and specificity are 95.2%-98% and 100%, respectively, all
three algorithms exhibit satisfactory performance, even in the working
scenario.

In Experiment II, each subject performed several motions to
complete the tiling task, including squatting, standing, stooping,
moving, and tiling. We counted the number of each type of event
observed through surveillance data. Table 4 lists these numbers along
with the number of identified fall portents for each designated status
(e.g., normal and sleepiness). It should be noted that the union number
records the number of incidents in which at least one self-report,
obvious-sway, or cross-line sign occurred. An event was counted only

Table 5
Results of Experiment II

Status Portent event Accuracy (%)
SVM, SVM,, SVM,
(t=13) (t=103) (t=02)
Sen. Spe. Sen. Spe. Sen. Spe.
Normal 17 100 99.9 100 84.5 100 99.8
Sleepiness 36 100 99.9 100 76.4 100 99.5
Fatigue 47 100 99.9 100 885 100 99.8
Overall 100 100 99.9 100 83.1 100 99.7

Sen: sensitivity and Spe: specificity.

when a subject changed motion. Thus, for example, a subject standing
for 15 s, squatting, and standing for another 30 s is counted as 1
squatting and 1 standing occurrence.

Table 5 lists the sensitivity and specificity for each algorithm under
different statuses with the best performing threshold. All three
algorithms reached 100% sensitivity. SVM, showed the highest specific-
ity, and SVM; showed a specificity similar to that of SVM,. SVM,, still
exhibited the lowest specificity, unexpectedly.

Both SVM, and SVM appear to have performed quite well in terms
of specificity (99.9% and 99.7%, respectively). The worst performer,
SVM,,, had an 83.1% (16.9% false detections) specificity. However, this
result is due to the bias from the extremely large number of non-
portent events (3595-5079) compared to the small number of fall
portents. This bias made the specificity less sensitive and discriminable.

To better evaluate the differences in performance, Table 6 provides a
different measurement for accuracy. The number of detection targets
(i.e., identified portents) is 100 for all three algorithms. The accuracy
rate is the number of correct detections (column c) over the number of
activated warnings (column b). The false-detection rate is the number
of incorrect detections over the number of warnings. Based on the overall
performance, the ranking of the algorithms in terms of performance is the
same as that indicated in Table 5: SVM, > SVM; >SVM,,, as shown under
the columns Accuracy rate and False-detection rate.

Based on Table 6, SVM, still had a satisfactory accuracy rate (88.5%)
and false-detection rate (11.5%). SVM, had a 73.5% accuracy rate, and
the worst performer, SVM,,, had an unsatisfactory accuracy rate of
4.3%, with a false-detection rate of almost 95%. This finding indicates
that detecting the target is much easier than avoiding false detection.
Thus, the obstacle to overcome in applying this type of sensing technol-
ogy in the problem is the problem of false detection.

Table 6
Modified accuracy in Experiment II.

Algorithm  (a) (b) (c) ® (259
Fall # of # of accurate  Accuracy  False-detection
portents ~ warning  detection rate rate

Normal

SVM, 17 22 17 773% 22.7%

SVM,, 17 785 17 2.2% 97.8%

SVM, 17 24 17 70.8% 29.2%

Sleepiness

SVM, 36 39 36 92.3% 7.7%

SVM,, 36 885 36 4.1% 95.9%

SVM; 36 56 36 64.3% 35.7%

Fatigue

SVM, 47 52 47 90.4% 9.6%

SVM,, 47 629 47 7.5% 92.5%

SVM, 47 56 47 83.9% 16.1%

Overall

SVM, 100 113 100 88.5% 11.5%

SVM,, 100 2299 100 4.3% 95.7%

SVM, 100 136 100 73.5% 26.5%
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Fig. 7. Type IV simulated fall (Experiment I).

6.3. Discussion

In Experiment I, SVM, and SVM; performed better than SVM,, in
terms of specificity. This result indicates that the specificities for SVM,
and SVM; were more stable than that of SVM,, when facing a variety
of tested motions in the experiment; thus, these algorithms may be
more suitable for construction operations, which also feature a variety
of motions. The calculation of SVM,, is based on angular velocity and
is thus more sensitive to different types of motion. As a result, the
specificity fluctuates more widely, as shown in the example of Type VI
(99.0%) vs. Type IV (88.5%). Although SVM,, did not perform well in
this experiment due to its sensitivity, we still used it in Experiment II
in the hope that it would provide useful information regarding sudden
sway motions.

Fig. 7 plots the raw acceleration (Fig. 7-1) and angular velocity
(Fig. 7-2) signals for sampling data from Type IV simulated falls. Fig. 7-
3 shows the results of the three algorithms in different colors, with
horizontal lines representing the corresponding thresholds. An alarm
was activated when the result exceeded the corresponding threshold.

In addition to the distinction between falls and non-fall motions, we
can also further distinguish standing or squatting from tiling motions.
Fig. 8 shows an example of the SVM, and SVM values (blue and green
lines, respectively) for the six types of fall processes, including set-up,
tiling in squatting or standing positions, and back or lateral falling. As
indicated for Types Il and IV, both SVM, and SVM, show significantly
different oscillation patterns for squatting or standing compared to
tiling. In other words, squatting or standing could be distinguished by
applying the appropriate threshold.

However, neither SVM, nor SVM, showed significantly different os-
cillation patterns between stoop and tiling (i.e., Type V and Type VI).
Thus, stooping could not be as easily identified as squatting or standing.
One possible explanation is that the accelerometer attached to the
subject’s waist swayed very little when the subject stooped.

For the same reason, none of the algorithms could detect tiling
motions because they mainly involved hand motions instead of waist
motions. As shown in Fig. 8, the waist-attached accelerometer only
generated a slight oscillation in all six types of falls for the tiling motion.
Therefore, a distinction between productivity and non-productivity
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Fig. 8. SVM, and SVM, for six types of falls (Experiment I).

motions does not appear to be feasible using the waist-attached acceler-
ometer and these algorithms.

Based on the results of Experiment I, SVM, is more discriminating
than SVM,, which smoothed out the oscillation with its time-offset
difference and thus reduced the distinction between different motions.
Furthermore, SVM, resulted in quite different oscillation patterns
both between falls and non-falls and between motion states such as
squatting and standing.

The results of SVM, are similar to those of SVM, in terms of oscilla-
tion, differing only in terms of vertical shift. The similarity is due to
the subtraction of two SVM, over very small intervals. Enlarging the

time interval or applying a moving average may accentuate the differ-
ence in the oscillation and is worth exploring in the future.

In contrast, the results of SVM,, (red signal in Fig. 7) were quite dif-
ferent from those of SVM, and SVM_. The results oscillated more acutely
and produced more peaks, many of which were false detections (6.4%).
Adjusting the threshold changed the accuracy by trading off sensitivity
and specificity but did not result in a better performance than that of
SVM, and SVM,.

Nevertheless, distinguishing each type of motion was not the
concern of this research. Considering the large amount of data obtained
from intensive sensor sampling and the comparatively slow computing
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Fig. 9. An example of SVM,, SVM,,, and SVM, for the sleepiness status (Experiment II).

power of current smartphones, we conclude that SVM, is the best
algorithm for use on current smartphones for Experiment I, providing
satisfactory accuracy.

Fig. 9 shows an oscillation example of SVM,, SVM,,, and SVM_ for the
sleepiness status of Experiment II. The associated threshold is also
presented in the same color as each corresponding algorithm. Within
the presented time frame, there were four identified portents, which
are marked with orange diamonds. It is clear that, although three
algorithms could detect all portents, the false detection rates were
quite different among the three algorithms because of their degree of
oscillation. SVM, showed the lowest false detection rate, and SVM;
exhibited a similar false detection rate. However, SVM,, demonstrated
the worst false detection rate due to its over-sensitivity.

As shown in Table 6, the modified accuracies of the proposed
algorithms in Experiment Il were not as good as expected; in particular,
the SVM,, had an accuracy rate of only 4.3%. The errors may be attribut-
ed to at least the following two issues. First, the motion detected when
the subject moved regularly is similar to the motion detected when the
subject accidently crossed over the watch zone due to a temporary loss
of alertness instead of LOB. Second, it was difficult to distinguish the
motion of the subject's self-reported event, in which the subject, due
to temporarily losing focus, slowed or stopped their motion briefly
without any sudden sway. Both of these motions resemble regular
movement at work, and motions without abrupt changes are difficult
to detect. It should be noted that the objective of the thresholds present-
ed here was to detect all identified portents. To this end, it was
necessary to lower the thresholds, thus creating more false detections.
In other words, if the algorithm was not required to detect all of the
identified portents, increasing the thresholds may have improved its
accuracy rate.

The best performer, SVM,, exhibited higher accuracy rates under the
sleepiness (i.e., 92.3%) and fatigue statuses (90.4%) than under the
normal status (i.e., 77.3%). One possible explanation is that most of the
portents of the subjects under the normal status were related to lost
awareness without any sudden sway, whereas many portents of

subjects under the abnormal statuses were related to sudden sways.
In other words, the abnormal statuses produced many more portents,
and those portents were often accompanied with obvious sways, thus
increasing the accuracy rate.

SVM, showed the highest accuracy and SVM,, the worst in both
experiments. The sudden sways of fall portents are not as obvious as
falls. Therefore, fall portents cannot be detected as easily as falls.
Although SVM,, was the most sensitive algorithm among the three
algorithms, this advantage became a disadvantage in both experiments
because the sensitivity generated many unwanted noise signals. There-
fore, the threshold algorithm based on angular velocity is not feasible for
detecting fall portents. Nevertheless, this finding does not rule out the
algorithm's application in other scenarios, such as the detection of
productivity or work posture.

It should be noted that the subjects always had an iPhone attached
to their waist throughout the entire experiments. Attaching the phone
to a different body part results in different noise signals, and the accura-
cy and the best algorithm may also change. Like most studies using a
single accelerometer attached to the waist to detect the falls of patients
or the elderly, we also chose to attach the iPhone onto the belt because
the waist is the center of body mass and results in less noise compared
to that generated by other human parts such as the head or hand.
Although the presented data demonstrate that attaching the device to
the waist produces an acceptable accuracy rate for detecting fall-prone
motions, the accuracy rate is unknown if the same device is attached
to a different body part.

7. Conclusion and future developments

Fall accidents have been the leading cause of fatalities in the
construction industry for decades. The objective of this research was
to study the feasibility of detecting falls (Experiment I) and fall portents
(Experiment II) in a construction work scenario, which involves more
complicated motions than those explored in previous studies
concerning healthcare scenarios for the elderly and patients. Three
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algorithms, SVM,, SVM,,, and SVM, were studied using a variety of
thresholds, and the results of the best thresholds were presented in
this paper.

In Experiment I (simulated falls), we designed six types of
falls, which included work-related motions such as tiling, standing,
squatting, and stooping, to evaluate whether those motions affect fall
detection. In Experiment II (fall portents), we identified sudden
swaying, unsteady footsteps, and LOB as fall portents and attempted
to detect them during a normal tiling operation. We also performed
the same experiment for subjects experiencing sleepiness and fatigue
in addition to the normal status.

In both experiments, all three algorithms performed quite well, with
100% sensitivity, meaning that all falls or fall portents were successfully
detected. The main difference observed among the algorithms was
in their specificity. In Experiment I, all three algorithms exhibited
acceptable overall specificity performance: SVM, had the highest
specificity (96.1%), and the specificities for SVM; and SVM,, were
94.6% and 93.6%, respectively. Thus, the false-detection rate ranged
from 3.9% to 6.4%. We conclude that SVM, is the best algorithm for
use in current smartphones for Experiment I, and its accuracy is also
satisfactory. Additionally, based on the good performance achieved in
this study, which is similar to the results reported in previous studies
regarding healthcare scenarios, we can also conclude that a more
complicated working operation such as tiling barely affects the sensitiv-
ity and specificity performance of the algorithm in terms of detecting
falls.

In Experiment II, both SVM, and SVM also performed quite well
overall, with a sensitivity of 100% and a specificity ranging from 99.7%
to 99.9%. SVM,, performed well in terms of sensitivity (i.e., 100%) but
less well in terms of specificity (i.e., 83.1%). However, due to the
extremely large amount of motion data collected from the long experi-
ment, the specificity was actually insensitive and indiscriminative,
which forced us to introduce a modified accuracy measurement from
the perspective of detections instead of the entire sample. The modified
accuracy values for SVM,, SVM,,, and SVM; were 88.5%, 4.3%, and 73.5%,
respectively. Taking the best performer, SVM,, as an example, 88.5%
of the triggered alarms were actually fall portents identified by self-
report, obvious swaying, or line-crossing, and 11.5% were false
detections. Thus, among the 113 alarms triggered by SVM,, only 13
were false alarms. We therefore conclude that using SVM, to detect
portents in a tiling operation is feasible.

Based on this finding, on-going research will attempt to apply the
algorithm to a variety of working operations exposed to falling hazards
such as welding at high elevation or repair work in an elevator vault. We
will also attempt to build a more complex, integrated sensor scheme
that involves multiple individual accelerometers attached to a vest or
different parts of the body other than the waist, such as the arms. The
scheme will also include a brain wave sensor, such as EEG (electroen-
cephalography), attached to the inside of a safety helmet. The signals
recorded by these sensors can be wirelessly transmitted to a
smartphone, which can act as an individual temporary data center and
perform integrated analysis. Multiple smartphones worn by different
workers may then transmit preliminary data wirelessly to a data center
in a site office to perform further trend and team analysis. When those
sensors detect a fall portent, the system should warn the worker and
notify the supervisor, who may adjust the work schedule or tasks
assigned to fall-prone workers.
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