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Abstract 

Large sized power transformers are important parts of the power supply chain. These very critical 

networks of engineering assets are an essential base of a nation’s energy resource infrastructure. This 

research identifies the key factors influencing transformer normal operating conditions and predicts the 

asset management lifespan. Engineering asset research has developed few lifespan forecasting methods 

combining real-time monitoring solutions for transformer maintenance and replacement. Utilizing the 

rich data source from a remote terminal unit (RTU) system for sensor-data driven analysis, this 

research develops an innovative real-time lifespan forecasting approach applying logistic regression 

based on the Weibull distribution. The methodology and the implementation prototype are verified 

using a data series from 161 kV transformers to evaluate the efficiency and accuracy for energy sector 

applications. The asset stakeholders and suppliers significantly benefit from the real-time power 

transformer lifespan evaluation for maintenance and replacement decision support. 

Keywords: Condition based maintenance (CBM), prognostics and health management (PHM), logistic 

regression, remaining life prediction, sustainable engineering asset management 

 

1. Introduction 
The asset condition data collected often fail to 

prevent emergency shutdowns and costly 

interruptions of services. Especially for the 

electrical power supply industry, electrical 

outages cause great dissatisfaction with both 

residential and industrial users and potentially 

devastating losses to society. Thus, the means to 

ensure a sustainable and reliable power supply is 

crucial to both public and private sectors. Arshad 

et al. (2004) and Jardine et al. (2006) indicate that 

a condition-based maintenance (CBM) approach 

improves transformer’s performance, reliability 

and technical life. Further, a transformer’s timely 
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replacement and retirement is better planned 

based on its real time condition. Abu-Elanien & 

Salama (2010) present a comprehensive 

illustration of the transformer asset management 

activities which use condition monitoring 

techniques to design maintenance plans, 

investigate lower cost maintenance methods, 

assess transformer health, classify transformer 

lifetime type, and define the end of asset life 

criteria. Bangemann et al. (2006) proposed an 

integrated platform to constitute the framework 

of systems implementing remote maintenance 

and other applications related to asset 

management. Chen et al. (2011) use vector 

machines to analyze the failures of turbines in 

thermal power facilities. These models are useful 

tools for developing and implementing asset 

management systems and strategies. However, 

there is little research combining advanced asset 

lifespan prediction with real-time remote 

transformer condition monitoring data. 

In this research, we study power transformers 

as an asset with a critical role in the power supply 

network. Large transformers are often placed in 

remote areas, so the operating health status might 

not be detected immediately even though 

scheduled maintenance and repairs are conducted. 

Many current transformer asset management 

systems lack intelligent and effective processes to 

prevent sudden power shut downs through 

improved forecasting capabilities to predict the 

remaining useful life (RUL) of the components 

and systems. This research uses real time 

condition monitoring data of power transformers 

to predict transformer RUL as well as operating 

conditions. The real time remote data collected 

include the amounts of combustible dissolved gas 

and furfural chemicals generated in the 

transformer oil reservoir and other parameters 

associated with the transformer operating 

conditions. These condition data are used to 

evaluate the health status of the transformer and 

predict operating health and remaining life, 

similar to general machineries CBM and PHM 

practices (Wang et al. 2002, Lee et al. 2006). 

Using this outcome, decision makers are more 

informed when making critical operation and 

maintenance decisions. This expected result 

prevents unexpected failures and extends the life 

of a transformer towards optimal usage and 

life-cycle benefits. 

2. Literature Review 
In this section, the research literature related 

to transformer insulation deterioration and 

diagnosis methods of oil-immersed transformers 

are discussed. 

2.1 Insulation Deterioration of 
Oil-Immersed Transformers for 
Lifespan Evaluation 
Oil-immersed transformers are made of 

materials including copper, aluminum and other 

conductive materials such as steel-based core 

silicon materials, steel, stainless steel, insulating 

oil, insulating paper, pressed cardboard, and 

other structural and insulating materials. Among 

these materials, the insulating paper and oil will 

undergo significant electrical and mechanical 

degradation over time and, therefore, are viewed 

as good indicators for predicting a transformer’s 

remaining life. The causes of deterioration and 

their classifications are described as follows. 

(1) Deterioration of solid insulation paper: When 

there are abnormalities during transformer 

operations, the solid insulation discharges gases 
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such as CO, CO2, H2 and C2H4. When the 

insulation paper is heated under low temperature 

for long periods of time, CO and CO2 are the 

primary gases discharged. Further, the insulation 

paper will produce H2, C2H4 and other harmful 

gases while operating under high temperatures. 

Because these gases are flammable, they can 

cause the transformer to malfunction and even 

explode. The rapid increase of these gases is a 

definite indicator of the degradation of 

transformer performance and remaining life. 

(2) Deterioration of insulating oil: The insulating 

oil decomposes and releases various types of 

gases, including CH4 at low temperatures and H2 

at high temperatures. If the insulating oil has an 

electrical current, then C2H2 and C2H4, in 

addition to H2 and CH4, may also be produced 

(Zheng 1993). 

Since the insulating oil can be replaced 

during the years of operation, the life of the 

insulating paper can be extended and better 

predict the life of transformer. Further, the 

degree of polymerization and tensile strength of 

insulation paper may indicate that the remaining 

life of a transformer has already been reduced. 

Based on the degree of polymerization of the 

insulating paper, many researchers have 

established a baseline for estimating the 

remaining life of a transformer (Wouters et al. 

2011, Stebbins et al. 2003). Liao et al. (2009) 

experimentally verified that the furfural contents 

and carbon oxides influence the aging rate of 

insulating paper. Pradhan & Ramu (2005) used 

carbon monoxide, carbon dioxide, 

2-Furaldehyde, total Furan contents, 

2-Acetylefuran and 5-Methyle-2-Furfural to 

calculate the aging of insulating paper to 

estimate transformer life. 

2.2 Diagnostic Methods for Transformers 
Dissolved gas-in-oil analysis is considered 

the most effective health diagnostic approach for 

transformers (Mosinski & Piotrowski 2003). At 

present, popular references for calculating the 

content ratio and type of gas-in-oil are based on 

IEEE and IEC standards (Institute of Electrical 

and Electronics Engineers 2009, International 

Electrotechnical Commission 2007). The IEEE 

Standard C57.104 (Institute of Electrical and 

Electronics Engineers 2009) describes the 

Doernenburg ratio method and Rogers ratio 

method used to evaluate the possible fault type 

by analyzing separate combustible gases 

generated. The Doernenburg diagnosis uses five 

different oil gases including H2, CH4, C2H2, 

C2H4, and C2H6. These key gases are useful to 

calculate four ratios: R1=CH4/H2, R2= 

C2H2/C2H4, R3=C2H2/CH4 and R4=C2H6/C2H4, 

which determine failure modes such as thermal 

decomposition, low-intensity partial discharge, 

and high-intensity partial discharge. Rogers 

diagnosis uses five gases, H2, CH4, C2H2, C2H4, 

and C2H6, to compute three gas ratios, i.e., R1, 

R2 and R5= C2H4/C2H6, as the fault diagnosis 

parameters. The diagnostic results are classified 

into six potential fault types. The diagnostic 

types are normal (no fault), low-energy density 

arcing, arcing with high-energy discharge, low 

temperature thermal, thermal lower than 700℃, 

and thermal higher than 700℃. Using the IEC 

60599 specifications (International Electro 

technical Commission 2007), the Duval Triangle 

method was derived to determine whether 

hydrocarbon gases or hydrogen exceeds the 

safety limits and whether the gas generation 

levels are within a given limit. If the limit is 

reached, then the engineer calculates the total 
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accumulated amount of CH4, C2H2 and C2H4 and 

divides each gas by their total summation 

amount (in terms of percentage). The plot of 

these gas’ percentages in the Duval Triangle help 

diagnose the fault types of the given transformer 

(International Electrotechnical Commission 

2007), e.g., discharge of low or high energy, 

thermal faults, etc. 

2.3 Applications of Logistic Regression 

Logistic regression (LR) is known as a 

generalized linear regression model for fitting a 

model to a data set which may contain 

continuous, discrete, or mixed variables. 

Trappey et al. (2011a) applied logistic regression 

to predict RFID technology maturity based on 

the cumulative numbers of RFID patents filed 

over a period of years. The cumulative numbers 

of patents are plotted to fit an S-curve, which is 

used to explore RFID technology lifecycle 

trends. Since the S-curve has symmetry at the 

inflection point, the inflection point may be used 

to identify and predict the maturity of research 

and development strategies. Duda et al. (2001) 

applied logistic regression as a pattern 

classification approach to solve automatic 

dual-categorization problems and to interpret the 

relationships between independent and 

dependent variables of given patterns. Further, 

Liao et al. (2006) also use a logistic regression 

model to predict remaining life of bearings in 

rotating part machinery. However, there is little 

research which forecasts remaining asset life 

using logistic regression. In this study, we apply 

logistic regression, combined with the Weibull 

distribution, to predict the remaining life of a 

transformer in service. 

2.4 Applications of the Weibull 
Distribution 
Asset maintenance is necessary to keep 

assets (e.g., equipment, machinery) operating 

within normal parameters and healthy conditions. 

Assets include long-life structures such as 

bridges, dams, and skyscrapers which are 

important targets in CBM and PHM. Some 

literature report Structure Health Monitoring 

(SHM) solutions using remote sensor 

technologies to collect health or damage data for 

prognostic and analytical model prediction 

(Balageas et al. 2006, Farrari & Lieven 2007). 

Further, Markov Chains are commonly applied 

for structural asset remaining life prediction (Yu 

et al. 2010). 

For transformer health management, 

conventionally pre-scheduled maintenance is 

effective, although the cost is high. In order to 

reduce costs, Suwanasri & Suwanasri (2009) use 

an engineering asset management system to 

systematically record failure statistics, the 

equipment condition data, the environment 

information, operational status, fault details, and 

other related information to build predictive 

models. Researchers apply the Weibull 

distribution for engineering asset life forecasting 

(Abernethy 2006). The Weibull distribution is 

adopted to compute the failure probabilities of 

different components for a given transformer. By 

identifying the most important components, 

operating efficiencies, and by calculating the 

transformer’s remaining life, maintenance 

personnel are better enabled to improve 

strategies for maintenance and management. 

Jahromi et al. (2009) use a set of transformer 

data to calculate a Health index (HI) value 

including dissolved gas, oil condition, furfural 
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contents, historical load conditions, maintenance 

data, and objective and quantitative indicators of 

transformer on-site inspections. The HI values 

are used to calculate the transformer failure 

probability and are fitted to the Weibull 

distribution to estimate the remaining life. This 

approach demonstrates that the Weibull 

distribution is useful for formulating strategic 

transformer maintenance programs for extensive 

lifetime usage. 

3. Lifespan Evaluation Methodology 
The normal and abnormal field data collected 

from a transformer, both historically and in real 

time are used to create a logistic regression model. 

The logistic regression model calculates the 

failure probability value P. By computing the P 

value for a given transformer, the logistic model 

is used to calculate the expected life. In 

combination, the Weibull distribution is used to 

calculate the failure mean time and estimate the 

time of occurrence of different abnormal 

conditions. The data-driven lifespan evaluation 

modeling process is developed and implemented 

as an analytical module in Figure 1. 

 

Figure 1 Lifespan evaluation process 
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Logistic regression as proposed by Berkson 

(1944) is similar to regression analysis and treats 

the dependent variable as a binary variable. Many 

scholars note the advantages of logistic 

regression for dependent variables with two 

categories of nominal variables. This method can 

also be used to predict the odds ratio of events. 

The logistic regression curve yields an S-function 

for the analysis of data as a probability model. By 

classifying output variables as 0 or 1 (“normal” 

and “abnormal”), the odds ratio is defined as the 

probability that one thing will happen divided by 

the probability that it will not happen. If the 

probability P(Y) = 0.5 is set as the cut off value, 

then values above 0.5 are identified as 1. When 

the dependent variable is a binary variable, then 

the results are either normal (Y = 0) or abnormal 

(Y = 1), and the general linear regression model Y 

is expressed as Equation (1): 

0 1 1 2 2 k kY X X X               (1) 

where kX  represents the kth value of the input 

variable. However, using the general linear 

regression model to predict binary dependent 

variables, the dependent variable estimates may 

fall outside (0, 1). Therefore, a logistic regression 

transfer function known as the logit function, 

ln(p/1p), is used to convert the results to linear 

form, as shown in Equations (2) and (3): 
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where p is the failure probability. The failure 

probability divided by normal probability p/(1p) 

is called the odds ratio, and ln(p/(1p)) is called 

the odds logarithm. In other words, let 

 1 2, , , ,kx x x   and assume  p   is the 

failure probability which belongs to the logistic 

distribution. Then, 
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where  g   and p has a positive relationship 

and the logit function converts the output p-value 

to (0, 1). 

4. Building a Sustainable Engineering 
Asset Management Network 
A sustainable network system for remote 

terminal units (RTU) engineering asset 

management (EAM) is developed in this research 

for the power industry which can also be 

configured and generalized for other asset 

intensive industries. The framework of the 

RTU-based EAM system includes real-time 

condition parameters and historical data 

monitoring, real-time fault diagnosis, and 

remaining life estimation for decision support. 

The case study in Sections 4.2, 4.3, and 4.4 

describes the application of the logistic 

regression model with the Weibull distribution 

for establishing the transformers’ lifespan 

evaluation. Accordingly, the historical and 

real-time data are collected and organized 

empirically to build the RTU-based EAM 

network system. Logistic regression calculates 

the historical p-value of period N, and the 

resulting model is used to estimate the remaining 

life of a transformer. Further, the Weibull 

distribution analyzes the likely failure conditions 

of the transformer. 
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4.1 The RTU System Design 
As shown in Figure 2, there are three data 

sources feeding condition data to the engineering 

asset data warehouse. Users collect real time data, 

manage historical test data, diagnose transformer 

conditions, and calculate the transformer lifespan 

using the RTU system network platform. 

Data sources are divided into three categories 

including real time data, historical data, and 

general equipment information, to build the 

engineering asset database. Remote sensors are 

installed on transformers to measure and record 

voltage, current, temperature and dissolved gases. 

These data are transferred to the database 

continuously over the information network. 

Periodic test reports are generated and the data 

records, such as combustible gases and furfural 

concentrations, are updated in the database. The 

real time data are systematically integrated with 

the historical data. Further, the identification data 

of the transformers (i.e., equipment information), 

including equipment number, equipment series, 

and the installation records, are used as relational 

database keys. All data are consolidated and 

organized into an engineering asset data 

warehouse to support system modules for 

monitoring and diagnosing transformer 

conditions and evaluating their life spans. 

The system modules are divided into 

condition monitoring and diagnosis and lifespan 

evaluation. The condition monitoring and 

diagnosis includes parameter tracking and faults 

diagnosis, which have been studied previously 

(Trappey et al. 2011b). The parameter tracking 

displays the load condition of voltage, current, 

temperature and dissolved gas. The transformer 

condition is diagnosed using the IEEE 

Doernenbur ratio, IEEE Rogers ratio, and IEC 

Duval triangle approaches. If alarm levels are 

reached, the website notifies equipment 

engineers by sending a mobile phone short 

message to request an emergency response. 

There are two lifespan evaluations, using logistic 

regression and the Weibull distribution, for 

accurate maintenance and replacement decisions. 

Therefore, by using the intelligent system 

modules, asset stakeholders, managers, engineers, 

and asset maintenance providers can monitor, 

control, and improve the transformer lifetime 

usage conditions. 

4.2 Logistic Regression Model – Case 
Example 

For the case study, 679 data points obtained from 

a series of 161 kV transformers were collected. 

The data set contained 623 normal data sets and 

56 abnormal data sets, which were fitted to the 

logistic regression (LG) model. The independent 

variables include 9 combustible gases, the sum of 

combustible gases, and 5 furfural concentrations. 

These variables are oxygen (O2), nitrogen (N2), 

carbon dioxide (CO2), carbon monoxide (CO), 

hydrogen (H2), methane (CH4), ethane (C2H6), 

ethylene (C2H4), acetylene (C2H2), total 

combustible gases (TCG), 5-Hydroxymethyl- 

2-Furaldehyde (5-HMF), 2-Furaldehyde (2-FAL), 

2-Furfuryl Alcohol (2-FOL), 2-Acetylfuran 

(2-ACF), and 5-Hydroxymethyl-2-Furaldehyde 

(5-MEF). The dependent variable is a binary 

variable of 0 (normal) or 1 (abnormal). Using 

Predictive Analytics Software statistics (IBM 

2011), six condition variables are used to build 

the backward conditional linear regression (LR) 

model as shown in Equation (5). Further, 

Equation (5) uses a logit function to convert 

outputs to the (0, 1) range. The probability 
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Figure 2 A conceptual framework for a remote terminal unit (RTU) intelligent system network 

 p 0.5  indicates a normal operating mode, 

and  p 0.5  indicates an abnormal mode. 

After comparing the 679 real observations with 

the corresponding prediction outputs, as shown in 

Table 1, the accuracy of the LR prediction 

achieves 94%. Table 2 shows the partial data sets 

of independent variables (columns A to P) and a 

dependent variable (column Q) applied to build 

the logistic regression model. The original data 

(from column A to column P) are inputs for 

Equation (5), which calculates the p-values 

(column Y). The lifespan predictions are 

determined (column X) by comparing values to 

the 0.5 threshold. The p-values of new data set 

are calculated and the health modes of 

corresponding transformers are derived using 

Equation (5). 

 g  =4.4970.016[C2H4]+0.685[C2H2] 

0.008[CO]+0.01[TCG]+0.244[2-ACF] 

0.564[5-MEF] where   = (C2H4, C2H2, CO, 

TCG, 2-ACF, 5-MEF), the condition variables 

    (5) 

4.3 Lifespan Evaluation for a Specific 
Transformer 
For the case study, four transformers, T1, T2, 

T3 and T4, are used to calculate the failure 

probabilities (p-values) using field data. Using 

the p-values (p) and the corresponding year (t) as 

inputs to the logistic model shown in Equation 

(6), Predictive Analytics Software statistics (IBM 

2011) are applied to derive the coefficients a and 

b. For the case study, inputting values in columns 

A to P of Table 2 into Equation (5), the p-values 

(column Y) for a given transformer are  

Table 1 The results of the LR model applied to the 161 

kV transformer series 

 
Predictions

Observations   

 
 

Normal 

 
 

Abnormal 

 
 

(Total)

Normal 614 9 623 

Abnormal 33 23 56 

(Total) 647 32 679 
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calculated. Using the p-values (column Y) and 

the current operating age as model inputs (6), the 

curve estimation logistic model is derived. 

1

1 t
p

a b


 
              (6) 

Figure 3 shows the transformer years and 

their corresponding failure probabilities when 

plotted (using symbol “。”) against the predicted 

life logistic models. By comparing the four 

transformers’ life models in one figure (Figure 4),

Table 2 Partial dataset from a series of 161 kV transformers including combustible gases (ppm), furfural 

concentrations (ppb), transformer’s condition, operational years, p-value, and condition of prediction

Unit1 (A) 
O2 

(B) 
N2 

(C) 
CO2 

(D) 
CO 

(E)
H2 

(F)
CH4

(G)
C2H6

(H)
C2H4

(I)
C2H2

(J)
TCG

(K) 
5-HMF

… 
 

(P) 
TFC 

(Q)2 

 
(X)3 

 
(Y)
p 

T1 37 2262 13638 1182 6 27 0 25 78 173 0  0 0 0 0.0302

T2 3566 12602 531 39.6 11.7 20.7 12.6 2.52 0 87.1 0  0 0 0 0.0184

T2 3959 20874 1159 41.4 2.2 46.2 93.4 32.2 0 215 0  0 0 0 0.0393

T2 7285 37932 750 19.2 1.2 35.2 52.6 28.9 0 137 0  0 0 0 0.0229

T2 5871 32426 430 32.1 48.2 53.5 36 23.6 0 193 0  0 0 0 0.0390

T2 3318 41782 1189 45.4 4.4 94.4 80.3 32.2 0 257 0  0 0 0 0.0566

T2 2228 18660 1677 34.2 23.5 72.6 94.4 6.4 0 231 0  0 0 0 0.0718

T2 3088 21712 324 26.2 1.7 71.9 53.9 8.2 0 162 0  0 0 0 0.0385

T2 4096 27565 3715 68 15.2 184 247 22.5 0 537 0  0 1 0 0.4909

T2 5211 26990 2217 50.1 5.5 97.1 143 16.2 0 312 0  0 0 0 0.1156

T2 2216 17141 2873 46 30 114 206 28 0 424 0  0 0 0 0.2533

T3 2546 19296 5148 106 71 142 242 71 0 632 0.9  18.9 0 0 0.3184

T4 3492 11988 694 7 21 10 48 5 0 91 2.6  40.8 0 0 0.0014

T5 3576 7939 37 2.6 0 0.1 0 0 0 2.6 0.8  31.8 1 1 0.8654

T6 3519 30939 1610 425 18.5 318 96 228 6.1 1092 0.9  19.8 1 1 0.9758

T7 2626 75962 2788 178 57 245 388 35.1 0.5 907 0  0 1 1 0.9484

T8 4137 21237 546 16.6 23.5 42.4 31 7.4 0 121 0.1  8 0 0 0.0188

T9 2898 30682 2488 49 42.6 101 131 16.2 0 340 0.4  5.3 0 0 0.1499

T10 2695 27405 2247 64.5 30.9 54 59.9 22.4 0 232 4.7  48.6 0 0 0.2274

T11 2228 7373 1220 21 46 65 52 72 0 256 0  0 0 0 0.0360

T12 11539 48270 1547 28 63 78 141 14 0 324 0  0 0 0 0.1532

T13 42.6 2898 30682 2488 16.2 131 0 101 49 340 0.4  5.3 0 0 0.1499

1 Ti represents transformer unit i of the 161 kV series. 

2 Transformer’s condition may be normal (0) or abnormal (1). 

3 The result of prediction with the threshold being p=0.5 (0 is normal and 1 is abnormal). 
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T1 has the steepest curve among four 

transformers, indicating a shorter remaining life 

than the other 3 transformers. On the other hand, 

T2 shows the greatest operational stability so its 

life expectancy is expected to be longer than the 

other transformers. By referring to Figure 4’s 

transformer life curves and considering the years 

of operation (ages), T1’s remaining lifespan is 

approximately 16 years, T2 is 20 years, T3 is 19 

years, and T4 is almost 18 years. 

4.4 Predicting the Transformer’s State 
Using the Weibull Distribution 
There are 11 abnormal data points from the 

gas-in-oil readings in the case study. Using 

Minitab statistical software (Minitab Inc. 2011), 

the P-P plot is shown in Figure 5. This figure 

indicates data compliance with the Weibull 

distribution (β=3.141, η=11.67 years, γ=2.589 

years). The value of η (=11.67) means that when 

approaching 12 years of service, the transformer 

will likely enter an abnormal state with greater 

likelihood of failure. Figure 6 also shows that 

the Weibull distribution’s cumulative 

distribution function fits the logistic transformer 

life model with good results. Since the sampling 

data accurately fit the Weibull distribution using 

the derived parameter values, the research 

concludes that the transformer life span can be 

properly represented using the logistic 

regression model.

 

 
(a) The logistic model of T1: 

1

1 309.246 0.529t
p 

 
 

 
(b) The logistic model of T2: 

1

1 599.57 0.584t
p 

 
 

 
(c) The logistic model of T3: 

1

1 639.28 0.561t
p 

 
 

 
(d) The logistic model of T4: 

  1

1 214.799 0.568t
p 

 
 

Figure 3 The life logistic curves derived from the field data of four transformers 
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Figure 4 The logistic model of four transformers 
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Figure 5 The data fitness test using a Weibull 
distribution 

 

Figure 6 Cumulative distribution function of the 

Weibull distribution represented as an S-curve 

5. Conclusion 
Using real time condition monitoring, a 

sustainable and intelligent RTU engineering 

asset management network is developed for the 

oil-immersed transformer lifespan evaluation. 

This system integrates real time and historical 

data, diagnoses fault types using IEEE and IEC 

standards, and evaluates the transformer lifespan 

using both logistic regression and the Weibull 

distribution. The methodology is verified with a 

case study using data collected from a series of 

161 kV transformers. A total of 679 data sets 

from 121 transformers of 161 kV type are used 

for the empirical study. The logistic regression 

models of four transformers serve as examples 

to evaluate health status and compare remaining 

life expectances. The Weibull distribution is 

applied to identify the abnormal distribution of 

the 161 kV transformer series for general life 

prediction. This research emphasizes the 

development of analytical capabilities for a 

sustainable RTU engineering asset management 

network. The system integrates features by 

linking real-time and historical transformer 

condition data, updated health and fault status 

information, and reliable estimates of 

transformer lifespans for engineers and decision 

makers. 
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