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Budget Management of Network Capacity Planning 
by Searching Constrained Range and 
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Abstract-A communication network’s reliability, survivabil- 
ity, and interconnectivity are primarily based on the degree of 
interconnection between the existing nodes of the network. En- 
hancement of these characteristics can be obtained by adding 
direct communication links between nodes of the network. This 
process is generally subject to a budget constraint. From the 
service provider’s perspective, enhancing the interconnectivity 
of heterogeneous networks is part of operations evolution. 
However, the interconnectivity or link enhancement problem, 
for a given budget, is NP-complete. Decisions by considering 
multiple criteria improve previous work and may search only 
the constrained range. The constrained range is determined by 
a dominant set of multiple criteria. A review of pertinent pre- 
vious work, problem formulation, algorithm presentation, and 
discussion of improving the computation time with compromis- 
ing the optimality by using the multiple-criteria constrained 
range are also provided. 

I. INTRODUCTION 
ETWORK management is the process of controlling N a complex data network so as to maximize its effi- 

ciency and productivity [5], [6], [ 113. Most network man- 
agement tools are to monitor and report the network status 
or statistic. For strategic planning, the observations from 
network engineers will naturally lead to network capacity 
planning. Network capacity planning is the most time- 
consuming task to plan the changes required to keep the 
corporate communication network effective as a strategic 
asset while maintaining acceptable expenses [ 111. In both 
the telephone and computer networks, the network capac- 
ity planning is inevitably related to interconnectivity or 
survivability. Network interconnectivity has been studied 
mainly for the purpose of establishing fault-tolerant net- 
works. As fault-tolerant network is a direct consequence 
of good network management functions such as fault 
management, configuration management, and perfor- 
mance management [5], [6], [ 1 11. Many researchers have 
studied network interconnectivity based on concepts in 
graph theory that relate to either spanning trees [7]-[9] or 
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cutsets [12]. The specific problem of each research may 
be different, but the corresponding optimal solution to that 
problem can be proven intractable. Realizing the diffi- 
culty of the problems, several researchers have proposed 
heuristic approaches for solving network survivability 
problems [7], [ 121, [ 141-[ 161. Even with heuristic solu- 
tions, these algorithms are still computation intensive. In 
this paper, we show further improvements to the opti- 
mality and computation times [14]-[ 161. 

It is common that an existing network consisting of 
many nodes will contain some nodes that are directly con- 
nected with communication links, while some of them 
have to communicate indirectly through immediate nodes. 
Sometimes, it is desirable to add communication links be- 
tween nodes of a communication network enhancing the 
network interconnectivity , survivability, or performance. 
For an existing network, it is important and interesting to 
ask the question: What is the optimal link enhancement 
for a given budget? 

Suppose we have a table for all pairs of nodes which 
are not yet connected. For each pair of the nodes (i, j ), 
we have the information about the costs (cV) of establish- 
ing a link between them. In addition, we know the value 
pij  for the performance contribution when the link be- 
tween the pair of nodes (i, j ) is established. In the follow- 
ing discussions, we call pV a proJit that may simplify our 
usage of subscripts (since both “cost” and “contribu- 
tion” start with “c”). The value pV can be thought of as 
the contribution of the link connecting node i andj ,  either 
in interconnectivity or survivability measures [8], [9], 
[ 121. In our daily telephone communications, cij mainly 
indicates the cabling costs if the switching centers are to 
remain unchanged. It could be the reconfiguring costs of 
affected switching centers, whether the switches are in end 
offices, toll centers, o r  primary centers. As for the p V ,  it 
could be thought of as the reduced circuit switching time 
(delay) of successful connections or the increased circuit 
utilization time that contributes to the profit of telephone 
companies. Only complete calls contribute to profits. 
Without a successful connection, circuit-switching activ- 
ities may keep the end offices and intermediate toll centers 
busy, but collect no revenue. Worse yet, congestions in a 
network tend to propagate and may halt the entire network 
[lo]. 
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Now, the question can be stated as follows. Given an 
investment or budget in dollar amount B, what is the best 
strategy of networking link enhancement such that the 
overall network will have optimal interconnectivity? 
Managerial considerations usually give a budget figure so 
that, practically, we are solving the link enhancement 
problem with the given total costs. The link enhancement 
problem is NP-complete, and is reducible to the O/l-knap- 
sack problem which is a known NP-complete problem [3], 
[4]. The discussion can be found in [ 141, [ 151. 

For a given table size n,  if we try all possible combi- 
nations of the link selections to decide the optimal solu- 
tion, i.e., a complete enumeration, we may need O(2”) 
computation time in the worst case. This is because we 
have two choices for each link: to connect or not to con- 
nect. Solving this problem with the dynamic program- 
ming technique is also possible, but still intractable, i.e. , 
it takes O(2“) time [lo]. To understand why the optimal 
solution is so expensive and intractable, we need only 
consider a problem of size n = 60. The value 260 is on 
the order of In a calendar year, we have fewer than 
10’’ ns. Assuming we have a GHz “super” computer than 
can test one alternative in 1 ns, then we need one century 
(1019/1017) to test all 260 combinations. Given a budget of 
7000, Table I shows an example of an n = 20 problem 
that demands 2” iterations to obtain the optimal solution. 
We will use this example to explain various algorithms 
used in the following discussions. We choose n = 20 be- 
cause it is small enough to produce optimal solutions for 
sufficient sets of testing cases, and it is large enough to 
show that the task of finding its optimal solution manually 
is nontrivial. 

Generally speaking, we should find an algorithm that 
provides near-optimal solution and takes nonexponential 
time to compute [l] ,  [3], [4]. In this paper, we present 
the algorithms and explain the performance of the algo- 
rithm. In the following discussions, we assume that each 
link selection is independent of the others, except that the 
total budget B gets reduced. This is a reasonable assump- 
tion since usually we select only a small set (from 1 to 6) 
of links, and the assumption will simplify the algorithm 
to be presented. In reality, after each link selection, we 
have to update the pij for the entire network before the 
next selection takes place. However, the computation of 
pij is beyond the scope of this paper, and its computation 
time should not affect our results. Detailed justifications 
are given in the next section. 

The rest of the paper is organized as follows. Section 
I1 reviews and explains the linear search algorithms and 
presents the ideas of constrained range and reduced can- 
didate set. Section I11 reviews four examples chosen from 
[ 141: these examples are the only types of hard problems 
that can be found in [ 141, and will be used to demonstrate 
the improvement of the new algorithm. Section IV ex- 
plains the concept of dominant set and applies the multi- 
ple criteria decision [2] on four examples in the previous 
work. Section V concludes this paper. 

TABLE I 
EXAMPLE OF 20 LINKS TO BE CONNECTED AND THE CORRESPONDING PROFIT 

Link number Cost Profit 
1 1833 4140 

1754 3506 2 
3 1246 3819 
4 1529 2310 
5 2034 3370 
6 2568 5276 
7 1508 3859 

1608 4477 8 
9 1691 3269 
10 2112 3807 
11 1840 3661 
12 1960 3560 
13 2184 4440 
14 2549 2899 
15 2254 3643 
16 2289 4224 
17 1883 4368 
18 1682 1922 
19 1711 3844 
20 1578 3484 

11. CONSTRAINED SET AND REDUCED CANDIDATE 
SEARCHES BY USING LINEAR SEARCH 

ALGORITHMS 
A computer network can be thought of as a graph G (  V ,  

E), where V represents the vertices (nodes) and E repre- 
sents the edges (links) [l], [4]. Suppose we have a table 
consisting of tuples of the form (i, j ,  clJ, p,) where i and 
j are the node numbers in the network and clJ is the cost 
to establish the link between node i and node j ; the value 
p!, is the contribution of this interconnectivity or link en- 
hancement. We are trying to find a solution for a given 
investment B such that C cl, 5 B and C plJ is maximized. 
We can describe a generic linear search algorithm with 
the following steps. 

1 )  Select (remove) a link from the set of candidate links; 
add this link to the current network. 

2) B + B - clJ. 
3) Update the network profile, i.e., compute plJ for the 

4) Stop if B < clJ for all links. 
5) Go to step 1) .  
As we have mentioned above, step 3) will not be in- 

cluded in subsequent discussions. Practical applications 
justify this assumption: we generally have candidate links 
far apart, and a local adjustment will not affect remote 
areas or links. For instance, an expansion of switching 
capacity in a local end office of a telephone system or a 
reconfigured router of a local area network will hardly be 
visible to remote sites. Additionally, it hardly increases 
multiple links in a local area in capacity planning. In case 
we cannot avoid including step 3) in allocating the budget, 
we then must resort to adding one link at a time followed 
by a corresponding revision on thepb’s. The problem then 
is reduced to a trivial single-link problem, and many of 
the computations would be the iterative updates of pb’s 
Other than the practical measurement of plJ suggested in 
the last section, pv  can also be measured by a network’s 
topological factors: the link connectivity factor (LCF) and 

new network. 
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the node connectivity factor (NCF). A detailed discussion 
on the computations of LCF and NCF can be found in 
[7]-[9]. Even when the assumption of excluding step 3) 
is relaxed, all the algorithms presented in this paper are 
still applicable, except that each iteration works on a re- 
vised table. The relative merits among the algorithms re- 
main unchanged. 

A .  Linear Search Algorithms 
There are three variations of the one-way linear search 

algorithm, and they differ at step 1) in the ways they select 
a communication link. We first sort the table in nonde- 
creasing order on the value of crJ and extract the tuples 
with a value of clJ I B to form a feasible solution set 
called FS. A traditional optimal solution for the knapsack 
problem can be done by adding a field of rIJ = plJ/clJ to 
each tuple and sorting the list in nonincreasing order of 
rI/ .  We call this new list FS,, and it consists of tuples of 
(z,j, c y ,  p lJ ,  rlJ).  Without loss of generality, we can assign 
one link number to each node pair ( i ,  j ) to be considered, 
i.e.,  Table I shows only the link numbers instead of node 
pairs. Thus, in subsequent discussion, the list FS, consists 
of tuples of ( k ,  ck, Pk,  rk) where k denotes the link number. 
Note that the value of rk effectively measures the contri- 
bution per dollar amount. The solution is simply a selec- 
tion of links from the linear search of the list FS, until B 
is exhausted or becomes insufficient. If divisibility is al- 
lowed, this linear search algorithm, based on rlJ, gives the 
optimal solution 141 for knapsack problems. However, this 
solution will not give the optimal solution in 011-knap- 
sack or link enhancement problems. 

From FS, we can create two sorted lists FS, and FS,. 
FS, is sorted by clJ in nondecreasing order, while FS, is 
sorted by plJ in nonincreasing order. FS, of Table I is an 
ordered set (3 ,  7,  4,  20 - * 14, 6)  since link 3 has min- 
imum cost whereas link 6 has maximum cost. Similar to 
the linear search we have just described above, we can 
perform a linear search of list FS, and select links one at 
a time until the budget is exhausted or becomes insuffi- 
cient. Likewise, we can do a linear search of list FS, and 
obtain the selections. Since all three one-way linear search 
methods, based on FS,, FS,, or FS,, are not optimal, we 
can always construct examples that defeat them easily. 
Note that in subsequent discussions, the ratios in FS, have 
been scaled up ( lo3) into integers for readability. 

Instead of one-way linear search methods described 
above, we may make decisions by observing the two lists 
jointly. For example, we may use FS, and FS, together to 
obtain the selections. We start the linear search separately 
on these two lists, one link at a time. We use the voting 
or counting scheme to select the link. Whenever we en- 
counter a link such that the link has been visited in FS, or 
FS,, the counter associate with the link is incremented. 
When any counter reaches a preset threshold value, e.g., 
2 ,  this link is added to the network. The value B is up- 
dated by subtracting ck of the candidate link. We continue 

the linear search until B is either exhausted or becomes 
insufficient. This counting method is called a voting al- 
gorithm since each link accumulates the votes from dif- 
ferent lists until it gets enough votes. The preset threshold 
in a two-way linear search is set to 2 since each link can 
get a maximum vote of 2. If the threshold is set to 1, the 
two-way search algorithm reduces to a one-way search. 

B. The Best of Linear Heuristic Algorithms 
All the heuristic algorithms discussed above are greedy 

in nature in that each sorts the FS in a certain order and 
allocates the available budget accordingly. Since sorting 
can be done in O(n log n) time, we can achieve our so- 
lution in O(n log n) time. However, from our study, none 
of them consistently outperforms the others. It is natural 
to select the best among them, i.e., we can find seven sets 
of solutions and pick the best one from them. In the ex- 
ample of Table I, Srp provides the best solution of P ,  = 
16 844. Solutions such as S,., S,, S,, S,,, S,,, SrP, are then 
ignored. By doing this, we select the best solution from a 
group of heuristic algorithms and call it BGH (the Best of 
Group of Heuristic). Unfortunately, even with six heuris- 
tic algorithms to choose from one cannot guarantee the 
optimal solution. The optimal solution of Table I is Sopt 
= (3, 6 ,  7, 8 )  with Popt = 17 431. 

C. Constrained Range and Reduced Candidate Set 
Two major improvements can be made over the linear 

search algorithms explained above: constrained range 
(CR) and reduced candidate set (RCS). The first method 
is to constrain the solution search space in a feasible range 
which is determined by the available budget and the given 
costs of links. To constrain the range, the method does 
not compromise the optimality ; the method simply tight- 
ens the feasible space. The second method, however, does 
compromise in trading computation time for the possibil- 
ity of losing optimality. The combined method of CR and 
RCS is called CRCS. The first step of CRCS is to form 
the RCS, that is, to consider only those links that are can- 
didates in various linear search algorithms. It is this step 
that compromises the optimality. The second step of 
CRCS is CR, that is, to restrict the number of links to be 
selected in a constrained range instead of the entire range 
of [0, n]. We now explain in more detail. An example 
with numerical value can be found in Example 1 of the 
next section. 

Given a budget B and costs of candidate links ci, we 
may find the optimum solution within a constrained range, 
hence saving computational costs. Let Cmin and C,,, be 
the minimum and the maximum ci,  respectively. Notice 
that with the given B,  we can readily compute the con- 
straints: the upper limit UL = LBICminJ and the lower 
limit LL defined as 

LL = rB/Cmaxl if FS,(n - 1 )  5 r 

LL = LB/Cmax] if FS,(n - 1) > r 
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where r = B - E 7 = n - l + l  FS, ( i ) ,  1 = LB/CmaxJ , and 
L J and r 1 are floor and ceiling, respectively. 

LL indicates the number of links we can increase when 
all of the budget is used for each link that requires C,,,,,. 
In a practical sense, this is the minimum number of links 
we can add. The ceiling in the LL expression represents 
the possibility that the leftover of BIC,,, may be sufficient 
for yet another link. If this possibility is void, the floor 
option is chosen for conservative computation. UL, how- 
ever, represents the number of links that we can increase 
when all of the budget is used for each link that requires 
Cmin. UL is the maximum number of links we can add. 
The floor in the UL expression represents the impossibil- 
ity that the leftover of B/Cmi, can be used for any other 
link since no link costs less than Cmin. The LL and UL 
give us the range in which the optimum solution should 
lie: [LL, UL] instead of [0, n ] .  In other words, the number 
of links we can add with the given budget is in the con- 
strained range [LL, UL].  In practice, once we obtain the 
solution from linear algorithms, we can squeeze this con- 
strained range further and greatly reduce the computation 
time. We explain the squeezing methods in Section 11-D. 

The philosophy behind the RCS is that if a link should 
be in the optimal solution set, this link must have a high 
probability of being selected by one of the linear search 
algorithms. In other words, if we want to improve the 
result from the linear search algorithms, all we need is to 
examine only those links that have been selected by the 
linear search. This method, the RCS, rejects links that 
may or may not be in the optimal solution set; therefore, 
it may not reach the optimal solution. Hopefully, the gain 
in this heuristic is justified by both a shorter computation 
time and a higher probability of reaching optimality. Let 
the contribution to the best solution from a linear algo- 
rithm using CRCS be Plinear. 

In the previous section, the optimum solution was cal- 
culated within the range of [0, n] with the computational 
costs of O(2"): just for each of the n = 27 case, we used 
37 user hours (single user) of VAXl1/785. Thanks to the 
CR for optimal solutions and CRCS for heuristic solu- 
tions, it is now practical to test 3960 cases up to n = 31 
and they are reported in [ 141. 

D. Squeezing the Constrained Range 
With the solutions of linear search algorithms, we can 

squeeze the constrained range for both the RCS and exact 
optimal solution. The maximum number k that satisfies 
E:= I FS,( i )  < Pllnear may squeeze the LL further: LL + 

max(LL, k + 1 ) .  In other words, if the best k choices of 
FS,( i )  cannot beat the Pllnearr then we are sure that LL 
should be no smaller than k .  By a similar scenario, the 
maximum number k that satisfies E:= I FS,( i )  s B may 
squeeze the UL further: UL = min (UL, k ) .  In other words, 
if the best k choices of FS, ( i )  are very close to B such that 
no more links can be added, then we are sure that UL must 
be no greater than k .  

Example 1 :  This example uses numerical values to il- 
lustrate the above discussions, and it shows that the CRCS 
method can find the optimal solution without an exhaus- 
tive search. We can apply a one-way linear search to the 
problem of Table I. For example, using FS, alone, with 
a budget of 7000, we can select links (3, 7,  4 ,  20) and 
achieve the total profit of 13 472. We call this set of links 
S,, meaning the solution set based on FS, only. The total 
profit obtained is called P,. Similarly, we can verify the 
following solutions: Sp = (6, 8, 13) and P, = 14 193, 
S, = (3,  7,  8, 17) and P, = 16 523. 

In the two-way search, based on FS, and FS,, we obtain 
the solution S,, = (3,  7,  8 ,  20) and P,, = 15 639. Sim- 
ilarly, one can show that S,, = S,,. Other possible meth- 
ods of a two-way linear search are (FS,, FS,) and (FS,, 
FS,). Likewise, the heuristics cannot provide the optimal 
solution to the link enhancement problems. We may ap- 
proximate the optimal solution by examining all three 
lists, i.e., (FS,, FS,, FS,), as well. Similar to the two-way 
search, in a three-way linear search, we set the threshold 
value to 2. For these methods, we obtain the solutions and 
the corresponding total profit: 1 )  S,, = S, = { 1 ,  7 ,  8, 
17) and P, = 16 844; 2) S,, = S,, = (3,  7 ,  8 ,  19) and 
Ppc = 15 999; and 3) S,, = (3,  7, 8, 17) and P,, = 
16 523. All other versions of three-way linear search al- 
gorithms achieve the same solution set as S,,,,. 

In Table I, the Cmin = 1246, while C,,, = 2568. Using 
the definitions above, I = L7000/2586J = 2 and r = 
7000 - 5117 = 1883, r < FSc(n - I )  = FS,(18) = 
2289; hence, LL = 2 and UL = 5. The constrained search 
range is [2, 51. Considering all possible combinations, we 
need to try C(20, 2) + C(20, 3) + C(20, 4) + C(20, 5) 
= 21 679 choices. Since 2*' = 1 048 576 and with a con- 
strained range in [2, 51, we need only 21 679/1 048 576 
= 2.06% of the original exhaustive computation time. 
This is a tremendous savings! A further squeeze may re- 
duce both LL and UL to 4; therefore, only C(20, 4) = 
4 845 iterations or 0.46% of the original computation time 
is needed. Note again that the methods used to constrain 
the search range and to squeeze the range do not compro- 
mise the optimality. 

Recall that the reduced candidate set (RCS) is the set 
of all links that have been considered in various linear 
search algorithms. Therefore, in this example, we have 
RCS = U Si = S, U S, U S, U S,, U S,, U S,, U S,, 
U s p c  U Scp U Srpc U Srcp U s c r p  U s c p r  U Spcr U s p r c  
= (1,  3, 4 ,  6 ,  7,  8, 13, 17, 19, 20).  The reduced can- 
didate set has ten links to be considered, as opposed to 
the original n = 20. Note that, while the reduction of the 
search space reduces the computation time, it may com- 
promise the optimality. Let us consider the case without 
squeezing methods first. Recall that the constrained range 
is now [2, 51. Therefore, instead of 21 679 choices as 
discussed above, we not have only C(10, 2) + C(10, 3) 
+ C(10, 4) + C(10, 5) = 627 choices. The RCS im- 
proved over the pure constrained range method by per- 
forming only 627/21 679 = 2.9% of the former compu- 
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tation. Comparing this to the brute force, purely 
exhaustive optimum, solution, the combined CRCS takes 
only 627/1 048 576 = 0.06% of the former computation. 
Considering the squeezing methods, we can limit the 
computation within C(10, 4) iterations to find the optimal 
solution. When both the optimal solution and the CRCS 
use the squeezing methods, the CRCS method uses only 
C(10, 4)/C(20, 4) = 21014845 = 4.33% computation 
time of that used by the optimal solution method. CRCS 
finds the best solution set of (3, 6, 7,  8) without the ex- 
haustive search since these four links are in the reduced 
candidate set. 0 

111. HARD PROBLEMS 
There are 3960 cases have been tested, and typical hard 

problems have been analyzed in [ 141. What makes a prob- 
lem hard? A majority of the cases where the CRCS al- 
gorithm cannot find the optimal solution are due to insuf- 
ficient resources: a linear search does not go far enough, 
and is forced to make premature decisions since B is al- 
ready exhausted. Examples 2 and 3 illustrate cases where 
CRCS cannot reach optimality [ 141. 

Fortunately, an insufficient budget implies a narrow 
constrained range of the search space; hence, we do not 
need the RCS heuristic; we can simply apply the CR 
method alone and guarantee optimality. For a small con- 
strained range, 2 or 3 in our cases, a polynomial time 
computation will reach the optimal solution. In general, 
the CRCS is still combinatorical, though the number of 
combinations is drastically reduced. The details of timing 
analysis can be found in [14]. The real difficult task, al- 
though there was only one occurrence in 3960 testing 
cases, comes from sufficient resources, but the distribu- 
tion of ci and p i  prevents the CRCS from reaching opti- 
mality [14]. For this specific case, Example 4 shows the 
data set and analyzes the CRCS solution. 

A. Examples 
Example 2-Insuficient Resources: Table I1 shows one 

typical case of insufficient resources: n = 15, B = 1500, 
U :  = 400, U: = 600, where U :  and U: indicate the vari- 
ance of c and p ,  respectively. Notice that the BGH solu- 
tion comes from either FS,, or FS,, with the solution set 
(2, 8) and contribution 7425. The reduced candidate set 
of Table V is the set of all links that appeared in linear 
search algorithms: (1, 2, 8, 14, 15). Considering all 
C(5, 2) combinations, the CRCS reaches Plinear = 7425 
with the solution set (2, 8 ) .  The optimal solution, how- 
ever, is Pop, = 7581 with the solution set Sop, = (8 ,  12). 
In this insufficient resource case, B = 1500, the BGH 
reaches a decision early since the budget is exhausted in 
the first three iterations; the reduced candidate set is small 
since not enough links have been visited by the RCS 
method. Therefore, too small a candidate set excludes link 
12 that should have been included, and selects links from 

TABLE I1 
n = 15, B = 1500, of  = 400, U ;  = 600; EXAMPLE 2 

Link number 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Cost Profit 
518 3219 
689 3749 

1133 2721 
705 2607 

1121 2940 
1115 2674 
1826 3600 
643 3676 

1997 3358 
1100 2646 
740 2576 
832 3905 

1097 2642 
541 2936 

1062 4016 

TABLE 111 
n = 28,  B = 2800,  U :  = 200 ,  U;  = 300; EXAMPLES 3 

Link number 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

cost 
1049 
1425 
759 

1073 
827 

1068 
895 

1550 
769 

1106 
1065 
1101 
798 

1036 

- Profit 

2973 

3512 
3288 
2803 

Link number 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

- 
Cost 
925 
965 
821 

1280 
951 
987 

1042 
1072 
768 

1010 
758 
758 
905 
849 

- Profit 
3459 
3484 
3337 
3438 
2759 
2766 
281 1 
2935 
2975 
2779 
3102 
3067 
3443 
2807 

those appearing higher in the sorted lists: links 1 ,  2,  and 

Example 3-Znsuficient Resources: The data set of this 
example is listed in Table 111. This is a hard case for the 
BGH: the BGH algorithm gives ( 5 ,  17, 27) as a solution 
for a contribution of 10 128, and CRCS improves it to 
(5, 12, 17), giving 10 197 contribution. Using 10 197 as 
the lower bound of contribution, the optimal solution pro- 
cess revises the CRCS solution through steps of refine- 
ment: from 10 239 { 15, 17, 27),  10 264 { 16, 17, 27),  
10 275 ( 5 ,  16, 27),  and then to the optimal solution 

0 
Example 4-Suficient Resources: Even with enough re- 

sources, the CRCS method may still miss the optimal so- 
lution. In one case of n = 23, listed in Table IV, the 
budget is large enough ( B  = 1 1  500) to accommodate 12 
links, which is more than half of the links. The starred 
links are in the optimal solution set. The solution from 
the CRCS, however, does not reach optimality . 

The best linear search algorithm is the S,, which gives 
the contribution of 37 768 (see Tables V and VI). The 
candidate set formed by linear search algorithms has 20 
links to be considered, and RCS = ( 1 ,  3, 4 ,  5 ,  6,  7, 8, 
9,  1 1 ,  12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23); the 
reduced candidate set is quite large since 20 links out of 
a total of 23 links are qualified. The constrained range can 
be obtained as LL = BIC,,, = 1 1  500/1498 = 7 and UL 

8. 0 

10 386 { 15, 16, 27).  
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TABLE IV 
n = 23, B = 11 500, u f  = 200, U ;  = 180; EXAMPLE 4 

Link number Coat Profit 
1* 796 3191 
2* 1225 2963 
3 1066 2916 
4* 847 3104 
5* 1003 2947 
6 1057 2902 
7* 693 3314 
8* 823 3074 
9 1498 3107 
10 1242 2824 
11* 891 3140 
12* 916 3271 
13* 957 3132 
14 787 2746 

15* 1031 3304 
16 1067 2870 
17* 1082 3127 
18* 1187 3295 
19 1107 2900 
20 964 2812 
21 1012 2868 
22 1196 2818 
23 801 2762 

TABLE V 
Fs,., Fs,,, Fs, OF EXAMPLE 4; LINKS WITH * A R E  I N  OPTIMAL SOLUTION 

Link Id FS,  Link Id FS, Link Id FS,  
7* 693 7* 3314 7' 4781 
14 787 15* 3304 I* 4008 
1* 796 18* 3295 8* 3732 
23 801 12* 3271 4* 3661 
8* 823 1* 3191 12* 3571 
4* 847 11' 3140 11* 3522 

l l *  891 13' 3132 14 3487 
12* 916 17* 3127 23 3444 
13* 957 9 3107 13* 3270 
20 964 4* 3104 15* 3204 
5* 1003 8* 3074 5' 2936 
21 1012 2" 2963 20 2914 

15* 1031 5* 2947 17* 2888 
6 1057 3 2916 21 2832 
3 1066 6 2902 18' 2775 

16 1067 19 2900 6 2744 
17' 1082 16 2870 3 2734 
19 1107 21 2868 16 2690 

18' 1187 10 2824 19 2619 
22 1196 22 2818 2* 2418 
2* 1225 20 2812 22 2355 
10 1242 23 2762 10 2273 
9 1498 14 2746 9 2073 

TABLE VI 
SOLUTION SETS OF EXAMPLE 4 BY LINEAR SEARCH ALGORITHMS 

Algorithm 
FSr 
FSP 
FSc 
FSrp 
FSrc 
FSpr 
FSpc 
FScr 
FScp 
FSrpc 
FSrcp 
FSprc 
FSpcr 
FScrp 
FScpr 

Solution Set 
7 1 8  4 12 11 14 23 13 15 5 20 
7 15 18 12 1 11 13 17 9 4 8 
7 14 1 23 8 4 11 12 13 20 5 21 
7 12 11 13 15 8 17 18 6 3 16 
7 1 8 4 14 23 13 5 20 15 21 6 
7 111 13 4 8 5 18 6 3 21 19 
7 1 11 12 13 4 8 5 6 16 21 18 
7 1 8  4 11 12 13 5 20 15 21 6 
7 1 11 12 13 4 8 15 3 17 19 18 
1 12 11 14 23 15 5 20 17 21 18 
1 12 11 14 23 15 5 20 17 21 18 
1 12 11 14 23 15 5 20 17 21 6 16 
1 8 11 14 23 15 5 20 17 21 6 16 
1 8 4 14 23 15 5 20 17 21 3 16 
1 8 4 14 23 15 5 20 17 21 3 16 

Cost Used 
10509 
10721 
10490 
10770 
10771 
11439 
11249 
10990 
11396 
10470 
10470 
11407 
11314 
11279 
11279 

Contribution 
36797 
35059 
36361 
34345 
36156 
36783 
37108 
37059 
37768 
33463 
33463 
35940 
35743 
35721 
35721 

TABLE VI1 
REVISIONS OF RCS; EXAMPLE 4 

Step i Solution Set S, Cost Used Contribution 
1 SI = {7,1,11,12,13,4,8,15,3,17,19,18)  11396 37768 

3 S3 = {18,17,15,13,12,11,8,7,6,5,4,1} 11283 37801 
4 S, = {18,17,15,13,12,11,8,7,5,4,3,1) 11292 37815 

2 S2 = {19,18,17,15,13,12,11,8,7,5,4,1) 11333 37799 

We cannot solely blame the small value of 0; since there 
are many cases of the same 0; that can be solved effi- 
ciently. As hindsight, one may observe that the optimal 
solution can be obtained by replacing the minimum con- 
tribution link (9) by the best feasible link (2). Note that 
among links in FS, not in SI, only link 9 has a better con- 
tribution than link 2, but using link 9 to replace link 19 
in Ccp violates the cost requirement, that is, it exceeds the 
given budget. Since the nature of the effect of blending 
the cost and contribution makes the problem hard, replac- 
ing the link with a minimum contribution in the current 
solution set by a link with a higher contribution does not 
guarantee an improved solution. For instance, in Example 
3, Plinear = 10 197 when the solution set is (5, 12, 17}, 
and none of the these three links is in the optimal solution 
set (15, 16, 27) .  It is difficult to say which link in the 
optimal solution set replaces link 12, although link 12 has 
the maximum contribution. 

= B/Cmin = 11 500/693 = 16. A further squeeze of the 
range reduces both LL and UL to 12. Examining combi- 
nations of 12-out-of-20 from the RCS, we can improve 
the solution in the steps listed in Table VI1 by selecting 
links from the RCS starting from the BGH solution FS, 
(Step 1) and form the best solution set of { 18, 17, 15, 13, 
12, 11, 8, 7 ,  5 ,  4, 3 ,  l } .  This best solution set achieves 
Plinear = 37 815. Unfortunately, the exact optimal solu- 
tion set is (18, 17, 15, 13, 12, 11, 8,  7,  5, 4, 2, l} with 
a contribution of 37 862; this optimal solution set differs 
from the optimal solution set based on RCS only by one 
link. 0 

Why does the optimal solution set in Example 4 above 
include link 2 when link 2 does not appear in the RCS? 

IV. IMPROVED CONSTRAINED RANGE BY DOMINANT 

A refined constrained range can be constructed, and 
hence reduce the computation time without a compromise 
in optimality. The revised UL is to examine S, and count 
how many links are included. The UL's of the above ex- 
amples of n = 20, 15, 28, 23 are 4, 2, 3 ,  and 12, respec- 
tively. The revised LL is the link count in S,. The LL's of 
the above examples are 3 ,  1, 2, and 1 1, respectively. The 
revised UL's and LL's are listed in the second column of 
Table IX. The philosophy behind this refinement is the 
same as the previous work [ 141, except not using the ex- 
treme values of C,,, and Cmin to bound the search ranges. 
Instead, the exact costs are used and the constrained range 
is further reduced. Additionally, without compromising 

SET 
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the optimality, one may reduce the candidate set de- 
scribed as follows into two computation phases: dominant 
matrix construction and candidate set partition. 

First, we need to construct a dominant matrix: an n x 
n matrix such that an entry d, at row i and columnj  in- 
dicates the dominant relationship between link i and link 
j .  The entry d, = 1 means that link i dominates l inkj .  A 
link i dominates link j if and only if ci < cj and pi > pi.  
Therefore, the count of nonzero entries in a row i means 
the number of links that the link i dominates. Let WIN( i )  
denote this count. Likewise, the count of nonzero entries 
in a co lumnj  means the number of links the l i n k j  has 
been dominated, and is denoted as L O S S ( j ) .  The con- 
struction of the dominant matrix requires O(n2) time. If 
WIN(i)  1 (n  - UL),  then link i must be in the final so- 
lution candidate set to preserve the optimality. Why? This 
is because the selection of UL links will include link i if 
it were to have UL links in the optimal solution. The ex- 
clusion of link i will leave any selected UL links to form 
a suboptimal solution. If the optimal solution has fewer 
links than UL, link i many possibly not be included in the 
optimal solution. On the other hand, if LOSS( j ) L UL, 
t hen j  cannot be in the final solution set. When LOSS( j  ) 
2 UL for a l inkj ,  there must exist at least UL links that 
dominate j ,  and hence no reason to include the link j in 
the final solution. 

Having done the selection process by examining the 
WIN and LOSS of each link, we have partitioned the orig- 
inal n links into three sets: excluded links (ELS),  selected 
links ( S L S ) ,  and candidate links (CLS).  Note that n = 
I ELS I + (SLS I + 1 CLS 1 .  The optimal solution would be 
reduced to the enumeration of C (  1 CLS 1, k - 1 SLS 1 )  where 
k is a value in [LL, UL]. 

Example 5: The dominant matrix with its LOSS and 
WIN of Table I is shown in Table VIII. Having counted 
the entries of LOSS and WIN, we know that CLS = { 1, 
3, 4, 6, 13, 16, 17, 19, 20).  Therefore, only C(9, 4) = 
126 computations are needed without compromising the 
optimality. One can apply the same method in Tables II- 
IV. Table IX summarizes the results. Note that the hard- 
est case of n = 23 (Table IV) only requires C(15, 6 )  + 
C(15, 7) or 11 435 tries to get the optimal solution. This 
multiple-criteria constrained range has only 15 links to 
choose from, and still guarantees optimality , unlike the 
larger RCS in Example 4 that has 20 links and has no 
guarantee of optimality 

V. CONCLUSIONS 
Available resources or budget are the most sensitive pa- 

rameters in the process of solving network link enhance- 
ment problems. A relatively small budget, that can afford 
only a few additional links, can utilize the exact optimal 
solution, which can be done in polynomial time. When 
the budget is sufficiently large to afford many additional 
links, the exact optimal solution can be too costly to com- 
pute. In this case, the use of the BGH method efficiently 

TABLE VI11 
DOMINANT MATRIX OF TABLE I; EXAMPLE 5 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 WIN 
1 0 0 0 0  1 0 0 0 0  1 1  1 0  1 1  0 0 0 0 0 6 
2 0 0 0 0 1 0 0 0 0 0  0 0 0 1 0  0 0 0 0 0 2 
3 0 1 0 1  1 0 0 0 1  1 1  1 0  1 1  0 0 1 0  1 11 
4 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 1 0  0 1 
5 0 0 0 0 0 0 0 0 0 0  0 0 0 1 0  0 0 0 0 0 1 
6 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 
7 0 1 0 1  1 0 0 0 1  1 1  1 0  1 1  0 0 1 1  1 12 
8 1 1 0 0  1 0 0 0 1  1 1  1 1  1 1  1 1  1 1  0 14 
9 0 0 0 0 0 0 0 0 0 0  0 0 0 1 0  0 0 0 0 0 1 
10 0 0 0 0 0 0 0 0 0 0  0 0 0 1 I. 0 0 0 0 0 2 
11 0 0 0 0  1 0 0 0 0 0  0 1 0  1 1  0 0 0 0 0 4 
12 0 0 0 0 1 0 0 0 0 0  0 0 0 1 0  0 0 0 0 0 2 
13 0 0 0 0 0 0 0 0 0 0  0 0 0 1 1  1 0  0 0 0 3 
14 0 0 0 0  0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0  0 0 0 1 0  0 0 0 0 0 1 
16 0 0 0 0 0 0 0 0 0 0  0 0 0 1 0  0 0 0 0 0 1 
17 0 0 0 0  1 0 0 0 0  1 0  1 0  1 1  1 0  0 0 0 6 
18 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 
19 0 1 0 0  1 0 0 0 0  1 1  1 0  1 1  0 0 0 0 0 7 
20 0 0 0 0  1 0 0 0 1  0 0 0 0 1 0  0 0 1 0  0 4 

L O S S 1 4 0 2 1 0 0 0 0 4 6  5 7 1 1 6 9  3 1 5  2 2 

TABLE IX 

I-IV; EXAMPLE 6 
USING MULTIOBJECTIVE CONSTRAINED RANGE ON HARD CASES I N  TABLES 

~~ ~ 

n [LL, UL] Partitioned Sets Optimal Solutions 
15 [l, 21 CLS = 11, 2, 8, 12, 14, 15) IS, 12) 

SLS = 4 

CLS = { l ,  3, 4, 6, 7, 8, 13 

SLS = m 
20 [3, 41 {3, 6, 7, 8) 

16, 17, 19, 20) 

23 [11, 121 CLS = (2, 3, 4, 5, 6, 8, 9, 11, 2, 4, 5, 7, 8, 11 
12, 13, 15, 17, 18) 14, 15, 16, 17, 18, 

20, 21, 23 } 
SLS = { l ,  7, 11, 12, 13) 

28 [2, 31 CLS = {3, 5, 10, 12, 13, 15, {15, 16, 27) 
16, 17, 25, 26, 27) 

SLS = 4 

provides a high probability of reaching optimality. The 
option of using the CRCS heuristic can further improve 
the probability of reaching optimality, and the extra com- 
putation time may be justified based on the span of the 
constrained range. Conflicting criteria may be combined 
into a single criterion for solving a complex problem; 
multiple-criteria constrained range searches illustrated in 
this paper are a good example that does not compromise 
the optimality and practically does not require extensive 
computational efforts. 
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