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Software Crash Analysis for Automatic Exploit
Generation on Binary Programs
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Abstract—This paper presents a new method, capable of auto-
matically generating attacks on binary programs from software
crashes.We analyze software crashes with a symbolic failuremodel
by performing concolic executions following the failure directed
paths, using a whole system environment model and concrete ad-
dress mapped symbolic memory in . We propose a new selec-
tive symbolic inputmethod and lazy evaluation on pseudo symbolic
variables to handle symbolic pointers and speed up the process.
This is an end-to-end approach able to create exploits from crash
inputs or existing exploits for various applications, including most
of the existing benchmark programs, and several large scale appli-
cations, such as a word processor (Microsoft office word), a media
player (mpalyer), an archiver (unrar), or a pdf reader (foxit).We can
deal with vulnerability types including stack and heap overflows,
format string, and the use of uninitialized variables. Notably, these
applications have become software fuzz testing targets, but still re-
quire a manual process with security knowledge to produce mit-
igation-hardened exploits. Using this method to generate exploits
is an automated process for software failures without source code.
The proposed method is simpler, more general, faster, and can be
scaled to larger programs than existing systems. We produce the
exploits within one minute for most of the benchmark programs,
including mplayer. We also transform existing exploits ofMicrosoft
office word into new exploits within four minutes. The best speedup
is 7,211 times faster than the initial attempt. For heap overflow vul-
nerability, we can automatically exploit the unlink()macro of glibc,
which formerly requires sophisticated hacking efforts.

Index Terms—Automatic exploit generation, bug forensics, soft-
ware crash analysis, symbolic execution, taint analysis.
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EBP Extended Base Register

Concolic Concrete and Symbolic Execution

CVE Common Vulnerabilities and Exposures

DoS Denial of Service

EIP Extended Instruction Pointer

ELF Executable and Linking Format

GOT Global Offset Table

IDS Intrusion Detection System

IR Intermediate Representation

LLVM Low Level Virtual Machine

LOC Lines of Code

NOP No Operation

ROP Return-Oriented Programming

SMT Satisfiability Modulo Theories

SQL Structured Query Language

TCG Tiny Code Generator

OS Operating System

PC Path Conditions

POSIX Portable Operating System Interface

XSS Cross Site Scripting

NOTATIONS

The symbolic read data object.

The symbolic address expression.

The pseudo symbolic variable.

The memory snapshot.

All Dereference objects during the execution
of the state.

The Boolean expression.

The mapping that maps each element of
to a concrete address .

The value of under the variable assignment
.

I. INTRODUCTION

C RAFTING exploits for control flow hijacking, SQL in-
jection, and cross-site scripting (XSS) attacks is typically

a manual process requiring security knowledge [1]. However,
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based on recent advances in symbolic execution, several proto-
type approaches to automatically generating exploits have been
proposed [2]–[4]. Exploits or other types of attacks, e.g., SQL
injection, and XSS [5], have been used for auditing web appli-
cation security, IDS signature generation, and attack prevention.
These research topics belong to dynamic taint analysis and sym-
bolic execution.
The motivation of this work is straightforward. Failure of

software including web applications is inevitable. Given a large
number of failures, we need a systematic approach to judge
whether they are exploitable. In Miller et al.’s crash report anal-
ysis [6], the authors analyze crashes by BitBlaze [7]. Compared
with !exploitable [8], the results show that exploitable crashes
could be diagnosed in a more accurate way although still with
limitations and requiring manual efforts. Moreover, crash anal-
ysis plays an important role to prioritize the bug fixing process
[9]. A proven exploitable crash is surely the top priority bug to
fix.
Dynamic taint analysis and forward symbolic execution have

been the primary techniques in security fields [10]. [4] is a
recent success to generate mitigation-hardened ( and
ASLR [11]) exploits by feeding concrete execution trace and
triggering a tainted instruction pointer. The exploits divert the
vulnerable path by concolic execution, and exploit constraints
to manipulate the instruction pointer. The constraints combine
with return-oriented programming (ROP) [12] payload, and
feed to a decision procedure, STP [13].
Our objective is similar to , but we target a new threat

model. Note that most threats are continuations [14], [15]. Con-
tinuations are the explicit control abstraction to express “what
to do next” or “what remains of a computation” to give a formal
modeling of the goto instruction. They can be used to program
non-local jumps, exception handling, and user threads. We can
thus view software security threats as attackers’ explicit control
on the victim programs. Attackers give explicit control of “what
to do next” from the original running software, and take control
of the rest of a program’s computations. For example, control
flow hijacking attacks divert the input into an attacker manip-
ulated continuation. The continuation results in the execution
of arbitrary code. The SQL and command injections are inputs
flowing into the SQL server or introducing a shell command ex-
ecution. They are continuations into the SQL or command shell
context. The cross-site scripting is a reflection of web pages, in-
serting an explicit continuation to execute arbitrary Javascripts,
impersonating as originating from the originalWeb server. If the
continuation is symbolic, which is a concolic execution to reach
the invoked site of the continuation and a symbolic expression
to describe the continuation, we can generate practical attacks
to exploit the continuation. A software crash can be viewed
as a tainted continuation. Furthermore, if the tainted continu-
ation is symbolic, an exploit can be automatically generated.
We have successfully produced exploits from software crashes
for control flow hijacking attacks from large applications, in-
cludingMplayer,Unrar, Foxit pdf reader, CMU’s AEG [2], and
MAYHEM [16] benchmarks. We have also produced exploits
(with our own shellcode) from existing exploits of Microsoft

OfficeWord. All processes are end-to-end, built on top of the en-
vironment model of [17] (based on KLEE [18], and QEMU
[19]).
The framework, called CRAX, is to act as a backend of static

and dynamic program analyzers, bug finders, fuzzers, and a
crash report database. Given these software failures from the
frontends and the program binary, CRAX can automatically
generate attacks, and practical mitigation-hardened exploits.
The primary contributions and impacts of the work are as

follows.
• Address exploit generation for large software systems
without source code. Concolic execution ideas have been
the techniques for exploit generation since 2009. Auto-
matic exploit generation has become an integration effort
from existing systems, due to the rapid development of
symbolic computation, processor emulation, and envi-
ronment model supports. However, we have not found
practical integration of exploit generation work that can
produce exploits from large applications, such as MS-of-
fice word, Mplayer, and Foxit pdf reader. We are the first
to demonstrate such a capability though completing the
exploiting process formerly regarded as a manual process.
A similar scale of work is that of Catchconv [20], which
performs symbolic fuzzing, taking the Mplayer as a prey.
However, it only acts as a fuzzer, and succeeds to produce
Mplayer crashes about as frequently as was done in zzuf
[21]. In contrast, CRAX takes the crash from Mplayer and
produces exploits. We have automated the exploit writing
process of large binary programs.

• Prioritize crashes to be fixed. Currently, several sources
of crash reports from several bug analyzers and random
fuzzers are available. Too many crashes need to be fixed,
and there is a pressing need to determine their priorities
[9]. We have preliminarily examined the crash database for
open source projects, and found that many of the crashes
can be the seed input to produce exploits. The tool would
be the first screen gateway to prioritize the bug fixing order.

We organize the paper as follows. Sections II and III describe
the exploit generation method and basic implementation. We
discuss the concept of pseudo symbolic variables for dealing
with symbolic pointers in Section IV, and the format string ex-
ploit generation process in Section V. Section VI reports the ex-
perimental results. Section VII presents related work. We con-
clude this paper in Section VIII.

II. EXPLOIT GENERATION METHOD

We model the exploit generation process of software attacks
as the manipulation of software failures, especially introduced
by software crashes. We analyze the software crash by con-
structing a precise symbolic failure model, consisting of sym-
bolic inputs, memory snapshots at the failure point (including
concrete and symbolic values of all memory cells), and path
constraints to reach the failure site. We propose a new auto-
mated exploit generation method based on with path se-
lection optimization, selective symbolic input, and lazy evalua-
tion on pseudo symbolic variables to handle symbolic pointers.
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Fig. 1. The process of exploit generation from concolic-mode simulation with fuzz testing.

Concolic-mode simulation explores the failure path directly, and
code selection filters complicated and unrelated library func-
tions that do not affect exploit generation to reduce the overhead
of symbolic executions. We view the concolic path exploring
as the failure model construction process. During this process,
CRAX also monitors the necessary conditions for exploit gener-
ation, and triggers an exploit generation process when it detects
the condition. If the process fails to generate exploits, CRAX
will go back and continue concolic execution.

A. Building the Failure Model

Software failure can be modeled as a symbolic execution
trace, constituted of a set of symbolic inputs, memory snapshots
at the failure point, and path constraints to reach the failure site.
Given a crash input, we build the failure model by exploring
the path introduced by the crash input. If an input data crashes
a program, the execution path introduced by the crash input is
very likely exploitable. Exploring the suspicious path is more
effective than searching all paths.
1) Concolic-Mode Simulation: Concolic testing is symbolic

execution, but it only explores the path introduced by concrete
input. When a branch is encountered, only the direction in the
concrete path will be explored, and path constraints will be up-
dated so that a symbolic path will also be confined to the same
direction at the branch.
When in symbolic execution, will use a constraint solver

to determine the feasibility of each branch direction under cur-
rent path constraints. To perform concolic execution, must
follow only the direction introduced by concrete input. To im-
plement this feature, we keep an extra constraint set, called input
constraints. We replace path constraints by input constraints
when is determining branch direction, and swap path con-
straints back when the branch direction is determined.
Input constraints are a constraint set that restricts every sym-

bolic variable to a concrete value. Under the input constraints,
every symbolic branch condition has only one possible value,
so replacing path constraints by input constraints ensures
follows only the concrete path. During the model construc-
tion process, we resolve the constraints by concrete value
substitutions.
With fuzzer tools to identify an input crashing the program

under test, concolic-mode simulation determines whether the
path is exploitable rapidly because it focuses on only one path.

Combining fuzzer tools with concolic-mode simulation pro-
vides a powerful technique for exploit generation as illustrated
in Fig. 1.
2) Handling Symbolic Reads: Access violation is a common

cause of a software crash, and is often due to read from or
write to symbolic pointers. Handling symbolic pointers prop-
erly enables us to deal with more types of software crashes,
and increase the opportunity of exploit generation. For symbolic
writes, we treat them as a condition to trigger exploit generation,
and will discuss this treatment in the following subsection. For
symbolic reads, both solutions in and MAYHEM [16] are
not suitable for symbolic pointers with large possible address
ranges, which are common in corrupted pointers. So we also
proposed a novel technique to handle symbolic reads with large
possible address ranges.
The value read from a symbolic pointer can also be treated as

a symbolic variable because we can change its value by manipu-
lating the pointer. Therefore, we create a new symbolic variable
to replace the result from each symbolic read, called a pseudo
symbolic variable. Because the pseudo symbolic variables are
unconstrained, we must put some constraints on them so that
unreasonable paths will not be explored during the path explo-
ration process. We will discuss two cases: concolic mode, and
symbolic mode.
In the concolic mode, we use input constraints to determine

the branch direction. When we create a new pseudo symbolic
variable, we must add a corresponding input constraint so that
only the concrete path will be explored.
The added constraint just restricts the pseudo variable to the

value it should be in the concrete execution; that is, the pseudo
variable is restricted to the value stored in the concrete address
of the symbolic pointer (and if the value is still symbolic, get its
concrete value again). The concrete value of a symbolic expres-
sion can be obtained using the SMT solver used by and the
input constraints.
However, if a software crash is due to the access from a

corrupted pointer, the concrete path usually ends with a seg-
mentation fault, and no opportunity for exploit generation.
Therefore, when a symbolic read with an illegal concrete ad-
dress is detected, CRAX will switch to symbolic mode, try to
continue execution, and wait for future opportunities for ex-
ploit generation. We have modified the solver for constraint
reasoning with pseudo symbolic variables. The detail is in
Section IV.



HUANG et al.: SOFTWARE CRASH ANALYSIS FOR AUTOMATIC EXPLOIT GENERATION ON BINARY PROGRAMS 273

Fig. 2. The process of the exploit generation.

B. Necessary Conditions for Triggering Exploit Generation

1) Symbolic Program Counter (Symbolic EIP in x86 Ma-
chines): Because the EIP register contains the address of the
next instruction to be executed, to control the register is the
final target of all control-hijacking attacks. Thus, monitoring
the state of the EIP register is a comprehensive, easy way to
tackle different kinds of control-flow hijacking vulnerabilities.
The process of detection of the symbolic EIP register and ex-
ploit generation is shown in Fig. 2.
2) Symbolic Write With Symbolic Data: In addition to the

EIP register, corrupted pointers may change the control flow
indirectly. Particularly, symbolic data assigned to a symbolic
pointer means that arbitrary data can be written to arbitrary ad-
dresses. When a symbolic write is detected, the target of the
writing operation will be redirected to sensitive data, such as
return addresses, .dtors section, and GOT to update the EIP reg-
ister indirectly. Considering Listing 1, an off-by-one overflow
vulnerability will corrupt the ptr pointer, and as a result the value
of array[0] may write to arbitrary addresses. Even if this vul-
nerability cannot corrupt return addresses directly, the symbolic
pointer can taint the EIP register indirectly and hijack the con-
trol of a program.

Listing 1. An example code for pointer corruption

void test( )

{

;

int array[10];

int ;

for( ; ; )

;

;

}

3) Symbolic Format Strings: The effect of a symbolic format
string is similar to symbolic writes with symbolic data. With
a carefully crafted format string, we can also write arbitrary
data to an arbitrary address. CRAX also triggers exploit gen-
eration when a symbolic format string is detected. The detail is
in Section V.

C. Exploit Generation

Given the failure model, the exploit generation process will
search a variable assignment of symbolic variables that satisfy
path constraints, and could redirect the control flow to the sup-
plied shellcode.
1) Shellcode Injection: To inject the shellcode, we must find

all memory blocks that are symbolic and large enough to hold
the payload. Even if a symbolic block consists of many different
variables, it could still be used to inject a shellcode as long
as the block is contiguous. However, it is difficult to analyze
source codemanually to find a contiguousmemory region that is
tainted by user input and combined with variables. In addition,
because the compiler often changes the order or the allocated
size of variables for optimization, it is difficult to find a shell-
code buffer manually. We automate this process by searching
the maximum contiguous symbolic memory systematically.
2) NOP Sled and Exploit Generation: When the location

of the shellcode is determined, NOP sled will try to insert
a sequence of NOP instructions in front of the shellcode.
This padding helps exploits against the inaccurate position of
shellcode among different systems, or to extend the entry point
of shellcode. Finally, the EIP register corrupted by symbolic
data will point to the middle of NOP padding. All exploit
constraints, including shellcode, NOP sled, and EIP register
constraints, are passed to an SMT solver with path conditions
to determine whether the exploit is feasible or not. If it is
not feasible, the exploit generation goes back to the step of
shellcode injection to change the location of shellcode until an
exploit being generated or no more usable symbolic buffer.

D. Optimizations

1) Code Selection: Because performs symbolic execu-
tion on the entire operating system, the large number of path
constraints will become an issue when the symbolic data are
passed to the library or kernel. The constraints induced by the
library or kernel are usually complex and huge, and constraint
solvers often get stuck trying to solve them. For example, if the
first argument of the fopen() function, which is a path of the
file to be opened, is symbolic, then the constraint solvers will
get a time-out error or hang in . Those paths in the library
or kernel are often irrelevant to exploit generation. To avoid ex-
ploring those irrelevant paths, those library functions should run
on concrete execution.
One of the essential features of is selective symbolic ex-

ecution, which enables us to specify the region that should be
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concrete executed.We can concretely execute library and kernel
functions, and no path constraints will be added during the con-
crete execution. When this irrelevant function finishes, we can
switch back to symbolic execution. will handle the switch
between the concrete and symbolic values of each variable.
2) Input Selection: The size of the symbolic execution trace

of the failure model is influenced by the number of symbolic
input variables, the number of branch conditions carrying sym-
bolic expressions, and the data flow to the failure event. Re-
ducing the amount of symbolic input variables will also re-
duce the size of the symbolic execution trace. According to
the observation, not all of the input will take part in the event
manipulating process. That is, we can selectively use part of
the input to speed up the failure model reconstruction. It is
similar to unique pattern generations used by metasploit [22],
which divert limited bytes of tainted inputs into the instruction
pointer. Taintscope [23] uses a similar concept, called the se-
lected inputs, as hot bytes to identify significant bytes for po-
tential fuzzing operations, such as mutation, generation, or sym-
bolic solution finding. If we can find the significant input bytes
that will directly or indirectly (either consecutively or not) in-
fluence the continuations, we will be able to mark these inputs
as symbolic. In metasploit’s unique pattern generator, it is quite
tricky to generate identifiable string patterns that taint the EIP or
other registers. In with the proposed fast concolic method,
we can partition the input into several smaller parts (100 byte
units), making these parts symbolic individually. The hot bytes
will be identified if the continuations are detected as symbolic.

III. BASIC IMPLEMENTATION

The exploit generation steps are: 1) collect necessary run-
time information, 2) build exploit constraints, and 3) pass the
exploit constraints to the constraint solver to produce an exploit.
The memory model in is also an important key to imple-
menting the proposed methods. In addition to return-to-memory
exploits, we also implement two other types of exploits, re-
turn-to-libc and jump-to-register exploits, to bypass some pro-
tections so that the exploit generation can be useful in real-world
systems.

A. Symbolic Environment and Concrete Address Mapped
Symbolic Memory

Symbolic environment is the primary way to attain the
end-to-end capability. Concrete address mapped symbolic
memory is the key for exploit generation on binary programs.
Without full symbolic environment support, users must modify
the source code to declare and make the input symbolic.
is a whole system symbolic emulator, and all kinds of envi-
ronment inputs in the operating system can be declared as
symbolic including device inputs, network packets, sockets,
files (including stdin), environment variables, and command
arguments. The cost to take advantage of this feature is low.
We use pipes to emulate symbolic stdin, and mmap to emulate
symbolic files; all other environments can be easily emulated.
With concrete address mapped symbolic memory, we can index
symbolic memory by concrete addresses. Ordinary symbolic
execution engines including KLEE, CUTE [24], DART [25],
and CREST [26] can only index symbolic memory by abstract

Fig. 3. The process of translating the ret instruction in QEMU.

addresses. A practical exploit generation process is to search
a usable address range to divert the failure event. Without
concrete address mapped symbolic memory, we cannot analyze
binary programs. The source code-based AEG is not sound, and
must have an exploit validation process to revise the exploit
address range.

B. Detection of Continuation Based Symbolic Registers

In QEMU, the CPUX86State structure is used to simulate the
states of the x86 CPU, and all register references in a guest op-
erating system will be turned into memory references on this
structure. When is started, this structure is divided into
two parts stored separately:CpuRegistersState, andCpuSystem-
State. The CpuRegistersState is a symbolic area which stores
all the data in front of the EIP register in the CPUX86State
structure, such as general-purpose registers. The CpuSystem-
State part is a concrete-only area that stores the other data in-
cluding the EIP register.

translates every guest instruction into TCG IRs, and then
translates those TCG IRs into host instructions or LLVM IRs.
For instance, the ret instruction is separated into more detailed
operations as shown in Fig. 3, and the operation of updating the
EIP register is converted to a store instruction. In QEMU, all
memory access operations are handled by a softmmu model to
map the guest addresses to host addresses. Whenever accessing
memory data, checks whether the value of the data point is
symbolic or not in the softmmu model. If the value is symbolic,

will rerun this translated block from the current instruction
in KLEE to perform symbolic execution. To detect EIP register
corruption, must check whether the writing target is the
location of the EIP register, and whether the source value is
symbolic whenever KLEE performs a store memory operation
on symbolic execution.
When the EIP register is updated by symbolic data, the ex-

pression of symbolic data must be recorded because it describes
which variable and which part of the symbolic data will update
the EIP register. For example, given an expression that repre-
sents 32-bit symbolic data at the first element of an array named
buf denoted as

we can build a constraint to control the value of symbolic data,
e.g., a constraint limiting the 32-bit data to zero as shown by
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The current continuation has been set by the data, with con-
straints described by symbolic expressions. Next, we inject the
shellcode into memory, and determine where the EIP register
should point.

C. Exploit Generation

1) Memory Model in : In , the memory consists of
MemoryObject objects, and the actual contents of these objects
are stored in ObjectState objects. In an object of ObejectState,
symbolic data are stored separately from concrete data. The ex-
pressions of symbolic data are stored in an array that consists
of Expr objects, with pointers named knownSymbolics pointing
to them. The concrete data are stored in an array of uint8_t, and
pointed by a pointer named concreteStore. In each ObejectState
object, a BitArray object named concreteMask is used to record
the state of each byte, i.e., the byte is concrete or symbolic.
2) Finding Symbolic Memory Blocks: The default size of

the storage in an ObjecetState object is 128 bytes. To find
contiguous symbolic data in a memory region, we check the
value of concreteMask structures sequentially, object by object.
An object can be skipped easily whenever the values of its
concreteMask structure are all ones; otherwise, the locations of
every zero in the concreteMask structure must be recorded to
compute the continuous size. For the symbolic blocks crossing
different objects, it is necessary to check whether the current
symbolic block is connected with the last symbolic block in
the last object checked. The above procedure is shown in
Algorithm 1.

Algorithm 1: Searching for symbolic blocks

Input: Objects : All ObjectState objects to be searched.

Output: V : A set of address and size.

1 foreach do

2 if then

3

4 for to 127 do

5 if then

6

7 else if then

8

9 if then

10 ; / A
part of the last block /

11 else

12
/ An independent block /

13

It is also required to determine the search range of memory
regions. In Linux memory layout, the stack starts from the top at
address 0xbffffffff and grows downward. It is easy to search the
stack region from this address downward, but the heap and data
segments are not necessarily located at a fixed address for dif-
ferent programs. Therefore, those starting locations need to be
obtained dynamically. According to the ELF executable layout,
the top of the executable files is the program header, which
records all segment information. We can get the location and
size of the data segment by analyzing the program header, which
will be loaded to the address of 0x08048000.
On the other hand, because the heap region is behind the data

segment and grows upward, the base address of the heap can
be obtained by adding the starting address and size of the data
segment.
3) Shellcode Injection: To determine whether shellcode can

be stored in the potential buffers found by the previous step,
each symbolic expression of a symbolic block needs to be read
to build constraints that restrict each byte of symbolic data to a
byte of shellcode sequentially byte by byte. This is an example
showing the constraints that inject the shellcode into an array
named buf:

...
Next, the shellcode constraints are passed to an SMT solver

with path conditions to validate their feasibility.
The best location for the shellcode is selected by having the

NOP sled as large as possible. Therefore, all the symbolic blocks
are sorted by size, and the shellcode is first injected from the end
of the largest symbolic block. In addition to building the shell-
code constraints, a new constraint needs to be added to ensure
the EIP register can point to a range between the starting address
of the shellcode and the top of the symbolic block. Even if the
EIP register cannot point to the starting location of the shellcode
precisely, it may be feasible because the NOP sled will extend
the entry point later. If all of those constraints are infeasible, the
location of the shellcode injection is shifted by one byte forward
to try a new location iteratively.
In addition, shellcode will keep being injected into the current

block or next blocks when those sizes are larger than the sum of
the shellcode size and the current longest NOP sled size. For ex-
ample, consider Fig. 4; the sum of the shellcode size and current
NOP size is , but it is smaller than and , so the shellcode
and NOP sled will keep being injected into the next blocks and
the current block. The algorithm is shown in Algorithm 2.

Algorithm 2: Injecting shellcode

Input: V : A set of address, and size of symbolic blocks.
Shellcode : A shellcode string. PC : Path conditions.

Output: ShellcodeAddress : The starting location of shellcode
injection. MaxNopSize : The max size of NOP sled.

1 foreach do

2 if then
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Fig. 4. The process of searching symbolic blocks.

3

4

5 while do

6 / Build
shellcode constraints /

7 /
Build eip constraints /

8 if then

9

10 if then

11

12

13 if

then

14

15 else

16 break

17 else

18

4) NOP Sled: NOP sled aims to generate the more reliable
exploits that increase the chance of success. CRAX will insert
NOP instructions in front of the shellcode, as many as possible,
and adjust the EIP register within the range. For efficiency, a
binary search-like algorithm is used to determine the longest
length of NOP sled rather than insert NOP instructions byte
by byte. Whenever the binary search finds a range that the EIP
register can point to, NOP instructions will be tried to fill this
range sequentially to check whether both conditions are feasible
simultaneously. If it is infeasible, the range is reduced; other-
wise, the range is extended. The detailed algorithm is shown in
Algorithm 3.

Algorithm 3: NOP sled

Input: Start : The starting address of NOP sled. End : The end
address of NOP sled. PC : Path conditions.

Output: NopSize : The size of NOP sled.

1

2

3

4 while do

5 / Build eip constraints
/

6 if then

7 / Build
NOP constraints /

8 if then

9

10

11 else

12

13 else

14

15

After the longest length of the NOP sled is obtained, the next
step is to make the EIP register point close to the middle of
the NOP sled. Because the number of NOP sleds may be large,
the constraint solver is used to reason out the suitable location
where the EIP register points. To help a constraint solver to com-
pute the address as close to the middle of the NOP sled as pos-
sible, a constraint is added to limit the range. First, the range
is a point in the middle of the NOP sled, and the constraints are
passed to a constraint solver to get the solution. If it is infeasible,
the range is extended twice larger each time, and so on. This
process can obtain a solution because the previous step guaran-
tees that the EIP register can point to the range of the NOP sled.
The algorithm is shown in Algorithm 4.

Algorithm 4: Determining the value of the EIP register.

Input: NopSize : The size of NOP sled. Start : The start address
of shellcode. PC : Path conditions.

Output: EipAddress : The address where EIP register points at.

1

2

3 repeat

4 if then
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Fig. 5. The process of return-to-libc exploit generation.

5

6 else

7

8 if then

9

10 else

11

12 / Build eip constraints /

13 if then

14

15 else

16

17 until ;

18

Finally, the starting address of the shellcode, the size of the
NOP sled, and the location EIP register points are to be deter-
mined if they are feasible. The constraint solver will solve the
final path conditions to generate the exploit that performs the
malicious task in the shellcode.

D. Other Types of Exploit

1) Return-to-Libc: A return-to-libc attack is a technique to
bypass non-executable memory regions, such as pro-
tection. It redirects control flow to functions in the C runtime li-
brary, such as system(), and injects the arguments of the function
into the stack manually to fake the behavior of function callers.
Because the runtime library is always executable and loaded by
operating systems, a return-to-libc attack can perform malicious
tasks by executing library code, and bypass the executable space
protection. Fig. 5 shows the process of calling the system() func-
tion of libc. The argument containing the command string will
be pushed into the stack. It does not matter where the libc func-
tion call returns, but the arguments are the key to perform the
tasks in which we are interested.
Taking system(“/bin/sh”) as an example, which will open a

shell, the only argument is a pointer that points to the string

TABLE I
THE DIFFERENCES BETWEEN RETURN-TO-MEMORY

AND RETURN-TO-LIBC EXPLOIT

Fig. 6. The process of jump-to-register exploit generation.

“/bin/sh” as shown in Fig. 5. The process of return-to-libc ex-
ploit generation is similar to return-to-memory. We also need to
inject shellcode and NOP sled, just with different contents, as
shown in Table I.
Shellcode injection injects the string “/bin/sh” instead of a

shellcode, and NOP sled fills the stack with white space charac-
ters rather than NOP instructions.
2) Jump-to-Register: The stack is themost commonmemory

region for shellcode injection, but ASLR randomizes the base
address of the stack so that control flow does not jump to shell-
code accurately. A large NOP sled may bypass ALSR, but it is
not always feasible. A jump-to-register attack is a technique to
bypass ASLR. It uses a register that points to a shellcode as a
trampoline to execute the malicious tasks. For example, the Ex-
tended Accumulator Register (EAX) is usually used to store the
return value of functions. The strcpy() function returns a pointer
that points to the location of buffer, and the EAX is often used
to store the address. If a “call %eax” instruction can be found in
the code segment, and shellcode can be injected into the buffer
that the EAX register points to, then flow control will be redi-
rected to execute this instruction and jump to shellcode.
In addition, jump-to-esp is also a common, reliable attacking

technique which doesn’t need to insert NOP sled and guess the
stack offset inWindows and old versions of Linux.When a func-
tion returns its results, the return address will be popped, and
the ESP register will point to the stack entry next to the entry
that stores the return address. We can inject shellcode behind
the return address, and use the ESP register as a trampoline. If
a “jmp %esp” instruction can be found in the code segment, a
jump-to-esp exploit can be generated to bypass the ASLR. The
process is shown in Fig. 6.
To generate jump-to-register exploits, a code segment must

be searched to find the related instructions such as “call %eax”
and “jmp %esp”. If the related instructions are found, and the
memory region that the register points to is symbolic, shellcode
will be injected into the location, and the EIP register will be
redirected to execute the related instruction. In addition, if there
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Fig. 7. An example for code selection.

is not any usable instructions in the code segment, the data seg-
ment may be searched to find two-byte symbolic data to inject
into the related instruction because the data segment is unaf-
fected by ASLR. For example, the “jmp %esp” instruction is
0xffe4 and the “call %eax” instruction is 0xffd0.

E. Concolic-Mode Simulation

To simulate concolic testing on , we execute the program
under test with input data, such as arguments and environment
variables, while themain tasks are building input constraints and
collecting branch conditions. According to the memory model
in , the concrete values are stored separately from symbolic
data, but the concrete values are ignored because the variables
are marked as symbolic. To build input constraints, we must
obtain concrete input data at run time, which can be done by
reading the last concrete value of the symbolic variables from
the concreteStore structure. A vector container is used to save
all input constraints because it is easy to delete some constraints
when they are unnecessary, and to combine every constraint into
a complete input constraint when it is needed.
In symbolic execution, if a symbolic branch condition is only

feasible in one direction, there is no need to add the branch con-
dition to path constraints. In concolic execution, wemust collect
every symbolic branch conditions into path constraints because
we only follow the concrete path, and never use the solver to
determine the feasibility of each branch direction.
In addition to branches, symbolic addresses also cause state

forks on symbolic execution.When accessing amemory address
whose value is symbolic, cannot determine where it should
access. forks executions to try to access every address to
which the symbolic address can refer. In concolic mode, input
constraints are still used to help SMT solvers determine a loca-
tion on a symbolic address.
It is easy to switch between concolic-mode simulation and

original symbolic execution because the memory model of
is not modified. If symbolic execution will be performed, we just
set the input constraints to be true because path conditions will
not be changed when they perform an AND logical operation
with a true expression.

F. Detection of Pointer Corruption

When accessing a memory address, will check whether
the address is symbolic or not. If it is symbolic, must de-
termine an explicit location before keeping program execution.

uses a binary search to find all locations that the symbolic

address can point to, and forks executions to explore each ad-
dress. Before handles a symbolic address, the address can
try to point to sensitive data, such as a return address or a GOT.
If it is feasible, those sensitive data will be tainted and corrupt
the EIP register later. Otherwise, the symbolic address will be
changed to taint other concrete data because it may help ex-
ploit generation if other vulnerabilities corrupt the EIP register
later. For example, we can change the address to taint the data
segment so that the shellcode can be injected to bypass ASLR
protection.

G. Code Selection

Because has built-in selective symbolic execution, it is
easy to use this capability to select the code to run on concrete
execution or symbolic execution. In Linux, the LD_PRELOAD
environment variable can intercept the library functions, and
jump to the functions. With the help of this environment vari-
able, we can intercept those irrelevant library functions and
concretely execute them. Fig. 7 shows an example that inter-
cepts the fopen function and performs concrete execution on it.
In addition, some functions just print messages to the screen
without a return value, such as perror(), so those functions can
be skipped using this method directly to speed the process of
exploit generation.

IV. REASONING WITH PSEUDO VARIABLES

Vulnerabilities that involve corrupted pointers, like heap
overflow, cannot be exploited without a proper symbolic
pointer handling mechanism. However, mechanisms in
and MAYHEM [16] are not suitable for corrupted pointers
because they can only handle symbolic pointers with small
address ranges. Hence, we introduce a new approach that
enables CRAX to handle symbolic pointers with large address
ranges. We have introduced pseudo symbolic variables and
lazy evaluation for resolving possible pointer values for exploit
generation.

A. Pseudo Symbolic Variable for Memory Management
Helpers

We modified the memory management helpers of .
When symbolic read occurs, we first check whether the sym-
bolic pointer can refer to a legal address under the current path
constraints. If not, we concretize the pointer. If the symbolic
pointer can refer to a legal address, we then create a new
symbolic variable (called the pseudo symbolic variable) to
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replace the read result and record all information needed for
future constraint solving.
Information from the symbolic read is packed into a data ob-

ject named Dereference, in which we have the fields Derefer-
ence.address, Dereference.value, and Dereference.memory cor-
responding to the symbolic address expression, the pseudo sym-
bolic variable created for this read, and the memory snapshot
at the moment that the symbolic read occurs, respectively. For
each state, we maintain a set that contains all Dereference
objects created during the execution of the state. Newly created
Dereference objects will be stored in the set.
For the memory snapshot, rather than scanning all possible

addresses, we instrument to fork a state (called meta state),
and remove the meta state from the execution queue. has a
built-in copy-on-write mechanism to keep track of the memory
content of every state. Because the meta state has never been
executed, we can access the memory content (using the read-
Memory method) at the moment when the meta state is forked.

B. Lazy Evaluations of Pseudo Symbolic Variables by Late
Address Assignment

We treat the result of a symbolic read as a newly created,
un-constrained pseudo symbolic variable. Because the value
read is determined by the address, if we pass an expression that
contains pseudo symbolic variables to the constraint solver, we
will likely obtain an infeasible answer. We implement a modi-
fied version of the constraint solver routines so that the consis-
tency of symbolic reads can also be ensured.
The following are typical constraint solver routines used by
, where is a Boolean expression.

1) : Check if there is some variable as-
signment that can make become true.

2) : Check if there is some variable
assignment that can make become false.

3) : Check if is provably true
(no variable assignment can make it false).

4) : Check if is provably false
(no variable assignment can make it true).

Every routine can be implemented by any other one.
For example, can be implemented as

. Therefore, we only implement a
modified version of , and the other three can
be easily implemented. In the following discussions, we use

to denote the original solver routine, and
to denote the modified version. The other

three routines are denoted similarly.
For the routine, we must determine

whether we can find a variable assignment (including the
assignment to pseudo symbolic variables) that makes
true, and also preserve the consistency of all symbolic reads.
More formally, if is a variable assignment, and e is a sym-
bolic expression (Boolean or numerical), we define to be
the value of e under the variable assignment . The goal of

is to determine whether there exists a
variable assignment that satisfies

(1)

We can reuse the power of the original solver routine by trans-
forming the problem into determine whether there exists a map-
ping that maps each element of to a concrete address

, and satisfies equation (2) at the bottom of the page.
Note that may also be a symbolic

expression.
Determining the satisfiability of (1) is equivalent to deter-

mining that of (2). If (2) can be satisfied, we must have a vari-
able assignment that satisfies equation (3) at the bottom of
the page.
This condition is what is designed to answer.

Obviously the variable assignment also satisfies (1). In the
reverse direction, if we can find a variable assignment that
satisfies (1), then we take the mapping

The mapping also satisfies (2).
We define the address assignment of as a mapping that

maps every element of to a concrete address. An address
assignment of satisfies if (2) is true. We extend
these definitions to the subset of by replacing with
in the above definitions (and also (2)).We also define the address
assignment of a single object to be the concrete
address that will be mapped from the object.

(2)

(3)
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The goal of is to find an address
assignment of that satisfies , or determine that such
an assignment does not exist.
1) Searching Address Assignment of a Singleton Subset: We

must find an address assignment of a singleton subset of that
satisfies . Because the address assignment only contains
one concrete address, we use binary search for every possible
concrete address, and use solver to determine the satisfiability
of bExpr under each assignment. The process is shown in Al-
gorithm 5. However, we still need optimization techniques for
general cases.

Algorithm 5: FindSatisfyingAddress

Input: bExpr : The constraint. d : The dereference object.
addrMin : The starting address. addrMax : The end address.

Output: addr : The address satisfies the constraint.

1 if The address range[addrMin, addrMax] is unmapped then

2 return null

3 if

then

4 return null

5 if then

6 if

then

7 return addrMin

8 return null

9 else

10

11

12 if then

13 return addr

14

15 if then

Fig. 8. Alter searching order; the original order is from the lower address to
the higher address, and the altered order is searching symbolic blocks first.

16 return addr

17 return null

Value Based Filtering: If strictly constrains
but with few constraints on , we must

perform almost solver queries to find a satisfying address
assignment. However, if is constrained to a few con-
crete values, we can collect all the possible values of
(using similar binary search technique). Before recursively
searching an address range, we first check if any memory cell
in the range contains possible values. If not, there is no need to
search into the address range.
Currently, we will trigger this optimization when has

fewer than 5 possible values, and the address range (that is,
) is smaller than 1024.

Searching Symbolic Blocks First: may put no
constraint on or , but on their relationship,
for example, may look like

. In this case, the optimization technique intro-
duced previously is useless. To handle this case, we alter the
searching order to search the symbolic blocks first, as Fig. 8
illustrated.
If we cannot find a satisfying address assignment from sym-

bolic blocks, we will try the concrete blocks. However, this
may take a long time, so we also impose a timeout value when
searching concrete blocks, and judge that there is no satisfying
address assignment if the timeout is reached.
The FindNextSatisfyingAddress function will find an address

assignment of d that is greater than or equal to addr in the
searching order. The GetNextAddress function will return the
next address of addr in the searching order. We also implement
a modified version of the two functions to follow the altered
searching order.
2) Searching Address Assignment of : The intuitive way

to search an address assignment of satisfying is to
select an element of , find a satisfying address assignment
of , and recursively search the address assignment of the set

that satisfies
.

In most cases, the unsatisfiability of can be judged
by examining only a few key Dereference objects, but if those
objects are examined in deep recursions, we would waste
time backtracking, as illustrated in Fig. 9. In Fig. 9, each
round corner rectangle stands for an initial or recursive call of
HasAssignment, and arrays of squares are memory snapshots
of each Dereference object passed by the second parameter
of HasAssignment. The selected object is denoted below



HUANG et al.: SOFTWARE CRASH ANALYSIS FOR AUTOMATIC EXPLOIT GENERATION ON BINARY PROGRAMS 281

Fig. 9. The searching process of Algorithm 6 without re-selection of in .

Fig. 10. The searching process of Algorithm 6.

the memory snapshot, and the memory cell pointed by the
lastAddress field is denoted by a thick border. Although (at
line 4 of Algorithm 6) we can use a smarter heuristic to select
the Dereference object to solve, there is no guarantee that the
heuristic always makes the best decision.
Therefore, we change the Dereference object we are solving.

The selection heuristic at line 13 has one direction to follow: se-
lect the Dereference object that we just failed to find a satisfying
assignment at the recursive call of line 10 because it is likely to
be one of the key Dereference objects mentioned before. Fig. 10
illustrates the searching process of Algorithm 6 with the same
example as Fig. 9; we can see that, after the second recursion

fails, the first recursion re-selects a Dereference object, which
is the one for which the second recursion just failed to find a
satisfying assignment.
Additionally, we can prove that Algorithm 6 will eventually

terminate by induction on the size of ; Algorithm 6must termi-
nate if . Assume Algorithm 6 will terminate if ;
then when the , line 10 must terminate because

. If the recursive call at line 10 returns true, then
Algorithm 6 terminates; otherwise, d.lastAddr will be incre-
mented, so we will not try the same with the same
at line 5, which implies Algorithm 6 must terminate.
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Algorithm 6: HasAssignment

Input: bExpr : The constraint. D : The Dereference object set.

Output: Result : if there exists an address assignment
satisfying the constraint.

1 if is empty set then

2 return true

3 Select an element of

4 repeat

5

6 if then

7 return false

8

9

10 if then

11 return true

12

13 Re-select an element of

14 until false;

C. Exploiting the Unlink Process of Free()

With the symbolic pointer handling mechanism, we can au-
tomatically exploit the unlink macro used by free() in an early
version of glibc. The following code is the unlink macro. When
heap metadata are overwritten by symbolic data, P will be sym-
bolic, and FD and BK will become the result of symbolic reads,
so CRAXwill produce two pseudo variables to replace the value
of FD and BK. Because FD also becomes symbolic, line 5 will
become a symbolic write, which allows us to redirect the GOT
entry or return address to the shellcode.

Listing 2. The unlink macro

/ Take a chunk off a bin list /

#define unlink(P, BK, FD) {

;

;

;

;

}

Fig. 11. The stack layout when attacking printf; italic text denotes the $-offset
needed to access the cell.

However, there will be a second symbolic write at line 6, and
the target is just 8 bytes after the shellcode address, which will
corrupt the shellcode. To handle this condition, we add a jump
instruction at the beginning of the shellcode to jump over the
corrupted area, and we do not try to insert NOPs when we are
exploiting heap overflow vulnerabilities.

V. FORMAT STRING EXPLOIT GENERATION

Format string vulnerability is a common vulnerability caused
by misuse of formatting functions such as printf or syslog.
Attackers can overwrite an arbitrary address with an arbitrary
value by injecting a carefully crafted attack string into the
format string. Fig. 11 demonstrates the common pattern of
attack string used in CRAX’s format string exploit. The first 4
addresses point to the location we want to overwrite, usually
the GOT entry of some library function. Because only one byte
would be overwritten for each %hhn formatting, we need 4
addresses to overwrite the 4-byte GOT entry. In the remaining
part of the attack string, we repeatedly use the %x formatting
to manipulate the length of the printed string, and the %hhn
formatting to write the string length to the address specified in
the beginning of the attack string.
There is another problem: wemust ensure that each%hhn for-

matting can refer to one of the addresses at the beginning of the
attack string. This referencing can be done by using the ‘$’ for-
matting option, which assigns the argument with pointer values.
As in Fig. 11, the number before the ‘$’ formatting option (de-
noted as $-offset) specifies which argument to use. Because the
arguments are passed by the stack, we can access any portion
of the attack string (with carefully chosen $-offset) if the attack
string is also located in the stack.
Currently, CRAX only supports format string exploit gener-

ation in Linux. To capture invocations of formatting functions
in the guest OS, we use the LD_PRELOAD environment vari-
able to pre-load the re-implementations of formatting functions.
Once formatting function invocation is captured, the exploit
generation process is triggered. The generation process of the
format string exploit consists of several steps: 1) format string
vulnerability detection, 2) $-offset detection, and 3) constraint
reasoning and exploit generation.

A. Format String Vulnerability Detection

Once the formatting function call is detected, we first check
whether this call is vulnerable. That is, we check whether the
format string contains symbolic data. If it does, we continue
the remaining exploit generation process; otherwise we redi-
rect control flow to the original formatting function in libc as
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nothing happens. Currently, we try to generate format string ex-
ploits only when the format string contains more than 50 bytes
of symbolic data.

B. $-Offset Detection

If a vulnerable formatting function call is detected, then we
will try to generate an exploit. The first information we must
obtain is the $-offset that can reach the beginning of the format
string. Although we do not have to put the attack string at the
beginning of the format string, we must know the $-offset to
reach the attack string, which can be computed by the $-offset to
the beginning of the format string plus the distance between the
formatting string and the attack string. Perhaps we can compute
the $-offset directly by the distance between the current frame
pointer and the location of the format string, but for different
formatting functions, there may be variations in their $-offset
so that we should compute it case by case. However, the offsets
usually are small numbers, so we instead adopt a linear search
method. We just try every natural number starting with 1, and
test whether it is the correct $-offset.

Algorithm 7: Search$-offset

Input: FormatString : the format string.

Output: Offset : Searching $-offset.

1

2

3 repeat

4 if then

5

6 if then

7 break

8 else

9

10 else

11 NormalTerminateOnMemoryAccess(M)

12

13 OriginalFormattingFunction(FormatString)

14 ErrorTerminate()

15 until false;

The pseudo code of how we discover the correct $-offset is
shown in algorithm 7. We implement a set of POSIX-fork like
API for a guest OS program to control the state fork in .
When the pre-loaded library detects format string vulnerability,
it will enter a loop continually trying each possible $-offset. The
trials are done in the child state, and the parent state will be in-
formed of successful trials by the exit status of the child state.
The child state tests the given $-offset by replacing the head

of the format string with a special test string, which is prefixed
by a 4-byte magic number , and followed by a format-
ting with the given $-offset. When printing the modified format
string with correct $-offset, the formatting will reference the
magic number in the beginning of the test string, and cause a
memory write to address M. Before printing the format string,
the child state will use the API to instruct to capture such
a memory write. If such a memory write is captured, the child
state will be terminated, and the parent state will be informed of
a successful trial.

C. Constraint Reasoning and Exploit Generation

Now that we have all the information needed for generating
an attack string, the only thing left is inserting the shellcode and
NOP sled into some symbolic memory blocks, and inserting an
attack string to overwrite the pre-specified GOT entry into the
address of the shellcode. Shellcode and NOP sled are discussed
previously, and the role of the attack string is similar to the EIP
constraint in the previous discussions. However, inserting an at-
tack string is more complicated than manipulating a symbolic
EIP. We don’t have a dedicated symbolic EIP expression, but
we have a symbolic formatting string. We have to generate an
attack string. If the attack string is shorter than the formatting
string, we can insert the attack string in different locations in the
formatting string. Because we don’t have the symbolic EIP ex-
pression, we cannot use the binary search mechanism to assign
the EIP register to the address nearest to the middle of the NOP
sled. Hence, we currently just iteratively try each possible lo-
cation within the formatting string where we can put the attack
string, and for each possible location we also try each possible
address to which we can overwrite the GOT entry (we must gen-
erate different attack strings for different addresses), with the
priority that the addresses near the middle of the NOP sled are
tried first. Once a satisfactory setting is found, we can pass the
shellcode, NOP sled, and attack string constraints to the con-
straint solver to produce an exploit.

VI. EXPERIMENTAL RESULTS

We conducted five types of experiments to evaluate the work
for automatic exploit generation. The first experiment is with
five different common control-flow hijacking vulnerabilities.
The experiment demonstrates that the proposed method can
handle all vulnerabilities that symbolically update the EIP
register, and some vulnerabilities that symbolically update
pointers. The second experiment is with return-to-libc and
jump-to-register exploit generations to demonstrate that the
method could bypass some mitigation protections in real-world
systems. In the third experiment, we generated exploits for 33
real-word programs, most chosen from the benchmark of AEG
and MAYHEM, to demonstrate that our method can handle at
least most of all cases that AEG and MAYHEM addresses. Al-
though we are conducting the whole system symbolic execution
and AEG is on the application level, our method is still faster
than AEG because we reduce the number of constraints by
performing concolic execution on selected code and input. The
fourth experiment reveals the performance speedup between
the original concolic method and the improved method. The
speedup can achieve 7000 times faster execution than our initial
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TABLE II
THE RESULTS OF EXPLOIT GENERATION FOR SAMPLE CODE

attempt, due to this performance tuning. We also demonstrate
the power of CRAX to produce exploits of large applications,
including Microsoft office word, foxit pdf reader, and Mplayer.

A. Testing Method and Environment

All of the experiments are performed on a 2.66 GHz Intel
Core 2 Quad CPU with 4 GB of RAM, and the host environ-
ment is Ubuntu 10.10 64-bit. The guest environment is Debian
5.0 32-bit with default settings of QEMU, which is a 266 MHz
Pentium II (Klamath) CPU with 128 MB of RAM.
Most of the programs under test are compiled by GCC 4.3.2,

and run on Glibc 2.7, which are the default in Debian 5.0. The
other programs use GCC 3.4.6 and Glibc 2.3.2 to generate
exploits. The default version of GCC protects the main func-
tions against stack buffer overflow, and performs heap integrity
checks to stop heap overflow.
We use an end-to-end approach to generate exploits on binary

executables without modifying the source code. Our approach
is to fork a new process to execute the program under test, and
pass the symbolic data to it from the outside. Symbolic data are
created by the control process and passed to the target by in-
terprocess communication methods. For example, the control
process maps a buffer to a file by mmap(), and make this buffer
as symbolic. Whenever the target program accesses the memory
mapped file (with the corresponding memory as symbolic),
will start symbolic executions. Other kinds of symbolic environ-
ment can be simulated in the same way.
In Debian 5.0, ASLR is enabled by default so that the based

address of stack and heap is randomized. Therefore, ASLR is
disabled in our experiments for generating and testing all ex-
ploits except jump-to-register exploits.

B. Sample Code

Because our method is based on detection of a symbolic EIP
register, it can handle different types of vulnerabilities. In the
first experiment, we design code examples for five different vul-
nerabilities and four types of corrupted data, and perform au-
tomated exploit generation on them. The results are shown in
Table II, where the wall time is expressed by (exploit reason
time/total time).
In this experiment, the inputs of all sample codes are argu-

ments, and the length of all inputs are 100 characters. We com-
pare the efficiencies of concolic-mode simulation with tradi-
tional symbolic execution. In symbolic execution, depth-first

TABLE III
THE RUN-TIME INFORMATION OF RERUN-TO-LIBC EXPLOIT GENERATION

search (DFS) is used to explore a symbolic execution tree. The
heap overflow code is executed on Glibc 2.3.2 because some
protections that check pointer consistency have been included
in Glibc since version 2.3.6. In addition, this exploit generation
cooperates with the libfmtb library to build format strings to ex-
ploit format string vulnerabilities.
In the five vulnerabilities considered in the first experiment,

stack buffer overflow and uninitialized variable vulnerability
corrupt the EIP register directly, and the other three vulnerabili-
ties taint the EBP register or pointers to corrupt the EIP register
indirectly. As the results show, the average total time is 3.67
seconds in concolic mode, and the exploit reason time is 0.35
seconds. On average, symbolic execution spent 302.67 seconds
on generating an exploit, and 0.47 seconds on reasoning it out.
Concolic mode was faster by about 100 times than symbolic
execution because it just explored only one suspicious path. In
the experiments of symbolic execution, format string vulnera-
bility got an out-of-memory error because symbolic execution
attempted to explore all paths in the snprintf() function, which
performs a complex behavior.

C. Return-to-Libc, and Jump-to-Register Exploits

In the second experiment, we implemented return-to-libc and
jump-to-register exploit generation, and the generated exploits
could bypass non-executable stacks or ASLR protection.
Because return-to-libc and jump-to-register exploit genera-

tion do not apply to all cases, we choose the sample code of stack
buffer overflow vulnerability to conduct the experiment. Fur-
thermore, the experiment was conducted on the concolic mode.
In the experiment on return-to-libc exploits, we use the

system() function to execute a ”/bin/sh” command. The run-time
information at exploit generation is shown in Table III. The top
of the stack (which is the location that stores the argument of
the system() function) is symbolic, so we can manipulate the
argument (which is a pointer point to the command string) so
that it points to our shellcode buffer. And the potential shell-
code buffers were large enough to insert the string ”/bin/sh”.
Therefore, this vulnerable program satisfied all the conditions
for return-to-libc exploit generation. The time spent on the
exploit reason was 0.34 seconds, while the total time of this
experiment was 3.25 seconds.
Table IV shows the run-time information at jump-to-register

exploit generation. A call %eax instruction was found at address
0x0804839f, and the EAX register pointed to the starting lo-
cation of a symbolic region exactly. Therefore, this vulnerable
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TABLE IV
THE RUN-TIME INFORMATION OF JUMP-TO-REGISTER EXPLOIT GENERATION

TABLE V
THE RESULTS OF EXPLOIT GENERATION FOR REAL-WORLD PROGRAMS

WITHOUT SELECTIVE INPUT

program can generate a jump-to-register exploit to bypass the
ASLR. Only 0.06 seconds were spent on reasoning out the ex-
ploit while the total execution time was 3.16 seconds.

D. Real-World Programs Without Selective Symbolic Input

In the third part of the experiments, we generate exploits
for real-world programs. Because real-world programs are
larger and more complex than the sample code, this experiment
demonstrates that our method is effective and practical in
real-world applications.
We choose several programs from benchmarks of AEG, and

three new vulnerable programs released in recent years, to per-
form this experiment. The 16 real-world programs are evaluated
by an end-to-end approach, and the vulnerabilities of these pro-
grams are all stack buffer overflow. Concolic-mode simulation
is used to perform exploit generation on all programs, and code
selection intercept functions associating with file-related oper-
ations or pure error feedback, such as fopen() and perror(), to
speed up the process. Table V shows the results of 16 real-word
programs.
According to the results, the time was proportional to the

length of the program input because the more symbolic data
that exist, the more code may perform on symbolic execution.

TABLE VI
THE COMPARISONS OF DIFFERENT OPTIMIZATIONS OF CRAX

In addition, the longer the symbolic data will bring huge, com-
plex constraints, and SMT solvers must spend a lot of time on
constraint solving.
To reduce the overhead of the SMT solvers and speed up

the process, code selection was used to concretize arguments
of irrelevant functions. In this experiment, aeon, htget, and
acon intercepted fopen(); ncompress intercepted __lxstat()
and perror(); gif2png intercepted fopen() and perror(); expect
intercepted open(); rsync intercepted vsnprintf(); hsolink inter-
cepted system(). Those functions related with file operations
often make constraint solvers stick, and the perror() function
just print error messages without return values or influencing
exploit generation, so we filtered these functions to speed up
the process.
In this experiment, we performed exploit generation on real-

world programs, and produced exploits for those applications
successfully. The results show that the worst total time was
about six minutes to generate an exploit for real-world pro-
grams, and the quality of exploits was good because they con-
tained the longest NOP sled to increase the chances of suc-
cessful attacks.

E. Constraint Optimization and Large Applications

In the ordinary concolic execution, the path constraints and
the input constraint, along with the exploit constraints, are com-
bined to be solved. We have tried to separate the constraint re-
solving processes, with two exclusive conditions: 1) path con-
straints and branch constraint, and 2) input constraint and branch
constraint. The symbolic model construction process has min-
imal uses of the constraint solver, and in most of the cases, con-
crete value substitutions are used. We called this process the
fast concolic process. After this process, along with selective
symbolic input, the performance speed increase can achieve a
multiple as high as 7251, as shown in Table VI. In Table VI,
CRAX (raw) is the initial attempt without constraint reductions
(indicated by ). CRAX(fast concolic, denoted as ), is with a
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TABLE VII
THE RESULTS OF EXPLOIT GENERATION FOR LARGE PROGRAMS WITHOUT SELECTIVE INPUT

single path concolic evaluation. CRAX(selective input, ) tries
to filter out insignificant input as symbolic input.
The best speed increase between the initial CRAX and op-

timized CRAX is on gif2png. , where the fast
concolic speed increase is 79, and the selective input speed in-
crease is 92.
In Table VII, for the case of unrar, the original time is 3958

seconds, reduced to 13.5 seconds, with 293 times faster. The
selective input method cannot reduce the symbolic input space
of the foxit reader in the windows platform. The exploit genera-
tion process for foxit pdf reader still takes 4 hours, with the 1.8
M symbolic LOC executed, and 3.9 M constraints. It reveals
that the automated process is made to symbolically resolve a
large number of symbols, emulating the manual exploit writing
process.
In Table VIII, we have summarized the exploit generation

time for Linux and Windows platforms, and for different vul-
nerability types. All are optimized with the fast concolic and
selective input methods.

F. Discussions

1) Comparisons of AEG Features: With the complete sym-
bolic models supported by , CRAX uses less than 100 LOC
to implement symbolic environment. And the concrete address
indexed symbolic memory and selective symbolic execution
are also built-in features of . We reduce the cost of failure
model reconstructions by revising the KLEE symbolic executor,
implementing plugins for selective code, path, and input,
using about 6,000 LOC. In addition to simpler modeling, we do
not make any assumptions on the failure situations. Our auto-
matic exploit generation system supports various types of soft-
ware crashes, including those introduced by tainted continua-
tions, forged format strings, heap overflows by integer signed-
ness, and uninitialized variable uses. The method is more gen-
eral, without limiting the types of software vulnerability, and the
recognition capability is delegated to the power of constraint
solvers. The system we have developed is faster, even though
the CRAX process is conducted in the whole system emulation
level, compared with other methods in the process level. Our
method can be at best 50 times faster than the existing systems
by the selective input process (similar to the hot bytes finding
process by taintscope and unique pattern generation by metas-
ploit). The detailed comparisons are listed in Table IX.

2) Impacts of AEG Development:
• Exploit generation will become a powerful bug diagnosis
technique. Viewing software crash as a tainted continua-
tion, we detect exploits by producing symbolic continua-
tions. That is, bug diagnosis is conducted by generating ar-
bitrary process continuation to better understand the crash
behaviors of various programs. Therefore, users can con-
trol the crash at will, manipulate the crash to the extent of
their need (e.g., able to continue execution as usual), and
dynamically patch the vulnerable running service, even if
the system state has been corrupted.

• Zero-day exploit generation will become an automated
process for average users, similar to Metasploit [22] acting
as a shell code framework for common use. Stuxnet [27]
like projects for physical infrastructure attacks can be
developed easier than before.

• The link between software bugs and vulnerabilities can be
bridged. Because 8lgm and rootshell announced the vul-
nerabilities in the form of real exploits, vulnerability is
thought of as a security research topic, but few recognize
that the vulnerability is closely related to software quality
problems. CRAX urges an emphasis of quality assurance
of released software, instead of releasing vulnerable soft-
ware just for time-to-market consideration. Once crashes
occur in uses of common users, an exploit is produced.

• Using a software bug as a backdoor becomes feasible. A
sophisticated backdoor in a software program can be em-
bedded as a symbolic continuation with a payload. We
don’t need to write explicit backdoors like the trapdoored
login [28]. We can embed a bug for an implicit backdoor.

• Software security can be measured in terms of the software
reliability and exploitability of the failure. Software relia-
bility can be modeled as the mean time between failures.
Exploitability can be expressed as the difficulty to build the
failure symbolic model and exploit the failures, with a cer-
tain strength of mitigation strategies.

VII. RELATED WORK

APEG (Automatic Patch-based Exploit Generation) [29]
compares the differences of a program between its buggy
version and a patched version, and generates the exploits to
fail the added check in the patched program. This work needs a
patched version of the program, and is feasible only when the
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TABLE VIII
THE RESULTS OF EXPLOIT GENERATION FOR REAL-WORLD PROGRAMS WITH DIFFERENT VULNERABILITY TYPES

patch is to add input sanitization logic. In addition, most of the
exploits generated by APEG are DoS (Denial-Of-Service) at-
tacks, which just crash a program, without executing shellcode
or malicious tasks.
AEG (Automatic Exploit Generation) [2] generates exploits

in two stages: finding bugs on symbolic execution, and then col-
lecting run-time information on concrete execution. AEG only
deals with stack buffer overflow and format string vulnerability
because it has to add individual safety check constraints to de-
tect each bug. Furthermore, AEG implements an end-to-end ap-
proach for exploit generation, including symbolic files, sym-
bolic sockets, etc., and uses return oriented programming to by-
pass both and ASLR[4]. MAYHEM [16] is the first bi-

nary AEG, implementing many binary AEG features in PIN.
However, many are the built-in features in , including selec-
tive path, symbolic environment, and concrete address mapped
symbolic memory. In our CRAX implementation, we just reuse
these features.
Heelan et al. [3] uses binary instrumentation to perform taint

propagation, and collect runtime information. Their work gen-
erates exploits by checking whether the EIP register is corrupted
by a tainted value, and also handles pointer corruption that cor-
rupts the EIP register indirectly. Similar to our work, a crashing
input is needed for taint analysis.
In addition, some systems do not generate exploits explicitly,

but aim to report a bug which is probably exploitable. For ex-
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TABLE IX
COMPARISON OF AEG FEATURES

ample, !exploitable [8], and some projects [6] of BitBlaze, ana-
lyze a crash, and determine whether it is exploitable.

VIII. CONCLUSIONS

In this paper, we implement an automated exploit generation
framework, called CRAX, which is built on , a new plat-
form for symbolic execution. To generate control flow hijacking
attacks, we focus on detection of the symbolic EIP, other con-
tinuation based registers, and pointers; and we propose a sys-
tematic method for searching maximum contiguous symbolic
memory for payload injection. Detection of symbolic registers
is a comprehensive, easier way to deal with all kinds of control
flow hijacking vulnerabilities.
We implement concolic-mode simulation to perform concolic

testing on symbolic execution so that switching between sym-
bolic execution and concolic testing is easy without modifying
the memory model. In addition, code selection helps to
filter irrelevant functions, and thus enables symbolic execution
to explore interested code more effectively, and accelerate the
process of exploit generation. We also use selective symbolic
input to reduce the symbolic variable size by identifying the sig-
nificant inputs (called hot bytes) that will influence the continua-
tions. By only marking these bytes, the whole exploit generation
time can be reduced significantly. We also propose the concept
of pseudo symbolic variables and lazy evaluation to handle sym-
bolic pointers. We can automatically exploit the unlink() macro
of glibc.
To evaluate CRAX, we conducted experiments on a variety

of vulnerable sample code to demonstrate that it can tackle dif-
ferent kinds of control flow hijacking vulnerabilities. We also
experimented on real-world large programs, and generated re-
turn-to-libc and jump-to-register exploits to bypass mitigations
of ALSR or in real-world software. The successes on
mplayer, and foxit pdf reader show that CRAX is a feasible,
powerful exploit generation tool for real environments.

A. Future Work

CRAX can be extended for larger programs, including
Open-office, Microsoft Office, and popular web browsers.
Driver mode applications like anti-virus software in windows
and kernel modules like VM hypervisors are also our future

targets for potential exploitations. These targets are not pos-
sible for process level AEG like MAYHEM, but feasible for

-based AEG like CRAX. Because CRAX can be applied to
the whole system, we have preliminarily tested web systems:
apache with the php module, and mysql server. Currently,
we have developed a web exploit generation tool, called
CRAXweb [30], able to automatically generation SQL injec-
tion and cross-site scripting attacks from php and python web
applications. More web vulnerability types and web platforms,
including asp, jsp, and ruby will be supported.
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