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Abstract. For bounded linear operators A and B on Hilbert spaces
H and K, respectively, it is known that the numerical radii of A, B
and A ⊗ B are related by the inequalities w(A)w(B) ≤ w(A ⊗ B) ≤
min{‖A‖w(B), w(A)‖B‖}. In this paper, we show that (1) if w(A⊗B) =
w(A)w(B), then w(A) = ρ(A) or w(B) = ρ(B), where ρ(·) denotes
the spectral radius of an operator, and (2) if A is hyponormal, then
w(A ⊗ B) = w(A)w(B) = ‖A‖w(B). Here (2) confirms a conjecture of
Shiu’s and is proven via dilating the hyponormal A to a normal operator
N with the spectrum of N contained in that of A. The latter is obtained
from the Sz.-Nagy–Foiaş dilation theory.
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1. Introduction

For any bounded linear operator A on a complex Hilbert space H, its numer-
ical range W (A) is, by definition, the subset {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}
of the complex plane C, where 〈·, ·〉 and ‖ · ‖ denote the inner product and
its associated norm in H, respectively. The numerical radius w(A) of A is
sup{|z| : z ∈ W (A)}. It is known that W (A) is a nonempty bounded convex
subset of C, and w(A) satisfies ‖A‖/2 ≤ w(A) ≤ ‖A‖, where ‖A‖ denotes the
usual operator norm of A. For other properties of the numerical range and
numerical radius, the reader may consult [5, Chapter 22] or [4].

The tensor product H ⊗K of Hilbert spaces H and K is the completion
of the inner product space consisting of elements of the form

∑n
j=1 xj ⊗ yj

with xj in H and yj in K for any n ≥ 1 under the inner product 〈x⊗y, u⊗v〉
= 〈x, u〉〈y, v〉. Here x⊗y is defined algebraically so as to be bilinear in the two
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arguments x and y. The tensor product A⊗B of operators A on H and B on
K is the operator defined on H ⊗K via (A⊗B)(x⊗y) = Ax⊗By. In partic-
ular, if A and B are represented as matrices [aij ]i,j and [bij ]i,j , respectively,
then A ⊗ B can be represented by [aijB]i,j . A nice account of tensor prod-
ucts of operators on Hilbert spaces or, for that matter, of C∗-algebras is in
[9, Section 6.3].

The numerical ranges of tensor products have been studied in [11]. It
is easily seen that W (A ⊗ B) always contains the product W (A) · W (B) =
{z1z2 : z1 ∈ W (A), z2 ∈ W (B)}, and if A or B is normal, then W (A ⊗ B) =
(W (A) · W (B))∧ holds (cf. [11, Theorem 3′]), where 	∧ denotes the convex
hull of a subset 	 of C. Thus, in particular, we have the inequality w(A⊗B) ≥
w(A)w(B), and the equality holds if A or B is normal. On the other hand, we
also have w(A⊗B) ≤ ‖A‖w(B), which can be proven either using the unitary
dilation of a contraction and then invoking the above-mentioned equality for
normal operators (cf. [3, Proposition 1.1]), or appealing to [7, Theorem 3.4]
directly since A⊗B is the product of A⊗ IK and IH ⊗B (IK and IH are the
identity operators on K and H, respectively) and the latter two operators
doubly commute, that is, A⊗IK commutes with both IH ⊗B and its adjoint
IH ⊗ B∗. In [3], we obtained various necessary/sufficient conditions on finite
matrices A and B in order that w(A⊗B) be equal to ‖A‖w(B). The present
one is more concerned with when the equality w(A ⊗ B) = w(A)w(B) holds.

In Section 2 below, we prove that if w(A ⊗ B) = w(A)w(B), then
either w(A) = ρ(A) or w(B) = ρ(B), where ρ(·) denotes the spectral radius
of an operator: ρ(A) = sup{|z| : z ∈ σ(A)} (σ(A) is the spectrum of A).
Unfortunately, this necessary condition is not sufficient. An extension of it to
a complete characterization is given in Proposition 2.5, which, however, is not
very useful. Then, in Section 3, we confirm a conjecture of Shiu [11] by proving
that if A is a hyponormal operator, then W (A ⊗ B) = (W (A) · W (B))∧

for any operator B. Thus, in particular, we have w(A ⊗ B) = ‖A‖w(B) =
w(A)w(B) for a hyponormal A and an arbitrary B. This is proven by showing,
via the Sz.-Nagy–Foiaş dilation theory [12], that every hyponormal operator
A can be dilated to a normal operator N with σ(N) contained in σ(A).

For any Hilbert space H, let IH denote the identity operator on H, and
B(H) the C∗-algebra of all operators on H. An operator A on H is dilated to
operator B on K if there is an operator V from H to K such that V ∗V = IH

and A = V ∗BV . This is equivalent to saying that B is unitarily equivalent
to an operator of the form

[
A ∗
∗ ∗

]

. We say that an operator A attains its

numerical radius if there is a λ in W (A) such that |λ| = w(A).

2. w(A ⊗ B) = w(A)w(B)

The main result of this section is the following.

Theorem 2.1. Let A and B be operators on H and K, respectively. If w(A ⊗
B) = w(A)w(B), then either w(A) = ρ(A) or w(B) = ρ(B).

For the proof, we need the next lemma.
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Lemma 2.2. Let A be an operator on H. If λ in W (A) is such that |λ| = w(A),
then

A =
[

λ B
−e2iθB∗ ∗

]

,

where θ in R is the argument of λ : λ = |λ|eiθ.

Proof. Let x be a unit vector in H such that 〈Ax, x〉 = λ, and let L be

the one-dimensional subspace of H generated by x. Then A =
[

λ B
C ∗

]

on

H = L ⊕ L⊥. Since

〈(Re (e−iθA))y, y〉 = Re (e−iθ〈Ay, y〉) ≤ |λ| = Re (e−iθλ) = 〈Re (e−iθλ)y, y〉
for any unit vector y in H, we have

Re (e−iθ(λIH − A)) =
[

0 −(e−iθB + eiθC∗)/2
−(eiθB∗ + e−iθC)/2 ∗

]

≥ 0.

From this, we infer that eiθB∗ + e−iθC = 0 or C = −e2iθB∗ as asserted. �
Another tool we need for the proof of Theorem 2.1 is the Berberian

representation for operators [1,2].

Lemma 2.3. For any Hilbert space H, there is another Hilbert space H ′ which
contains H and a unital ∗-isomorphism α from B(H) to B(H ′) such that the
following conditions hold for all A in B(H) :
(a) α(A) maps H ′ to H ′, and the restriction of α(A) to H equals A,
(b) ‖α(A)‖ = ‖A‖,
(c) σ(α(A)) = σ(A), and
(d) W (α(A)) = W (A).

We remark that the construction of the asserted H ′ and α is analogous
to the Gelfand–Naimark–Segal construction for the cyclic representation of
a C∗-algebra associated with a positive linear functional.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. First assume that both A and B attain their numer-
ical radii, and let a in W (A) and b in W (B) be such that |a| = w(A) and
|b| = w(B). We may assume that both a and b are nonzero. Replacing A
by (1/a)A and B by (1/b)B, we may further assume that a = b = 1. If x
is a unit vector in H such that 〈Ax, x〉 = 1 and L is the one-dimensional
subspace of H generated by x, then, by Lemma 2.2, A can be represented
as

[
1 C

−C∗ ∗
]

on H = L ⊕ L⊥. Similarly, B is of the form
[

1 D
−D∗ ∗

]

. Then

A ⊗ B =
[

1 C ⊗ D
C∗ ⊗ D∗ ∗

]

. As w(A ⊗ B) = w(A)w(B) = 1, we obtain from

Lemma 2.2 again that C∗ ⊗ D∗ = −(C ⊗ D)∗ or C∗ ⊗ D∗ = 0. Thus C = 0
or D = 0. This shows that 1 is an eigenvalue of A or B. Therefore, either
w(A) = ρ(A) = 1 or w(B) = ρ(B) = 1.

For the general case, let H ′ and K ′ be the Hilbert spaces which con-
tain H and K, respectively, and let α : B(H) → B(H ′) and β : B(K) →
B(K ′) be the unital ∗-isomorphisms as given in Lemma 2.3. Then α ⊗ β :
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B(H) ⊗ B(K) → B(H ′ ⊗ K ′) is also a unital ∗-isomorphism, which satisfies
W (α(A) ⊗ β(B)) = W (A ⊗ B) (cf. [2, Theorem 2]). Hence

w(α(A) ⊗ β(B)) = w(A ⊗ B) = w(A)w(B) = w(α(A))w(β(B)).

Since W (α(A)) and W (β(B)) are closed, the first part of the proof yields
that w(α(A)) = ρ(α(A)) or w(β(B)) = ρ(β(B)). It follows that w(A) = ρ(A)
or w(B) = ρ(B). �

Note that the necessary condition in the preceding theorem is far from
sufficient. For example, if A = [λ]⊕

[
0 1
0 0

]

, where 1/2 ≤ |λ| <
√

2/2, then

w(A) = ρ(A) = |λ| and

w(A ⊗ A) = w

(

[λ2] ⊕
[

0 λ
0 0

]

⊕
[

0 λ
0 0

]

⊕
[

0 0
0 0

]

⊕
[

0 1
0 0

])

=
1
2

> |λ|2 = w(A)2.

One obvious sufficient condition for w(A ⊗ B) = w(A)w(B) is for w(A)
to be equal to ‖A‖ or w(B) equal to ‖B‖.

Proposition 2.4. If w(A) = ‖A‖ or w(B) = ‖B‖, then w(A⊗B) = w(A)w(B).

Proof. Assume that w(A) = ‖A‖. Then w(A ⊗ B) ≤ ‖A‖w(B) = w(A)w(B)
by [3, Proposition 1.1]. Since the reversed inequality w(A ⊗ B) ≥ w(A)w(B)
was already noted in Section 1, we thus have w(A ⊗ B) = w(A)w(B). �

In particular, this proposition is applicable when A or B is a hyponormal
or a Toeplitz operator (cf. [5, Problem 205 and Corollaries 1 and 4 to Problem
245]).

The next proposition expands Theorem 2.1 to a necessary and suffi-
cient condition for w(A ⊗ B) = w(A)w(B) when both A and B attain their
numerical radii.

Proposition 2.5. Let A and B be operators on H and K, respectively, such that
their numerical radii are attained. Then w(A ⊗ B) = w(A)w(B) if and only
if either A = [a] ⊕ A′, where |a| = w(A) = ρ(A) and w(A′ ⊗ B) ≤ |a|w(B),
or B = [b] ⊕ B′, where |b| = w(B) = ρ(B) and w(A ⊗ B′) ≤ |b|w(A).

Proof. If w(A ⊗ B) = w(A)w(B), then, by (the proof of) Theorem 2.1, we
may assume that A = [a] ⊕ A′ with |a| = w(A) = ρ(A). In this case, we have

|a|w(B) = w(A ⊗ B) = w(aB ⊕ (A′ ⊗ B)) = max{|a|w(B), w(A′ ⊗ B)}
and thus w(A′ ⊗ B) ≤ |a|w(B). The converse follows easily from the above
equalities. �

Admittedly, the above conditions are not easily applicable. In one special
case, they reduce to a simple one.

Corollary 2.6. An operator A on a two-dimensional space satisfies w(A⊗A) =
w(A)2 if and only if it is normal.

Proof. The necessity follows easily from Proposition 2.5, and the sufficiency
is true for any normal operator A. �
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Unfortunately, the preceding corollary is no longer true even for opera-
tors on a three-dimensional space. For example, if A = [

√
2/2]⊕

[
0 1
0 0

]

, then

w(A) =
√

2/2, w(A ⊗ A) = 1/2, and hence w(A ⊗ A) = w(A)2, but A is not
normal.

We conclude this section with a strengthening of the conditions in
Proposition 2.5. In the next proposition, let J2 =

[
0 1
0 0

]

.

Proposition 2.7. The following conditions are equivalent for an operator A
with attaining numerical radius:
(a) w(A ⊗ B) = w(A)w(B) for all operators B,
(b) w(A ⊗ J2) = w(A)w(J2), and
(c) A = [a] ⊕ A′, where |a| = w(A) ≥ ‖A′‖.
Proof. The implication (a) ⇒ (b) is trivial. To prove (b) ⇒ (c), assume
that w(A ⊗ J2) = w(A)w(J2). Then A = [a] ⊕ A′ with |a| = w(A) = ρ(A)
and w(A′ ⊗ J2) ≤ |a|w(J2) = |a|/2 by Proposition 2.5. Since A′ ⊗ J2 is

unitarily equivalent to J2 ⊗ A′ =
[

0 A′
0 0

]

and the closure of the numerical

range of the latter is {z ∈ C : |z| ≤ ‖A′‖/2} (cf. [13, Theorem 2.1]), we
have w(A′ ⊗ J2) = ‖A′‖/2. We then infer from w(A′ ⊗ J2) ≤ |a|/2 that
‖A′‖ ≤ |a|. This proves (c). Finally, if (c) holds, then, for any operator B, we
have A⊗B = aB⊕(A′⊗B). Since w(A⊗B) = max{|a|w(B), w(A′⊗B)} and
w(A′⊗B) ≤ ‖A′‖w(B) ≤ |a|w(B) by [3, Proposition 1.1] and our assumption,
we conclude that w(A ⊗ B) = |a|w(B) = w(A)w(B). This proves (a). �

3. Hyponormal Operators

Recall that an operator A is hyponormal if A∗A ≥ AA∗. Basic properties of
hyponormal operators can be found in [5, pp. 108–111]. The main result of
this section is the following theorem.

Theorem 3.1. If A is a hyponormal operator, then W (A ⊗ B) = (W (A) ·
W (B))∧ and w(A ⊗ B) = w(A)w(B) = ‖A‖w(B) for any operator B.

This confirms Shiu’s conjecture in [11, p. 260]. It is a consequence of the
next two results, the first of which is proven via the Sz.-Nagy–Foiaş dilation
theory [12].

Theorem 3.2. Any hyponormal operator A on H can be dilated to a normal
operator N with σ(N) ⊆ σ�(A) ∩ σr(A).

Here σ�(A) (resp., σr(A)) denotes the left spectrum (resp., right spec-
trum) of A, that is, σ�(A) (resp., σr(A)) = {λ ∈ C : A−λIH is not left invert-
ible (resp., not right invertible)}. Since σ�(A) ∩ σr(A) contains the boundary
of σ(A) (cf. [5, Problem 78]), it is always nonempty.

It is well known that every operator A can be dilated to a normal
operator N (cf. [5, Corollary to Problem 222]), but the dilation N may not

satisfy σ(N) ⊆ σ(A). For example, if A =
[

0 1
0 0

]

, then it has no normal

dilation N with σ(N) ⊆ σ(A) = {0}.



380 H.-L. Gau et al. IEOT

Proof of Theorem 3.2. Let λ be any point in σ�(A) ∩ σr(A). Then A − λIH

is also hyponormal. [12, Theorem] implies that there is a normal M on some
Hilbert space K and a contraction X (‖X‖ ≤ 1) from H to K such that
X∗MX = A − λIH and σ(M) ⊆ σ�(A − λIH) ∩ σr(A − λIH). Let

Y =
[

X
(IH − X∗X)1/2

]

: H → K ⊕ H

and N1 = M ⊕ 0 on K ⊕ H. Then Y ∗Y = IH and

Y ∗N1Y = [X∗ ∗]
[

M 0
0 0

] [
X
∗

]

= X∗MX = A − λIH .

This shows that A − λIH dilates to N1. Hence A dilates to the normal N ≡
N1 + λIK⊕H on K ⊕ H with

σ(N) = σ((M + λIK) ⊕ λIH) = σ(M + λIK) ∪ {λ}
⊆(σ�(A) ∩ σr(A)) ∪ {λ} = σ�(A) ∩ σr(A)

as required. �

Another result needed for the proof of Theorem 3.1 is the next propo-
sition.

Proposition 3.3. Assume that the operator A on H has a normal dilation N
on K such that σ(N) ⊆ σ(A). Then the following hold:
(a) ‖A‖ = ‖N‖ = w(N) = ρ(N) = ρ(A) = w(A).
(b) ‖An‖ = ‖A‖n for all n ≥ 1.
(c) W (A) = W (N) = σ(N)∧ = σ(A)∧.
(d) A is Hermitian if and only if σ(A) ⊆ R.
(e) A is quasinilpotent (σ(A) = {0}) if and only if A = 0.
(f) W (A ⊗ B) = (W (A) · W (B))∧ for any operator B.
(g) w(A ⊗ B) = w(A)w(B) = ‖A‖w(B) for any operator B.

Examples of operators satisfying the above normal dilation property
are subnormal operators (cf. [5, Problem 200]), Toeplitz operators (cf. [5,
Problem 245]), and any operator with numerical range a triangular region (cf.
[10, Theorem 2]). Our Theorem 3.2 adds the class of hyponormal operators to
this list. Note that it is well known that subnormal operators are hyponormal
(cf. [5, p. 109]), but not the other two classes of operators. Back in 1976/77,
Halmos asked what the underlying reasons are for the subnormal and Toeplitz
operators to share so many properties in common (cf. [6]). Some efforts have
been made to extrapolate this analogy (cf. [8]). The preceding proposition
provides instead a list of consequences of the normal dilation property.

Note also that the equality w(A⊗B) = ‖A‖w(B) does not imply the one
with A and B switched. For example, if A is any nonzero operator satisfying
the normal dilation property in Proposition 3.3 and B =

[
0 1
0 0

]

, then

w(A ⊗ B) = ‖A‖w(B) = w(A)w(B) = w(A)/2 < w(A)‖B‖
by Proposition 3.3 (g).
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Proof of Proposition 3.3. (a) We obviously have ‖A‖ ≤ ‖N‖ and ρ(A) ≤
w(A) ≤ ‖A‖. Also, by the spectral theorem, ‖N‖ = w(N) = ρ(N)
for the normal N . Since our assumption σ(N) ⊆ σ(A) implies that
ρ(N) ≤ ρ(A), the asserted equalities follow.

(b) The assertion is equivalent to ‖A‖ = ρ(A) (cf. [5, p. 110]).
(c) As N is a dilation of A, we have W (A) ⊆ W (N). But W (N) = σ(N)∧

for the normal N (cf. [5, Problem 216]). Thus the containments

σ(A)∧ ⊆ W (A) ⊆ W (N) = σ(N)∧ ⊆ σ(A)∧

yield the equalities of these sets.
(d) If A is Hermitian, then, obviously, σ(A) ⊆ R. Conversely, if σ(A) ⊆ R,

then (c) implies that W (A) ⊆ R, from which follows the Hermitianness
of A.

(e) If A is quasinilpotent, then W (A) = σ(A)∧ = {0} by (c). This yields
that A = 0.

(f) Since A ⊗ B dilates to N ⊗ B for any operator B, we have W (A ⊗
B) ⊆ W (N ⊗ B). For the normal N , the equality W (N ⊗ B) =
(W (N) · W (B))∧ holds by [11, Theorem 3′]. On the other hand, (c)
gives W (N) = W (A). These together yield that W (A ⊗ B) ⊆ (W (A) ·
W (B))∧. Since the converse containment is always true, this proves (f).

(g) The asserted equalities follow easily from (f) and (a).
�

Obviously, Theorem 3.1 is an immediate consequence of Theorem 3.2
and Proposition 3.3.
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