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Numerical Radii for Tensor Products
of Operators
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Abstract. For bounded linear operators A and B on Hilbert spaces
H and K, respectively, it is known that the numerical radii of A, B
and A ® B are related by the inequalities w(A)w(B) < w(A ® B) <
min{||A||w(B), w(A)||B||}. In this paper, we show that (1) if w(A®B) =
w(A)w(B), then w(A) = p(A) or w(B) = p(B), where p(-) denotes
the spectral radius of an operator, and (2) if A is hyponormal, then
w(A® B) = w(A)w(B) = ||A||lw(B). Here (2) confirms a conjecture of
Shiu’s and is proven via dilating the hyponormal A to a normal operator
N with the spectrum of N contained in that of A. The latter is obtained
from the Sz.-Nagy-Foiag dilation theory.
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1. Introduction

For any bounded linear operator A on a complex Hilbert space H, its numer-
ical range W(A) is, by definition, the subset {(Az,z) : = € H,||z| = 1}
of the complex plane C, where (-,-) and || - || denote the inner product and
its associated norm in H, respectively. The numerical radius w(A) of A is
sup{|z| : z € W(A)}. It is known that W (A) is a nonempty bounded convex
subset of C, and w(A) satisfies ||A]|/2 < w(A) < ||A||, where || A|| denotes the
usual operator norm of A. For other properties of the numerical range and
numerical radius, the reader may consult [5, Chapter 22] or [4].

The tensor product H® K of Hilbert spaces H and K is the completion
of the inner product space consisting of elements of the form Z?:1 z; ® Yy
with z; in H and y; in K for any n > 1 under the inner product (x®@y, u®@uv)
= (x,u)(y,v). Here z®y is defined algebraically so as to be bilinear in the two
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arguments x and y. The tensor product A® B of operators A on H and B on
K is the operator defined on H ® K via (A® B)(x®y) = Az ® By. In partic-
ular, if A and B are represented as matrices [a;;]; ; and [b;;]; ;, respectively,
then A ® B can be represented by [a;;B]; ;. A nice account of tensor prod-
ucts of operators on Hilbert spaces or, for that matter, of C*-algebras is in
[9, Section 6.3].

The numerical ranges of tensor products have been studied in [11]. It
is easily seen that W(A ® B) always contains the product W(A4) - W(B) =
{z122: 21 € W(A), 22 € W(B)}, and if A or B is normal, then W(A ® B) =
(W(A) - W(B))" holds (cf. [11, Theorem 3']), where A" denotes the convex
hull of a subset A of C. Thus, in particular, we have the inequality w(A®B) >
w(A)w(B), and the equality holds if A or B is normal. On the other hand, we
also have w(A® B) < ||A||w(B), which can be proven either using the unitary
dilation of a contraction and then invoking the above-mentioned equality for
normal operators (cf. [3, Proposition 1.1]), or appealing to [7, Theorem 3.4]
directly since A® B is the product of A® Ik and Iy ® B (I and Iy are the
identity operators on K and H, respectively) and the latter two operators
doubly commute, that is, A® [ commutes with both Iy ® B and its adjoint
Iy ® B* In [3], we obtained various necessary/sufficient conditions on finite
matrices A and B in order that w(A® B) be equal to |A||jw(B). The present
one is more concerned with when the equality w(A ® B) = w(A)w(B) holds.

In Section 2 below, we prove that if w(A ® B) = w(A)w(B), then
either w(A) = p(A) or w(B) = p(B), where p(-) denotes the spectral radius
of an operator: p(A) = sup{|z| : z € g(A)} (0(A) is the spectrum of A).
Unfortunately, this necessary condition is not sufficient. An extension of it to
a complete characterization is given in Proposition 2.5, which, however, is not
very useful. Then, in Section 3, we confirm a conjecture of Shiu [11] by proving
that if A is a hyponormal operator, then W(A® B) = (W(A) - W(B))"
for any operator B. Thus, in particular, we have w(A ® B) = ||A||lw(B) =
w(A)w(B) for a hyponormal A and an arbitrary B. This is proven by showing,
via the Sz.-Nagy—Foiag dilation theory [12], that every hyponormal operator
A can be dilated to a normal operator N with o(N) contained in o(A).

For any Hilbert space H, let I denote the identity operator on H, and
B(H) the C*-algebra of all operators on H. An operator A on H is dilated to
operator B on K if there is an operator V from H to K such that V*V = Iy

and A = V*BV. This is equivalent to saying that B is unitarily equivalent
A

to an operator of the form

numerical radius if there is a A in W(A) such that |A\| = w(A).

I} We say that an operator A attains its

2. w(A® B) = w(A)w(B)
The main result of this section is the following.

Theorem 2.1. Let A and B be operators on H and K, respectively. If w(A®
B) = w(A)w(B), then either w(A) = p(A) or w(B) = p(B).

For the proof, we need the next lemma.
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Lemma 2.2. Let A be an operator on H. If X\ in W (A) is such that |\| = w(A),

then
A B
A_|:_€2i9B* >i<:|7

where 0 in R is the argument of A : A = |\|e®.

Proof. Let x be a unit vector in H such that (Az,xz) = A, and let L be

A B

the one-dimensional subspace of H generated by xz. Then A :{ o *} on

H =L@ L* Since
((Re(e™™A))y,y) = Re (e7(Ay,y)) < |A| = Re (e7X) = (Re (e 7Ny, y)
for any unit vector y in H, we have

0 _(e—iaB + 6190*)/2
(9B +e~17C) /2 N > 0.

From this, we infer that e B* + e~ C = 0 or C = —e*?B* as asserted. [

Re (e (Al — A)) =

Another tool we need for the proof of Theorem 2.1 is the Berberian
representation for operators [1,2].

Lemma 2.3. For any Hilbert space H, there is another Hilbert space H' which
contains H and a unital x-isomorphism « from B(H) to B(H') such that the
following conditions hold for all A in B(H) :

(a) a(A) maps H' to H', and the restriction of a(A) to H equals A,

(b) lle(A) [ = [IAll,

(c) o(a(A)) =0c(A), and

(d) W(a(A)) = W(A).

We remark that the construction of the asserted H' and « is analogous
to the Gelfand—Naimark—Segal construction for the cyclic representation of
a C*-algebra associated with a positive linear functional.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. First assume that both A and B attain their numer-
ical radii, and let a in W(A) and b in W(B) be such that |a|] = w(A) and
|b] = w(B). We may assume that both ¢ and b are nonzero. Replacing A
by (1/a)A and B by (1/b)B, we may further assume that a = b = 1. If =
is a unit vector in H such that (Az,z) = 1 and L is the one-dimensional

subspace of H generated by x, then, by Lemma 2.2, A can be represented
1 1 D

as . C} on H = L & L+ Similarly, B is of the form [ . . Then
—-C * —D *
A®B :{C* (;)D* thD}. As w(A® B) = w(A)w(B) = 1, we obtain from

Lemma 2.2 again that C* ® D* = —(C ® D)* or C* ® D* = 0. Thus C =0
or D = 0. This shows that 1 is an eigenvalue of A or B. Therefore, either
w(A) = p(A) =1or w(B) =p(B)=1.

For the general case, let H' and K’ be the Hilbert spaces which con-
tain H and K, respectively, and let o : B(H) — B(H') and g : B(K) —
B(K') be the unital *-isomorphisms as given in Lemma 2.3. Then a ® § :
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B(H) ® B(K) — B(H' ® K') is also a unital x-isomorphism, which satisfies
) =W(A® B) (cf. [2, Theorem 2]). Hence
w(a(A) @ B(B)) = w(A® B) = w(A)w(B) = w(a(A))w(B(B)).
Since W (a(A)) and W(3(B)) are closed, the first part of the proof yields
that w(a(A)) = p(a(A4)) or w(B(B)) = p(B(B)). It follows that w(A) = p(A)
or w(B) = p(B). O

Note that the necessary condition in the preceding theorem is far from
sufficient. For example, if A = [)\]@{8 (1)}, where 1/2 < |\ < v/2/2, then
w(A) = p(4) = |A| and

B oo [0 AT _T0o AT _[o o] _[o 1
w(A®A)—w<[)\ ) [O O} ® [0 0} ) [O 0} @ [O 0})
1
=5 > AP =w(4)”,
One obvious sufficient condition for w(A ® B) = w(A)w(B) is for w(A)

to be equal to ||A|| or w(B) equal to ||B|.
Proposition 2.4. Ifw(A) = ||A|| orw(B) = ||B||, then w(A®B) = w(A)w(B).
Proof. Assume that w(A) = ||A|. Then w(A ® B) < ||A||w(B) = w(A)w(B)

(B

by [3, Proposition 1.1]. Since the reversed inequality w(A ® B) > w(A)w(B)
was already noted in Section 1, we thus have w(4A ® B) = w(A)w(B). O

In particular, this proposition is applicable when A or B is a hyponormal
or a Toeplitz operator (cf. [5, Problem 205 and Corollaries 1 and 4 to Problem
245]).

The next proposition expands Theorem 2.1 to a necessary and suffi-
cient condition for w(A ® B) = w(A)w(B) when both A and B attain their
numerical radii.

Proposition 2.5. Let A and B be operators on H and K, respectively, such that

their numerical radii are attained. Then w(A ® B) = w(A)w(B) if and only

if either A = [a] ® A’, where |a| = w(A) = p(A) and w(A’ ® B) < |a|w(B),

or B =[b]® B, where |b| = w(B) = p(B) and w(A® B’) < |bjlw(A).

Proof. If w(A ® B) = w(A)w(B), then, by (the proof of) Theorem 2.1, we

may assume that A = [a] & A" with |a| = w(A) = p(A). In this case, we have
la|w(B) = w(A® B) = w(aB ® (A’ @ B)) = max{|a|w(B),w(A’ @ B)}

and thus w(A’ ® B) < |a|w(B). The converse follows easily from the above
equalities. O

Admittedly, the above conditions are not easily applicable. In one special
case, they reduce to a simple one.

Corollary 2.6. An operator A on a two-dimensional space satisfies w(ARA) =
w(A)? if and only if it is normal.

Proof. The necessity follows easily from Proposition 2.5, and the sufficiency
is true for any normal operator A. O



Vol. 78 (2014) Numerical Radii for Tensor Products of Operators 379

Unfortunately, the preceding corollary is no longer true even for opera-

tors on a three-dimensional space. For example, if A = [v/2/2]® {8 [1)], then

w(A) =v2/2, w(A® A) = 1/2, and hence w(A ® A) = w(A)?, but A is not
normal.
We conclude this section with a strengthening of the conditions in

Proposition 2.5. In the next proposition, let J; :{8 (1)]

Proposition 2.7. The following conditions are equivalent for an operator A
with attaining numerical radius:

(a) w(A® B) = w(A)w(B) for all operators B,

(b) w(A® Ja3) =w(A)w(J2), and

(c) A=la]® A, where |a] = w(A) > ||A].

Proof. The implication (a) = (b) is trivial. To prove (b) = (c), assume
that w(A ® J3) = w(A)w(J2). Then A = [a] @ A’ with |a| = w(A) = p(A)
and w(A’ ® J2) < |alw(J2) = |a|/2 by Proposition 2.5. Since A’ ® Jo is
0 A
0 0
range of the latter is {z € C : |z| < || 4'||/2} (cf. [13, Theorem 2.1]), we
have w(A’ @ Jo) = [|A’||/2. We then infer from w(A’ @ J3) < |a|/2 that
||A’]] < |a|. This proves (c). Finally, if (¢) holds, then, for any operator B, we
have A B = aB®(A'® B). Since w(A® B) = max{|a|w(B),w(A’®B)} and
w(A'@B) < ||A'||lw(B) < |ajw(B) by [3, Proposition 1.1] and our assumption,
we conclude that w(A ® B) = |ajw(B) = w(A)w(B). This proves (a). O

unitarily equivalent to Jo @ A’ :[ and the closure of the numerical

3. Hyponormal Operators

Recall that an operator A is hyponormal if A*A > AA*. Basic properties of
hyponormal operators can be found in [5, pp. 108-111]. The main result of
this section is the following theorem.

Theorem 3.1. If A is a hyponormal operator, then W(A® B) = (W(A)-
W(B))" and w(A ® B) = w(A)w(B) = ||Al|jw(B) for any operator B.
This confirms Shiu’s conjecture in [11, p. 260]. It is a consequence of the

next two results, the first of which is proven via the Sz.-Nagy—Foias dilation
theory [12].

Theorem 3.2. Any hyponormal operator A on H can be dilated to a normal
operator N with o(N) C a¢(A) No,(A).

Here o4(A) (resp., 0.(A)) denotes the left spectrum (resp., right spec-
trum) of A, that is, o¢(A) (resp., 0,-(A)) = {A € C: A— Ay is not left invert-
ible (resp., not right invertible)}. Since o¢(A) No,(A) contains the boundary
of o(A) (cf. [5, Problem 78]), it is always nonempty.

It is well known that every operator A can be dilated to a normal
operator N (cf. [5, Corollary to Problem 222]), but the dilation N may not

satisfy o(N) C o(A). For example, if A :{8 é
dilation N with o(N) C o(A) = {0}.

}7 then it has no normal
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Proof of Theorem 3.2. Let A be any point in 04(A) N, (A). Then A — Xy
is also hyponormal. [12, Theorem] implies that there is a normal M on some
Hilbert space K and a contraction X (|| X|| < 1) from H to K such that
X*MX =A—- Xy and o(M) Cog(A—XNpgy)No(A— Npg). Let

X

and Ny =M ®0on K& H. Then Y*Y = Iy and

M 0
0 0

This shows that A — Mg dilates to N7. Hence A dilates to the normal N =
N1 + )\IKEBH on K@ H with

o(N)=0((M+ Mg)®Ny)=0c(M+ Mg)U{\}
C(0e(A) N0 (A) U{A} = 0u(A) Nop(4)

as required. O

}:HHK@H

Y*NY = [X* 4] { ] [ﬂ — X*MX = A— Ny

Another result needed for the proof of Theorem 3.1 is the next propo-
sition.

Proposition 3.3. Assume that the operator A on H has a normal dilation N
on K such that o(N) C o(A). Then the following hold:

a) ||All = [|N]| = w(N) = p(N) = p(A) = w(A).

lA™|| = ||A]|™ for alln > 1.

W(A) =W (N)=0o(N)" =c(A)".

A is Hermitian if and only if o(A) C R.

A is quasinilpotent (o(A) = {0}) if and only if A= 0.

W(A® B) = (W(A) - W(B))" for any operator B.

(g) w(A® B) =w(A)w(B) = ||A||w(B) for any operator B.

Examples of operators satisfying the above normal dilation property
are subnormal operators (cf. [5, Problem 200]), Toeplitz operators (cf. [5,
Problem 245]), and any operator with numerical range a triangular region (cf.
[10, Theorem 2]). Our Theorem 3.2 adds the class of hyponormal operators to
this list. Note that it is well known that subnormal operators are hyponormal
(cf. [5, p- 109]), but not the other two classes of operators. Back in 1976/77,
Halmos asked what the underlying reasons are for the subnormal and Toeplitz
operators to share so many properties in common (cf. [6]). Some efforts have
been made to extrapolate this analogy (cf. [8]). The preceding proposition
provides instead a list of consequences of the normal dilation property.

Note also that the equality w(A® B) = || A||w(B) does not imply the one
with A and B switched. For example, if A is any nonzero operator satisfying

the normal dilation property in Proposition 3.3 and B = [8 0} then

w(A® B) = [|Aw(B) = w(A)w(B) = w(A)/2 < w(A)| B
by Proposition 3.3 (g).
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Proof of Proposition 3.3. (a) We obviously have ||A]] < ||N]|| and p(A) <
w(A) < ||A||. Also, by the spectral theorem, ||[N| = w(N) = p(N)
for the normal N. Since our assumption o(N) C o(A) implies that
p(N) < p(A), the asserted equalities follow.

(b) The assertion is equivalent to ||A|| = p(A) (cf. [5, p. 110]).

(¢c) As N is a dilation of A, we have W(A) C W(N). But W(N) = o(N)"
for the normal N (cf. [5, Problem 216]). Thus the containments

a(A)N CW(A) CW(N)=o(N)" Cao(A)"
yield the equalities of these sets.
(d) If Ais Hermitian, then, obviously, o(A) C R. Conversely, if o(A4) C R,
then (c) implies that W(A) C R, from which follows the Hermitianness

of A.
(e) If A is quasinilpotent, then W(A) = o(A)" = {0} by (c¢). This yields
that A = 0.

(f) Since A ® B dilates to N ® B for any operator B, we have W(A ®
B) € W(N ® B). For the normal N, the equality W(N ® B) =

(W(N) - W(B))" holds by [11, Theorem 3']. On the other hand, (c)
gives W(IN) = W(A). These together yield that W(A ® B) C (W(A) -
W (B))". Since the converse containment is always true, this proves (f).

(g) The asserted equalities follow easily from (f) and (a).

O

Obviously, Theorem 3.1 is an immediate consequence of Theorem 3.2
and Proposition 3.3.
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