Numerical Radii for Tensor Products of Operators

Hwa-Long Gau, Kuo-Zhong Wang and Pei Yuan Wu

Abstract. For bounded linear operators A and B on Hilbert spaces H and K, respectively, it is known that the numerical radii of A, B and $A \otimes B$ are related by the inequalities $w(A)w(B) \leq w(A \otimes B) \leq \min\{||A||w(B), w(A)||B||\}$. In this paper, we show that (1) if $w(A \otimes B) = w(A)w(B)$, then $w(A) = \rho(A)$ or $w(B) = \rho(B)$, where $\rho(\cdot)$ denotes the spectral radius of an operator, and (2) if A is hyponormal, then $w(A \otimes B) = w(A)w(B) = ||A||w(B)$. Here (2) confirms a conjecture of Shiu's and is proven via dilating the hyponormal A to a normal operator N with the spectrum of N contained in that of A. The latter is obtained from the Sz.-Nagy–Foiaş dilation theory.

Mathematics Subject Classification (2010). Primary 47A12, 47A80, 47B20; Secondary 47A20.

Keywords. Numerical range, numerical radius, tensor product, hyponormal operator.

1. Introduction

For any bounded linear operator A on a complex Hilbert space H, its numerical range W(A) is, by definition, the subset $\{\langle Ax, x \rangle : x \in H, ||x|| = 1\}$ of the complex plane \mathbb{C} , where $\langle \cdot, \cdot \rangle$ and $|| \cdot ||$ denote the inner product and its associated norm in H, respectively. The numerical radius w(A) of A is $\sup\{|z|: z \in W(A)\}$. It is known that W(A) is a nonempty bounded convex subset of \mathbb{C} , and w(A) satisfies $||A||/2 \le w(A) \le ||A||$, where ||A|| denotes the usual operator norm of A. For other properties of the numerical range and numerical radius, the reader may consult [5, Chapter 22] or [4].

The tensor product $H \otimes K$ of Hilbert spaces H and K is the completion of the inner product space consisting of elements of the form $\sum_{j=1}^{n} x_j \otimes y_j$ with x_j in H and y_j in K for any $n \geq 1$ under the inner product $\langle x \otimes y, u \otimes v \rangle$ $= \langle x, u \rangle \langle y, v \rangle$. Here $x \otimes y$ is defined algebraically so as to be bilinear in the two

The three authors were partially supported by the National Science Council of the Republic of China under projects NSC-101-2115-M-008-006, NSC-101-2115-M-009-001 and NSC-101-2115-M-009-004, respectively. The third author was also supported by the MOE-ATU.

arguments x and y. The tensor product $A \otimes B$ of operators A on H and B on K is the operator defined on $H \otimes K$ via $(A \otimes B)(x \otimes y) = Ax \otimes By$. In particular, if A and B are represented as matrices $[a_{ij}]_{i,j}$ and $[b_{ij}]_{i,j}$, respectively, then $A \otimes B$ can be represented by $[a_{ij}B]_{i,j}$. A nice account of tensor products of operators on Hilbert spaces or, for that matter, of C^* -algebras is in [9, Section 6.3].

The numerical ranges of tensor products have been studied in [11]. It is easily seen that $W(A \otimes B)$ always contains the product $W(A) \cdot W(B) = \{z_1 z_2 : z_1 \in W(A), z_2 \in W(B)\}$, and if A or B is normal, then $\overline{W(A \otimes B)} = (\overline{W(A)} \cdot \overline{W(B)})^{\wedge}$ holds (cf. [11, Theorem 3']), where \triangle^{\wedge} denotes the convex hull of a subset \triangle of \mathbb{C} . Thus, in particular, we have the inequality $w(A \otimes B) \ge w(A)w(B)$, and the equality holds if A or B is normal. On the other hand, we also have $w(A \otimes B) \le ||A||w(B)$, which can be proven either using the unitary dilation of a contraction and then invoking the above-mentioned equality for normal operators (cf. [3, Proposition 1.1]), or appealing to [7, Theorem 3.4] directly since $A \otimes B$ is the product of $A \otimes I_K$ and $I_H \otimes B$ (I_K and I_H are the identity operators on K and H, respectively) and the latter two operators doubly commute, that is, $A \otimes I_K$ commutes with both $I_H \otimes B$ and its adjoint $I_H \otimes B^*$. In [3], we obtained various necessary/sufficient conditions on finite matrices A and B in order that $w(A \otimes B)$ be equal to ||A||w(B). The present one is more concerned with when the equality $w(A \otimes B) = w(A)w(B)$ holds.

In Section 2 below, we prove that if $w(A \otimes B) = w(A)w(B)$, then either $w(A) = \rho(A)$ or $w(B) = \rho(B)$, where $\rho(\cdot)$ denotes the spectral radius of an operator: $\rho(A) = \sup\{|z| : z \in \sigma(A)\}$ ($\sigma(A)$ is the spectrum of A). Unfortunately, this necessary condition is not sufficient. An extension of it to a complete characterization is given in Proposition 2.5, which, however, is not very useful. Then, in Section 3, we confirm a conjecture of Shiu [11] by proving that if A is a hyponormal operator, then $\overline{W(A \otimes B)} = (\overline{W(A)} \cdot \overline{W(B)})^{\wedge}$ for any operator B. Thus, in particular, we have $w(A \otimes B) = ||A||w(B) =$ w(A)w(B) for a hyponormal A and an arbitrary B. This is proven by showing, via the Sz.-Nagy–Foiaş dilation theory [12], that every hyponormal operator A can be dilated to a normal operator N with $\sigma(N)$ contained in $\sigma(A)$.

For any Hilbert space H, let I_H denote the identity operator on H, and $\mathcal{B}(H)$ the C^* -algebra of all operators on H. An operator A on H is *dilated* to operator B on K if there is an operator V from H to K such that $V^*V = I_H$ and $A = V^*BV$. This is equivalent to saying that B is unitarily equivalent to an operator of the form $\begin{bmatrix} A & * \\ * & * \end{bmatrix}$. We say that an operator A attains its numerical radius if there is a λ in W(A) such that $|\lambda| = w(A)$.

2. $w(A \otimes B) = w(A)w(B)$

The main result of this section is the following.

Theorem 2.1. Let A and B be operators on H and K, respectively. If $w(A \otimes B) = w(A)w(B)$, then either $w(A) = \rho(A)$ or $w(B) = \rho(B)$.

For the proof, we need the next lemma.

Lemma 2.2. Let A be an operator on H. If λ in W(A) is such that $|\lambda| = w(A)$, then

$$A = \begin{bmatrix} \lambda & B \\ -e^{2i\theta}B^* & * \end{bmatrix},$$

where θ in \mathbb{R} is the argument of $\lambda : \lambda = |\lambda|e^{i\theta}$.

Proof. Let x be a unit vector in H such that $\langle Ax, x \rangle = \lambda$, and let L be the one-dimensional subspace of H generated by x. Then $A = \begin{bmatrix} \lambda & B \\ C & * \end{bmatrix}$ on $H = L \oplus L^{\perp}$. Since

$$\langle (\operatorname{Re}(e^{-i\theta}A))y, y \rangle = \operatorname{Re}(e^{-i\theta}\langle Ay, y \rangle) \leq |\lambda| = \operatorname{Re}(e^{-i\theta}\lambda) = \langle \operatorname{Re}(e^{-i\theta}\lambda)y, y \rangle$$
for any unit vector *x* in *H*, we have

for any unit vector y in H, we have

$$\operatorname{Re}\left(e^{-i\theta}(\lambda I_H - A)\right) = \begin{bmatrix} 0 & -(e^{-i\theta}B + e^{i\theta}C^*)/2\\ -(e^{i\theta}B^* + e^{-i\theta}C)/2 & * \end{bmatrix} \ge 0.$$

From this, we infer that $e^{i\theta}B^* + e^{-i\theta}C = 0$ or $C = -e^{2i\theta}B^*$ as asserted. \square

Another tool we need for the proof of Theorem 2.1 is the Berberian representation for operators [1,2].

Lemma 2.3. For any Hilbert space H, there is another Hilbert space H' which contains H and a unital *-isomorphism α from $\mathcal{B}(H)$ to $\mathcal{B}(H')$ such that the following conditions hold for all A in $\mathcal{B}(H)$:

- (a) $\alpha(A)$ maps H' to H', and the restriction of $\alpha(A)$ to H equals A,
- (b) $\|\alpha(A)\| = \|A\|$,
- (c) $\sigma(\alpha(A)) = \sigma(A)$, and
- (d) $W(\alpha(A)) = W(A)$.

We remark that the construction of the asserted H' and α is analogous to the Gelfand–Naimark–Segal construction for the cyclic representation of a C^* -algebra associated with a positive linear functional.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. First assume that both A and B attain their numerical radii, and let a in W(A) and b in W(B) be such that |a| = w(A) and |b| = w(B). We may assume that both a and b are nonzero. Replacing A by (1/a)A and B by (1/b)B, we may further assume that a = b = 1. If x is a unit vector in H such that $\langle Ax, x \rangle = 1$ and L is the one-dimensional subspace of H generated by x, then, by Lemma 2.2, A can be represented as $\begin{bmatrix} 1 & C \\ -C^* & * \end{bmatrix}$ on $H = L \oplus L^{\perp}$. Similarly, B is of the form $\begin{bmatrix} 1 & D \\ -D^* & * \end{bmatrix}$. Then $A \otimes B = \begin{bmatrix} 1 & C \otimes D \\ C^* \otimes D^* & * \end{bmatrix}$. As $w(A \otimes B) = w(A)w(B) = 1$, we obtain from Lemma 2.2 again that $C^* \otimes D^* = -(C \otimes D)^*$ or $C^* \otimes D^* = 0$. Thus C = 0or D = 0. This shows that 1 is an eigenvalue of A or B. Therefore, either $w(A) = \rho(A) = 1$ or $w(B) = \rho(B) = 1$.

For the general case, let H' and K' be the Hilbert spaces which contain H and K, respectively, and let $\alpha : \mathcal{B}(H) \to \mathcal{B}(H')$ and $\beta : \mathcal{B}(K) \to \mathcal{B}(K)$ $\mathcal{B}(K')$ be the unital *-isomorphisms as given in Lemma 2.3. Then $\alpha \otimes \beta$:

377

 $\frac{\mathcal{B}(H) \otimes \mathcal{B}(K) \to \mathcal{B}(H' \otimes K')}{W(\alpha(A) \otimes \beta(B))} = \frac{\mathcal{B}(H' \otimes K')}{W(A \otimes B)} \text{ (cf. [2, Theorem 2]). Hence}$

 $w(\alpha(A)\otimes\beta(B))=w(A\otimes B)=w(A)w(B)=w(\alpha(A))w(\beta(B)).$

Since $W(\alpha(A))$ and $W(\beta(B))$ are closed, the first part of the proof yields that $w(\alpha(A)) = \rho(\alpha(A))$ or $w(\beta(B)) = \rho(\beta(B))$. It follows that $w(A) = \rho(A)$ or $w(B) = \rho(B)$.

Note that the necessary condition in the preceding theorem is far from sufficient. For example, if $A = [\lambda] \oplus \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, where $1/2 \leq |\lambda| < \sqrt{2}/2$, then $w(A) = \rho(A) = |\lambda|$ and

$$w(A \otimes A) = w\left(\begin{bmatrix} \lambda^2 \end{bmatrix} \oplus \begin{bmatrix} 0 & \lambda \\ 0 & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & \lambda \\ 0 & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right)$$
$$= \frac{1}{2} > |\lambda|^2 = w(A)^2.$$

One obvious sufficient condition for $w(A \otimes B) = w(A)w(B)$ is for w(A) to be equal to ||A|| or w(B) equal to ||B||.

Proposition 2.4. If w(A) = ||A|| or w(B) = ||B||, then $w(A \otimes B) = w(A)w(B)$. *Proof.* Assume that w(A) = ||A||. Then $w(A \otimes B) \le ||A||w(B) = w(A)w(B)$ by [3, Proposition 1.1]. Since the reversed inequality $w(A \otimes B) \ge w(A)w(B)$ was already noted in Section 1, we thus have $w(A \otimes B) = w(A)w(B)$. \Box

In particular, this proposition is applicable when A or B is a hyponormal or a Toeplitz operator (cf. [5, Problem 205 and Corollaries 1 and 4 to Problem 245]).

The next proposition expands Theorem 2.1 to a necessary and sufficient condition for $w(A \otimes B) = w(A)w(B)$ when both A and B attain their numerical radii.

Proposition 2.5. Let A and B be operators on H and K, respectively, such that their numerical radii are attained. Then $w(A \otimes B) = w(A)w(B)$ if and only if either $A = [a] \oplus A'$, where $|a| = w(A) = \rho(A)$ and $w(A' \otimes B) \leq |a|w(B)$, or $B = [b] \oplus B'$, where $|b| = w(B) = \rho(B)$ and $w(A \otimes B') \leq |b|w(A)$.

Proof. If $w(A \otimes B) = w(A)w(B)$, then, by (the proof of) Theorem 2.1, we may assume that $A = [a] \oplus A'$ with $|a| = w(A) = \rho(A)$. In this case, we have

 $|a|w(B) = w(A \otimes B) = w(aB \oplus (A' \otimes B)) = \max\{|a|w(B), w(A' \otimes B)\}$

and thus $w(A' \otimes B) \leq |a|w(B)$. The converse follows easily from the above equalities. \Box

Admittedly, the above conditions are not easily applicable. In one special case, they reduce to a simple one.

Corollary 2.6. An operator A on a two-dimensional space satisfies $w(A \otimes A) = w(A)^2$ if and only if it is normal.

Proof. The necessity follows easily from Proposition 2.5, and the sufficiency is true for any normal operator A.

Unfortunately, the preceding corollary is no longer true even for operators on a three-dimensional space. For example, if $A = [\sqrt{2}/2] \oplus \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then $w(A) = \sqrt{2}/2$, $w(A \otimes A) = 1/2$, and hence $w(A \otimes A) = w(A)^2$, but A is not normal.

We conclude this section with a strengthening of the conditions in Proposition 2.5. In the next proposition, let $J_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Proposition 2.7. The following conditions are equivalent for an operator A with attaining numerical radius:

(a) $w(A \otimes B) = w(A)w(B)$ for all operators B,

(b) $w(A \otimes J_2) = w(A)w(J_2)$, and

(c) $A = [a] \oplus A'$, where $|a| = w(A) \ge ||A'||$.

Proof. The implication (a) ⇒ (b) is trivial. To prove (b) ⇒ (c), assume that $w(A \otimes J_2) = w(A)w(J_2)$. Then $A = [a] \oplus A'$ with $|a| = w(A) = \rho(A)$ and $w(A' \otimes J_2) \leq |a|w(J_2) = |a|/2$ by Proposition 2.5. Since $A' \otimes J_2$ is unitarily equivalent to $J_2 \otimes A' = \begin{bmatrix} 0 & A' \\ 0 & 0 \end{bmatrix}$ and the closure of the numerical range of the latter is $\{z \in \mathbb{C} : |z| \leq ||A'||/2\}$ (cf. [13, Theorem 2.1]), we have $w(A' \otimes J_2) = ||A'||/2$. We then infer from $w(A' \otimes J_2) \leq |a|/2$ that $||A'|| \leq |a|$. This proves (c). Finally, if (c) holds, then, for any operator *B*, we have $A \otimes B = aB \oplus (A' \otimes B)$. Since $w(A \otimes B) = \max\{|a|w(B), w(A' \otimes B)\}$ and $w(A' \otimes B) \leq ||A'||w(B) \leq |a|w(B)$ by [3, Proposition 1.1] and our assumption, we conclude that $w(A \otimes B) = |a|w(B) = w(A)w(B)$. This proves (a). □

3. Hyponormal Operators

Recall that an operator A is hyponormal if $A^*A \ge AA^*$. Basic properties of hyponormal operators can be found in [5, pp. 108–111]. The main result of this section is the following theorem.

Theorem 3.1. If A is a hyponormal operator, then $\overline{W(A \otimes B)} = (\overline{W(A)} \cdot \overline{W(B)})^{\wedge}$ and $w(A \otimes B) = w(A)w(B) = ||A||w(B)$ for any operator B.

This confirms Shiu's conjecture in [11, p. 260]. It is a consequence of the next two results, the first of which is proven via the Sz.-Nagy–Foiaş dilation theory [12].

Theorem 3.2. Any hyponormal operator A on H can be dilated to a normal operator N with $\sigma(N) \subseteq \sigma_{\ell}(A) \cap \sigma_{r}(A)$.

Here $\sigma_{\ell}(A)$ (resp., $\sigma_{r}(A)$) denotes the *left spectrum* (resp., *right spectrum*) of A, that is, $\sigma_{\ell}(A)$ (resp., $\sigma_{r}(A)$) = { $\lambda \in \mathbb{C} : A - \lambda I_{H}$ is not left invertible (resp., not right invertible)}. Since $\sigma_{\ell}(A) \cap \sigma_{r}(A)$ contains the boundary of $\sigma(A)$ (cf. [5, Problem 78]), it is always nonempty.

It is well known that every operator A can be dilated to a normal operator N (cf. [5, Corollary to Problem 222]), but the dilation N may not satisfy $\sigma(N) \subseteq \sigma(A)$. For example, if $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then it has no normal dilation N with $\sigma(N) \subseteq \sigma(A) = \{0\}$.

Proof of Theorem 3.2. Let λ be any point in $\sigma_{\ell}(A) \cap \sigma_{r}(A)$. Then $A - \lambda I_{H}$ is also hyponormal. [12, Theorem] implies that there is a normal M on some Hilbert space K and a contraction $X(||X|| \leq 1)$ from H to K such that $X^*MX = A - \lambda I_{H}$ and $\sigma(M) \subseteq \sigma_{\ell}(A - \lambda I_{H}) \cap \sigma_{r}(A - \lambda I_{H})$. Let

$$Y = \begin{bmatrix} X\\ (I_H - X^*X)^{1/2} \end{bmatrix} : H \to K \oplus H$$

and $N_1 = M \oplus 0$ on $K \oplus H$. Then $Y^*Y = I_H$ and

$$Y^*N_1Y = \begin{bmatrix} X^* & * \end{bmatrix} \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X \\ * \end{bmatrix} = X^*MX = A - \lambda I_H.$$

This shows that $A - \lambda I_H$ dilates to N_1 . Hence A dilates to the normal $N \equiv N_1 + \lambda I_{K \oplus H}$ on $K \oplus H$ with

$$\sigma(N) = \sigma((M + \lambda I_K) \oplus \lambda I_H) = \sigma(M + \lambda I_K) \cup \{\lambda\}$$
$$\subseteq (\sigma_{\ell}(A) \cap \sigma_r(A)) \cup \{\lambda\} = \sigma_{\ell}(A) \cap \sigma_r(A)$$

as required.

Another result needed for the proof of Theorem 3.1 is the next proposition.

Proposition 3.3. Assume that the operator A on H has a normal dilation N on K such that $\sigma(N) \subseteq \sigma(A)$. Then the following hold:

- (a) $||A|| = ||N|| = w(N) = \rho(N) = \rho(A) = w(A).$
- (b) $||A^n|| = ||A||^n$ for all $n \ge 1$.

(c)
$$\overline{W(A)} = \overline{W(N)} = \sigma(N)^{\wedge} = \sigma(A)^{\wedge}$$
.

- (d) A is Hermitian if and only if $\sigma(A) \subseteq \mathbb{R}$.
- (e) A is quasinilpotent ($\sigma(A) = \{0\}$) if and only if A = 0.
- (f) $\overline{W(A \otimes B)} = (\overline{W(A)} \cdot \overline{W(B)})^{\wedge}$ for any operator B.
- (g) $w(A \otimes B) = w(A)w(B) = ||A||w(B)$ for any operator B.

Examples of operators satisfying the above normal dilation property are subnormal operators (cf. [5, Problem 200]), Toeplitz operators (cf. [5, Problem 245]), and any operator with numerical range a triangular region (cf. [10, Theorem 2]). Our Theorem 3.2 adds the class of hyponormal operators to this list. Note that it is well known that subnormal operators are hyponormal (cf. [5, p. 109]), but not the other two classes of operators. Back in 1976/77, Halmos asked what the underlying reasons are for the subnormal and Toeplitz operators to share so many properties in common (cf. [6]). Some efforts have been made to extrapolate this analogy (cf. [8]). The preceding proposition provides instead a list of consequences of the normal dilation property.

Note also that the equality $w(A \otimes B) = ||A||w(B)$ does not imply the one with A and B switched. For example, if A is any nonzero operator satisfying the normal dilation property in Proposition 3.3 and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then

$$w(A \otimes B) = ||A||w(B) = w(A)w(B) = w(A)/2 < w(A)||B||$$

by Proposition 3.3 (g).

- Proof of Proposition 3.3. (a) We obviously have $||A|| \leq ||N||$ and $\rho(A) \leq w(A) \leq ||A||$. Also, by the spectral theorem, $||N|| = w(N) = \rho(N)$ for the normal N. Since our assumption $\sigma(N) \subseteq \sigma(A)$ implies that $\rho(N) \leq \rho(A)$, the asserted equalities follow.
- (b) The assertion is equivalent to $||A|| = \rho(A)$ (cf. [5, p. 110]).
- (c) As N is a dilation of A, we have $W(A) \subseteq W(N)$. But $W(N) = \sigma(N)^{\wedge}$ for the normal N (cf. [5, Problem 216]). Thus the containments

$$\sigma(A)^{\wedge} \subseteq \overline{W(A)} \subseteq \overline{W(N)} = \sigma(N)^{\wedge} \subseteq \sigma(A)^{\wedge}$$

yield the equalities of these sets.

- (d) If A is Hermitian, then, obviously, $\sigma(A) \subseteq \mathbb{R}$. Conversely, if $\sigma(A) \subseteq \mathbb{R}$, then (c) implies that $W(A) \subseteq \mathbb{R}$, from which follows the Hermitianness of A.
- (e) If A is quasinilpotent, then $\overline{W(A)} = \sigma(A)^{\wedge} = \{0\}$ by (c). This yields that A = 0.
- (f) Since $A \otimes B$ dilates to $N \otimes B$ for any operator B, we have $W(A \otimes B) \subseteq W(N \otimes B)$. For the normal N, the equality $\overline{W(N \otimes B)} = (\overline{W(N)} \cdot \overline{W(B)})^{\wedge}$ holds by [11, Theorem 3']. On the other hand, (c) gives $\overline{W(N)} = \overline{W(A)}$. These together yield that $\overline{W(A \otimes B)} \subseteq (\overline{W(A)} \cdot \overline{W(B)})^{\wedge}$. Since the converse containment is always true, this proves (f).
- (g) The asserted equalities follow easily from (f) and (a).

Obviously, Theorem 3.1 is an immediate consequence of Theorem 3.2 and Proposition 3.3.

References

- Berberian, S.K.: Approximate proper vectors. Proc. Amer. Math. Soc. 13, 111– 114 (1962)
- [2] Berberian, S.K., Orland, G.H.: On the closure of the numerical range of an operator. Proc. Amer. Math. Soc. 18, 499–503 (1967)
- [3] Gau, H.-L., Wang, K.-Z., Wu, P.Y.: Numerical radii for tensor products of matrices. Linear Multilinear Algebra, to appear, arXiv: 1306.2423
- [4] Gustafson, K., Rao, D.K.M.: Numerical range. The field of values of linear operators and matrices. Springer, New York (1997)
- [5] Halmos, P.R.: A Hilbert space problem book, 2nd edn. Springer, New York (1982)
- [6] Halmos, P.R.: Some unsolved problems of unknown depth about operators on Hilbert space. Proc. Roy. Soc. Edinburgh 76A, 67–76 (1976/77)
- [7] Holbrook, J.A.R.: Multiplicative properties of the numerical radius in operator theory. J. Reine Angew. Math. 237, 166–174 (1969)
- [8] Keough, G.E.: Subnormal operators, Toeplitz operators and spectral inclusion. Trans. Amer. Math. Soc. 263, 125–135 (1981)
- [9] Murphy, G.J.: C^* -algebras and operator theory. Academic Press, San Diego (1990)

- [10] Nakamura, Y.: Numerical range and norm. Math. Japonica 27, 149–150 (1982)
- [11] Shiu, E.S.W.: Numerical ranges of products and tensor products. Tôhoku Math. J. 30, 257–262 (1978)
- [12] Sz.-Nagy, B., Foiaş, C.: An application of dilation theory to hyponormal operators. Acta Sci. Math. (Szeged) 37, 155–159 (1975)
- [13] Tso, S.-H., Wu, P.Y.: Matricial ranges of quadratic operators. Rocky Mountain J. Math. 29, 1139–1152 (1999)

Hwa-Long Gau Department of Mathematics National Central University Chungli 32001 Taiwan e-mail: hlgau@math.ncu.edu.tw

Kuo-Zhong Wang and Pei Yuan Wu (⊠) Department of Applied Mathematics National Chiao Tung University Hsinchu 30010 Taiwan e-mail: kzwang@math.nctu.edu.tw; pywu@math.nctu.edu.tw

Received: June 22, 2013. Revised: September 9, 2013.