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When a product item is tested, usually one has more information than just pass or fail.
Often there are categories of failure modes. The purpose of this paper is to develop
a method to monitor the fractions of the tested items falling into different categories
of pass/fail modes. Using the multinomial model with Dirichlet prior, we describe
the theory underlying an empirical Bayes approach to monitoring polytomous data
generated in manufacturing processes. A pseudo maximum likelihood estimator
(PMLE) and the method-of-moments estimator (MME) of the hyperparameters of the
prior distribution are considered and compared by a simulation study. It is found that
the PMLE performs slightly better than the MME. A monitoring scheme based on the
marginal distributions of the observed pass/fail fractions is proposed. The average
run length behavior of the proposed monitoring scheme is investigated. Finally, an
example to illustrate the use of the technique is given. Copyright c© 2004 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

When a product item is tested, usually one has more information than just pass or fail. Often there
are categories of failures. For instance, a product may have several categories of failure modes.
Another example might be that the measurements of the tested items are recorded as fail low, pass,

or fail high. When the measurements are recorded only as pass or fail, we say that the measurements are
binary. When the measurements are recorded as k + 1 possible values for some known k ∈ {2, 3, . . . }, we say
that the measurements are polytomous. (For a good reference for binary or polytomous data, see McCullagh
and Nelder1, Chapters 4 and 5.) Although many authors have investigated methods for monitoring the non-
conforming fraction for binary data (see Chapter 6 of Montgomery2 for a good literature review), few have
developed methods for polytomous data. One set of authors, Voss et al.3, have investigated the multinomial
model to monitor the quality of bacterial colony counting procedures for polytomous data.

∗Correspondence to: Carol J. Feltz, Division of Statistics, Northern Illinois University, DeKalb, IL 60115, U.S.A.
†E-mail: feltz@math.niu.edu

Contract/grant sponsor: National Science Council of the Republic of China; contract/grant number: NSC91-2118-M-009-007

Copyright c© 2004 John Wiley & Sons, Ltd.
Received 18 April 2003

Revised 9 June 2003



14 J.-J. H. SHIAU, C.-R. CHEN AND C. J. FELTZ

Applying a Bayesian methodology to polytomous data has been investigated by several researchers.
One of the first, Lindley4, developed the Bayesian analysis of contingency tables for polytomous data using
the multinomial model with an improper prior distribution. Lindley’s approach was classic Bayesian, where
the prior distribution was specified in advance. In a more recent research, Walley5 used the multinomial model
with an imprecise Dirichlet prior to model polytomous data in cases where no prior information was available.
He applied his method to clinical trial data to identify the efficacy of a treatment. Nair et al.6 used a Bayesian
approach to analyze a mixture of Poisson data in manufacturing.

In this paper, the fractions of tested products falling into different categories of pass/fail modes are modeled by
the multinomial distribution with the Dirichlet prior distribution that has unknown hyperparameters. In contrast
with the methods mentioned above, we utilize the previous process data to estimate the hyperparameters. This is
an empirical Bayes method. We then propose a scheme to monitor the fractions of the tested product items, and
identify if the process has changed over time.

The empirical Bayes approach for monitoring process data is not entirely new. Sturm et al.7 developed
an empirical Bayes technique to monitor a process with variable data. To monitor a process of attribute
(binary) data, Yousry et al.8 used a binomial model with a beta prior to monitor yield and defect data.
These techniques were found to be very useful in industrial settings. The empirical Bayes approach explicitly
allows the process parameters to change over time. By allowing the process to change over time, we can
estimate the amount of change inherent in the process. A measure of the process change is captured
in the process variation. This paper extends the work in Yousry et al.8 to the monitoring of processes
with polytomous data. In addition, in this paper, we investigate two different methods for estimating the
hyperparameters: the method of moments and the pseudo maximum likelihood method introduced by Gong
and Samaniego9.

The paper is organized as follows. In Section 2, we describe the Bayesian model considered in this paper for
polytomous data. In Section 3, an empirical Bayes approach is proposed by estimating the hyperparameters
of the prior distribution. In Section 4, we develop a new monitoring scheme based on the estimated
marginal distributions of the observed proportions. Due to the discreteness nature of the observed proportions,
a randomized-control-limits scheme is proposed to achieve the usual desirable false alarm rate. The average run
length of the proposed scheme is studied for various situations in Section 5. In Section 6, a numerical example is
presented to illustrate the use and the effectiveness of the proposed empirical Bayes process monitoring scheme.
In Section 7, we conclude the paper with a brief summary.

2. A BAYESIAN MODEL FOR POLYTOMOUS DATA

Consider a manufacturing process producing a product that has k different types of defects for some positive
integer k. For simplicity, it is assumed that one product item cannot have more than one defect type. Let pit be
the probability of a product item having the ith defect type at time t for i = 1, . . . , k. Then the yield probability
can be defined as p0t = 1 − ∑k

i=1 pit , the probability of no defects at time t .
Let the yield variable x0t be the number of items that do not have any of the k defects out of nt randomly

chosen product items tested at time t . Here nt is a positive integer. Let the ith defect-type variable xit

be the number of tested items that are of the ith defect type at time t for i = 1, . . . , k. Then x0t = nt −∑k
i=1 xit .
Assume that the observed random vector xt = (x0t , x1t , . . . , xkt )

′ is distributed as Multinomial(nt; pt ),
where pt = (p0t , p1t , . . . , pkt )

′ with 0 ≤ p0t , p1t , . . . , pkt ≤ 1 and
∑k

i=0 pit = 1. Then the conditional
probability mass function (p.m.f.) of xt given pt is

f (xt |pt ) = nt !
x0t !x1t ! · · · xkt !p

x0t

0t p
x1t

1t · · · pxkt

kt (1)

for x0t , x1t , . . . , xkt ∈ {0, 1, . . . , nt } and
∑k

i=0 xit = nt .
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Given pt , the conditional sampling mean and variance of xit /nt and the conditional sampling covariance of
xit /nt and xjt/nt are

E(xit/nt |pt ) = pit

Var(xit /nt |pt ) = pit (1 − pit )/nt

Cov(xit /nt , xjt/nt |pt ) = −pitpjt/nt

respectively, for i �= j and i, j = 0, 1, . . . , k. (See, for example, p. 323 of Carlin and Louis10.) Using concise
matrix notation, the conditional sampling mean and variance–covariance matrix of xt /nt given pt are

E(xt /nt |pt ) = pt

Cov(xt /nt |pt ) = (diag{pt } − ptp′
t )/nt

where diag{pt } ≡ diag{p0t , p1t , . . . , pkt }.
In the Bayesian framework, the process parameters pit are assumed to be random. We have found that the

variability of the process parameters is a good characteristic for modeling factory processes. In the classical
Bayesian approach, it is usually assumed that pt has a prespecified Dirichlet(α) prior distribution, where
α = (α0, α1, . . . , αk)

′ is a known vector with α0, α1, . . . , αk > 0. Let αs = ∑k
i=0 αi , the sum of all αi .

Then the prior probability density function (p.d.f.) of pt is

f (pt ; α) = �(αs)

�(α0)�(α1) · · · �(αk)
p

α0−1
0t p

α1−1
1t · · · p

αk−1
kt (2)

for 0 ≤ p0t , p1t , . . . , pkt ≤ 1 and
∑k

i=0 pit = 1.
Let α∗(= (α∗

0 , α∗
1 , . . . , α∗

k )′) = α/αs . The process mean and variance–covariance matrix of pt are

E(pt ) = α∗

Cov(pt ) = (diag{α∗} − α∗α∗′)/(αs + 1)

respectively. (See, for example, p. 327 of Carlin and Louis10.)
The variation of pt will be referred to as the process variation while the variation of xt/nt given pt will be

referred to as the sampling variation.
By the double expectation method, the marginal mean of xt /nt can be obtained as follows:

E(xt /nt ) = E[E(xt/nt |pt )] = E(pt ) = α∗ (3)

By some simple algebra, the marginal variance–covariance matrix of xt /nt can be found to be

Cov(xt /nt ) = E[Cov(xt/nt |pt )] + Cov[E(xt /nt |pt )]
= E(diag{pt } − pt p′

t )/nt + Cov(pt )

= αs(diag{α∗} − α∗α∗′)/[nt (αs + 1)] + (diag{α∗} − α∗α∗′)/(αs + 1)

= (αs + nt )(diag{α∗} − α∗α∗′)/[nt (αs + 1)] (4)

Thus, it is seen that the marginal variance–covariance matrix of xt /nt is decomposed into the sum of the
sampling variance–covariance matrix and the process variance–covariance matrix.

In Bayesian terminology, the Dirichlet distribution is the conjugate prior distribution for the multinomial
model given in (1). Choosing a conjugate prior distribution has an advantage that the corresponding posterior
distribution follows the same parametric form as the prior distribution. The Dirichlet(α) distribution provides
great flexibility for modeling pt because, with different values of α, it has a wide range of shapes. It is
well known (see, for example, p. 76 of Gelman et al.11) that the posterior distribution of pt given xt is the

Copyright c© 2004 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2005; 21:13–28
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Dirichlet(α + xt ) distribution

f (pt |xt , α) = �(αs + nt )

�(α0 + x0t )�(α1 + x1t ) · · · �(αk + xkt )
p

α0+x0t−1
0t p

α1+x1t−1
1t · · · pαk+xkt−1

kt (5)

for 0 ≤ p0t , p1t , . . . , pkt ≤ 1 and
∑k

i=0 pit = 1.
Often, the problem of interest is to estimate pt , the yield probability along with all defect-type probabilities

at time t . In the Bayesian approach we usually estimate pt by the posterior mean of pt given xt , which is the
Bayes estimator for the quadratic error loss. The posterior mean and variance–covariance matrix of pt given xt

are

E(pt |xt ) = (α + xt )/(αs + nt ) ≡ p̃t (α)

Cov(pt |xt ) = [diag{̃pt (α)} − p̃t (α)̃p′
t (α)]/(αs + nt + 1)

(6)

respectively.
Note that the posterior mean of pt given xt can be rewritten as

p̃t (α) = wtα
∗ + (1 − wt)

xt

nt

where wt = αs/(αs + nt ). This indicates that the posterior mean p̃t (α) is a weighted average of prior mean
α∗ and observed proportions xt /nt . A large weight wt , indicating more weight on the prior information, pulls
the posterior mean towards the prior mean, while a small weight wt , indicating more weight on data, pulls the
posterior mean towards the observed proportions.

3. AN EMPIRICAL BAYES APPROACH FOR POLYTOMOUS DATA

In this section, the fractions of tested product items falling into k + 1 categories of pass or failure modes
are modeled using the multinomial model and the Dirichlet(α) prior distribution, where α is an unknown
hyperparameter vector. Using an empirical Bayes approach, we let data speak for themselves in estimating α.
With the components of the model in place, we now focus on using the process data to estimate α.

First of all, we derive the marginal distribution of xt . The marginal p.m.f. of xt can be found by

f (xt ; α) = f (xt , pt ; α)

f (pt |xt ; α)
= f (xt |pt )f (pt ; α)

f (pt |xt ; α)

= nt !
x0t !x1t ! · · · xkt !

�(αs)

�(α0)�(α1) · · · �(αk)

�(α0 + x0t )�(α1 + x1t ) · · · �(αk + xkt)

�(αs + nt )

= nt !∏nt

j=1(αs + j − 1)

k∏
i=0

∏xit

j=1(αi + j − 1)

xit !

= exp

[ nt∑
j=1

log

(
j

αs + j − 1

)
−

k∑
i=0

xit∑
j=1

log

(
j

αi + j − 1

) ]
(7)

for x0t , x1t , . . . , xkt ∈ {0, 1, . . . , nt } and
∑k

i=0 xit = nt .
This shows that the marginal distribution of xt is the multivariate Pólya-Eggenberger distribution or the

Dirichlet-compound multinomial distribution (see, for example, p. 80 of Johnson et al.12) with parameters nt

and α. In particular, the marginal distribution of xit is the Pólya distribution with parameters nt , αi , and αs for
each i = 0, 1, . . . , k.
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Let x1, . . . , xT be independent observations such that xi has marginal p.m.f. (7) for i = 1, . . . , T . Note that,
by (3), xt /nt is an unbiased estimator of α∗ for t = 1, . . . , T . Thus it is natural to estimate α∗ by the weighted
average of all xt /nt with weights nt/

∑T
t ′=1 nt ′ . Then we can estimate α∗ by

α̂∗ =
∑T

t=1 xt∑T
t=1 nt

(8)

By (3) and (4),

E
(
α̂∗) = α∗ (9)

Cov(̂α∗) =
∑T

t=1 nt (αs + nt )

(αs + 1)(
∑T

t=1 nt )2
(diag{α∗} − α∗α∗′) (10)

Under regularity conditions, α̂∗ is a strongly consistent estimator of α∗ (i.e. α̂∗ converges to α∗ almost surely)
and

(αs + 1)1/2 ∑T
t=1 nt

[∑T
t=1 nt (αs + nt )]1/2

(̂
α∗ − α∗) d→ N

(
0, diag{α∗} − α∗α∗′) (11)

as T → ∞, where
d→ means convergence in distribution and N(0, diag{α∗} − α∗α∗′) denotes the multivariate

normal distribution with mean 0 and variance–covariance matrix diag{α∗} − α∗α∗′.
With (8), if we have an estimate α̂s of αs , then we have an estimate α̂s α̂

∗ of α. By treating αs as the only
hyperparameter to be estimated in the model, we consider the following two methods for estimating αs : (i) the
method of moments and (ii) the pseudo maximum likelihood method.

We first describe the method of moments. By (4), the marginal variance of xit /nt can be rewritten as

σ 2
it ≡ Var(xit /nt ) = α∗

i (1 − α∗
i )

nt

αs + nt

αs + 1

for i = 0, 1, . . . , k and t = 1, . . . , T , which implies that

(αs + 1)

T∑
t=1

nt

k∑
i=0

σ 2
it =

(
T αs +

T∑
t=1

nt

) k∑
i=0

α∗
i (1 − α∗

i ) (12)

Solving (12) for αs , we have

αs =
∑T

t=1 nt

∑k
i=0 α∗

i (1 − α∗
i ) − ∑T

t=1 nt

∑k
i=0 σ 2

it∑T
t=1 nt

∑k
i=0 σ 2

it − T
∑k

i=0 α∗
i (1 − α∗

i )
(13)

By (3) and (9),
∑T

t=1 nt

∑k
i=0 σ 2

it can be estimated by

T∑
t=1

nt

k∑
i=0

(xit /nt − α̂∗
i )2

Thus, we can estimate αs by the following method-of-moments estimator (MME):

α̂s,MM =
∑T

t=1 nt

∑k
i=0 α̂∗

i (1 − α̂∗
i ) − ∑T

t=1 nt

∑k
i=0(xit /nt − α̂∗

i )2∑T
t=1 nt

∑k
i=0(xit /nt − α̂∗

i )2 − T
∑k

i=0 α̂∗
i (1 − α̂∗

i )
(14)

Under regularity conditions, α̂s,MM is a weakly consistent estimator of αs (i.e. α̂s,MM converges to αs in
probability) and is asymptotically normally distributed as T → ∞.

Copyright c© 2004 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2005; 21:13–28
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The second method for estimating αs to be described is the pseudo maximum likelihood method introduced
by Gong and Samaniego9. Again, by plugging α̂∗ into α∗, αs is the only hyperparameter under consideration.
By (7), the pseudo-likelihood function for αs can be defined as

LP(αs; x1, . . . , xT ) ≡
T∏

t=1

f (xt ; α)|α∗=α̂∗

= exp

{ T∑
t=1

[ nt∑
j=1

log

(
j

αs + j − 1

)
−

k∑
i=0

xit∑
j=1

log

(
j

α̂∗
i αs + j − 1

) ]}
(15)

Then the pseudo-log-likelihood function for αs is

�P(αs; x1, . . . , xT ) ≡ log[LP(αs; x1, . . . , xT )]

=
T∑

t=1

[ nt∑
j=1

log

(
j

αs + j − 1

)
−

k∑
i=0

xit∑
j=1

log

(
j

α̂∗
i αs + j − 1

) ]

the pseudo-score function for αs is

sP(αs; x1, . . . , xT ) ≡ ∂�P(αs; x1, . . . , xT )

∂αs

=
T∑

t=1

{[ k∑
i=0

α̂∗
i

xit∑
j=1

1

α̂∗
i αs + j − 1

]
−

nt∑
j=1

1

αs + j − 1

}

≡
T∑

t=1

sP,t (αs; x1, . . . , xT )

and the pseudo-observed information for αs is

jP(αs; x1, . . . , xT ) ≡ −∂2�P(αs; x1, . . . , xT )

∂α2
s

=
T∑

t=1

{[ k∑
i=0

α̂∗2
i

xit∑
j=1

1

(̂α∗
i αs + j − 1)2

]
−

nt∑
j=1

1

(αs + j − 1)2

}

Utilizing the Newton–Raphson method, the pseudo maximum likelihood estimator (PMLE) α̂s,PML of αs can be
obtained as follows. First choose a good initial value α̂

(0)
s,PML of αs , for example, the method-of-moment estimate

α̂s,MM given in (14). Then iterate the following equation

α̂
(u+1)
s,PML = α̂

(u)
s,PML + sP(̂α

(u)
s,PML; x1, . . . , xT )

jP(̂α
(u)
s,PML; x1, . . . , xT )

for u = 0, 1, 2, . . . until convergence. Under regularity conditions, α̂s,PML is a weakly consistent estimator of
αs and asymptotically normally distributed as T → ∞.

Plugging α̂ = α̂s α̂
∗, with α̂s = α̂s,MM or α̂s,PML, into the posterior mean (6), we get an empirical Bayes

estimator of pt :

p̂t = α̂s α̂
∗ + xt

α̂s + nt

(16)

which can be rewritten as

p̂t = α̂s

α̂s + nt

α̂∗ + nt

α̂s + nt

xt

nt

(17)
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Figure 1. The histogram of α̂s,PML for 100 000 samples with nt = 50, T = 300, and α = (70, 20, 10)
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Figure 2. The histogram of α̂s,MM for 100 000 samples with nt = 50, T = 300, and α = (70, 20, 10)

a weighted average of the process mean estimator α̂∗ and observed proportions xt /nt . Increasing α̂s puts more
weight on prior mean estimator α̂∗.

We conduct a simulation study to compare the performance of both PMLE and MME of αs . For simplicity,
consider k = 2. For each t = 1, . . . , 300, we first generate pt from the Dirichlet(α) prior distribution and
then generate xt from the multinomial(nt; pt ) distribution, where α = (70, 20, 10)′ and nt = 50. Thus,
we obtain a sample {x1, . . . , x300} of size 300. Compute both PMLE and MME of αs for this sample.
Repeat the above procedure independently for 100 000 times to obtain 100 000 PMLE and 100 000
MMEs.

Figures 1 and 2 present the histograms of these PMLEs and MMEs, respectively. The 100 000 PMLEs
have sample mean 100.92, sample standard deviation 18.96, and sample mean squared error 360.38, while
the corresponding 100 000 MME have sample mean 101.33, sample standard deviation 21.09, and sample mean
squared error 446.70. Furthermore, among these 100 000 samples, there are 57 619 samples for which the PMLE
of αs is closer to the true αs than the corresponding MME. Thus, the PMLE performs slightly better than the
MME for this particular example. Some other examples are tried and results are similar. Thus, in the following,
αs is estimated by the PMLE.

Now with all components of the proposed empirical Bayes approach in place, we are ready to describe a
monitoring scheme for polytomous data considered in this paper.

Copyright c© 2004 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2005; 21:13–28
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4. A MONITORING SCHEME FOR POLYTOMOUS DATA
Control limits of a control chart are often obtained by finding a region of extreme points for which the
coverage probability is a prespecified false alarm rate γ . The most popular value for γ is the probability that a
standard normal random variable exceeds 3, i.e. γ = 0.002 6998. For a manufacturing process of polytomous
data described above, we use the marginal distributions of the observed proportions to construct control
limits.

Recall that xt has a Dirichlet-compound multinomial distribution with p.m.f. given in (7). However, it is
difficult to find a reasonable out-of-control region for such a multivariate discrete distribution. Thus, for
simplicity and better interpretation, we consider monitoring the non-conformity of each component of the
observed proportions xt /nt . Since the marginal distribution of xit is a Pólya distribution with parameters nt ,
αi , and αs for each i = 0, 1, . . . , k, the marginal p.m.f. of xit is

f (xit ; αi, αs) = exp

[ nt∑
j=1

log

(
j

αs + j − 1

)
−

xit∑
j=1

log

(
j

αi + j − 1

)
−

nt−xit∑
j=1

log

(
j

αs − αi + j − 1

) ]
(18)

for xit ∈ {0, 1, . . . , nt }.
We remark here that there are different opinions on the choice of the false alarm rate for each component

of xt /nt . A well-known conservative choice is γ /(k + 1). This scheme is conservative because the overall
false alarm rate for all k + 1 control charts is most likely smaller than γ . The false alarm rates for different
components of xt /nt are parameters to choose when designing a monitoring scheme. We shall not discuss this
issue further in this paper.

Let i ∈ {0, 1, . . . , k} be fixed. A control chart for monitoring the non-conformity of the observed proportion
xit /nt can be constructed as follows. Observe that xit /nt is a discrete random variable. If the deterministic
control limits are used, the conventional out-of-control probability γ is almost impossible to attain. And it is
found that the actual out-of-control probability varies quite a bit for various processes.

Based on the concept of the randomized test in hypothesis testing, we propose a randomized-control-limits
approach. Note that the marginal distribution of xit /nt is skewed unless αi = αs/2. There are many possible
ways to split the out-of-control probability γ into the two tails when the process is in control. The simplest way
is the equal split. That is, γ /2 for each tail.

Now to find the lower control limit (LCL), from (18), we start accumulating the tail probability from 0
until we reach the first l such that

∑l
xit=0 f (xit ; αi, αs) ≥ γ /2. If the equality holds, which is very unlikely,

then there is no need for randomization and LCL = l/nt . If the equality does not hold, which means that∑l−1
xit=0 f (xit ; αi, αs) < γ/2 and

∑l
xit=0 f (xit ; αi, αs) > γ/2, then l/nt is the randomized lower control limit

(RLCL).

The randomization is done by signaling out-of-control with probability

γRLCL(αi , αs) = γ /2 − ∑l−1
xit=0 f (xit ; αi, αs)

f (l; αi, αs)
(19)

when xit = l is observed. A randomized upper control limit (RUCL) can be obtained similarly. For charting, in
addition to the two randomized control limits, we use the median of the marginal distribution of xit /nt as the
center line of the control chart.

For example, for the equal-split method, Figure 3 presents the marginal p.m.f. of xit for a process with
nt = 50, αi = 10, and αs = 100. Let γ = 0.002 6998. Since f (0; 10, 100) = 0.014 272, f (15; 10, 100) =
0.000 860 32, and f (16; 10, 100) + · · · + f (50; 10, 100) = 0.000 644 96, it is found that RLCL = 0
and RUCL = 15/50 = 0.3, with γRLCL = 0.001 3499/0.014 272 = 0.094 582 and γRUCL = (0.001 3499 −
0.000 644 96)/0.000 860 32 = 0.819 39.
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AN EMPIRICAL BAYES PROCESS MONITORING TECHNIQUE FOR POLYTOMOUS DATA 21

0 5 10 15 20 25 30 35 40 45 50
0   

0.05

0.10 

0.15

0.20 

x 
i
 
t

P
ro

ba
bi

lit
y

Figure 3. The marginal p.m.f. of xit with nt = 50 and (α∗
i
, αs ) = (0.1, 100)

5. THE AVERAGE RUN LENGTH OF THE CONTROL SCHEME

To study the performance of this control scheme, we compute the average run length (ARL) for in-control and
several out-of-control situations. The ARL is the average number of observations required until an out-of-control
alarm is signaled. The in-control ARL, usually denoted by ARL0, is ARL0 = 1/γ (= 370.40 if γ = 0.002 6998)
by the control chart design.

To compute the out-of-control ARL, usually denoted by ARL1, we need to specify an out-of-control situation,
say, xit has a Pólya distribution with parameters nt , α̃i , and α̃s such that α̃i �= αi and/or α̃s �= αs . The out-of-
control probability is

Pout(α̃i , α̃s ) =
nt ·RLCL−1∑

xit=0

f (xit ; α̃i , α̃s ) + γRLCL · f (nt · RLCL; α̃i , α̃s)

+ γRUCL · f (nt · RUCL; α̃i , α̃s ) +
nt∑

xit=nt ·RUCL+1

f (xit ; α̃i , α̃s )

Then ARL1(α̃i, α̃s ) = 1/Pout(α̃i , α̃s ). For the case that (α∗
i , αs) = (0.1, 100) (i.e. (αi , αs) = (10, 100)), Table I

gives the ARL0 and ARL1 for various out-of-control (α̃∗
i , α̃s )’s for the cases that nt = 50, 100, and 200,

respectively. For Table I, α∗
i = 0.1, ARL0 is given when α̃∗

i is also equal to 0.1. We repeat the above study
for three more cases: (1) (α∗

i , αs) = (0.05, 100), (2) (α∗
i , αs) = (0.15, 100), and (3) (α∗

i , αs) = (0.5, 100).
The results are given in Tables II–IV. For each of these tables, ARL0 is given when α̃∗

i = α∗
i . It is seen that

the ARL1 decrease fairly fast as α̃∗
i gets further away from α∗

i , and as nt increases. Also, when α∗
i gets larger

(up to 0.5), ARL1 gets smaller for the α̃∗
i having the same relative deviation from α∗

i (i.e. (α̃∗
i − α∗

i )/α∗
i ). In other

words, for the less skewed marginal distribution of xit /nt , the detecting power is better. An interesting situation
occurs in Table II, when α̃∗

i equals 0.04, and nt = 50. In this situation, the ARL1 is larger than ARL0. This is
because α̃∗

i = 0.04 is too close to the true value α∗
u(= 0.05) and the sample size 50 is not large enough to have

good power in detecting the difference. The above ARLs are computed assuming that the αi and αs are known.
In practice, we have to estimate αi and αs from the process data. Denote their estimates by α̂i and α̂s ,

respectively. To investigate the effect of the estimation error of α̂i and α̂s on ARLs, the results of another
simulation study are presented as follows.

The 100 000 samples described in Section 3 are used for this study. For each i = 0, 1, . . . , k, we order
these 100 000 samples by the size of |̂α∗

i − α∗
i | and then pick the 10 000th, 50 000th, and 90 000th ordered

samples (i.e. the 10th, 50th, and 90th percentiles in terms of the deviation from the true α∗
i among the

100 000 simulated samples) to construct the control charts. As an example, Table V gives the ARLs of
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Table I. ARL0 and ARL1 values are listed for various α̃∗
i and nt with

(α∗
i , αs) = (0.1, 100) and α̃s = 100. ARL0 is given when α̃∗

i = 0.1

nt = 50, α∗
i

= 0.1 nt = 100, α∗
i

= 0.1 nt = 200, α∗
i

= 0.1
RLCL = 0 RLCL = 0.01 RLCL = 0.02

γRLCL = 0.094 582 γRLCL = 0.160 28 γRLCL = 0.063 544
RUCL = 0.3 RUCL = 0.26 RUCL = 0.235

α̃∗
i

γRUCL = 0.819 39 γRUCL = 0.905 46 γRUCL = 0.603 45

0.0001 10.616 1.0062 1.0011
0.001 11.012 1.0635 1.0120
0.02 24.031 3.4929 1.8423
0.04 55.372 12.673 5.7924
0.06 128.66 47.547 24.531
0.08 280.23 176.81 122.76
0.10 370.40 370.40 370.40
0.12 200.78 175.92 155.48
0.14 82.917 60.301 46.735
0.16 37.087 24.140 17.389
0.18 18.720 11.417 7.9250
0.20 10.540 6.2304 4.2913
0.22 6.5197 3.8402 2.6883

Table II. ARL0 and ARL1 values are listed for various α̃∗
i and nt with

(α∗
i
, αs) = (0.05, 100) and α̃s = 100. ARL0 is given when α̃∗

i
= 0.05

nt = 50, α∗
i = 0.05 nt = 100, α∗

i = 0.05 nt = 200, α∗
i = 0.05

RLCL = 0 RLCL = 0 RLCL = 0
γRLCL = 0.010 793 γRLCL = 0.046 660 γRLCL = 0.36344

RUCL = 0.2 RUCL = 0.18 RUCL = 0.16
α̃∗

i
γRUCL = 0.146 26 γRUCL = 0.938 62 γRUCL = 0.877 27

0.0001 93.027 21.581 2.7820
0.001 96.500 22.976 3.0721
0.01 139.37 43.076 8.3100
0.02 209.19 86.894 25.261
0.03 304.71 173.44 76.863
0.04 390.75 312.22 218.39
0.05 370.40 370.40 370.40
0.06 249.85 239.48 232.96
0.07 143.50 120.61 104.49
0.08 81.487 61.507 49.295
0.09 48.302 33.738 25.669
0.10 30.219 19.962 14.655
0.11 19.914 12.644 4.0703

the three control charts in monitoring the second defect type when the control limits are constructed from
the estimate α̂ of α. It is seen that ARLs do not vary that much among these three cases. This indicates
that the ARL is somewhat robust to the estimation error of α̂. Figures 4–6 show the marginal distribution
of x2t under (a) (̂α∗

2 , α̂s,PML) = (0.1004, 88.260), (b) (̂α∗
2 , α̂s,PML) = (0.098, 79.766), and (c) (̂α∗

2 , α̂s,PML) =
(0.104 87, 88.262), which correspond to the 10 000th, 50 000th, and 90 000th ordered samples in the above
ARL study, respectively.

6. A NUMERICAL EXAMPLE

Consider a process that has four different defect types. Assume that the yield/defect probability vector pt follows
Dirichlet(α) with α = (60, 15, 10, 10, 5)′. Let nt = 100 and T = 200. For t = 1, . . . , T , we first generate pt
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Table III. ARL0 and ARL1 values are listed for various α̃∗
i and nt with

(α∗
i , αs ) = (0.15, 100) and α̃s = 100. ARL0 is given when α̃∗

i = 0.15

nt = 50, α∗
i

= 0.15 nt = 100, α∗
i

= 0.15 nt = 200, α∗
i

= 0.15
RLCL = 0 RLCL = 0.03 RLCL = 0.045

γRLCL = 0.916 20 γRLCL = 0.375 24 γRLCL = 0.300 48
RUCL = 0.36 RUCL = 0.33 RUCL = 0.30

α̃∗
i

γRUCL = 0.126 06 γRUCL = 0.932 66 γRUCL = 0.170 69

0.0001 1.0959 1.0005 1.0001
0.001 1.1368 1.0058 1.0007
0.03 3.7596 1.8025 1.2785
0.06 13.369 5.6619 3.1059
0.09 49.113 23.977 13.186
0.12 180.05 121.41 83.672
0.15 370.40 370.40 370.40
0.18 161.90 129.46 107.59
0.21 52.270 34.402 24.935
0.24 20.221 12.035 8.2167
0.27 9.3997 5.3903 3.6652
0.30 5.1074 2.9683 2.0986
0.33 3.1666 1.9392 1.4669

Table IV. ARL0 and ARL1 values are listed for various α̃∗
i

and nt with
(α∗

i , αs) = (0.5, 100) and α̃s = 100. ARL0 is given when α̃∗
i = 0.5

nt = 50, α∗
i

= 0.5 nt = 100, α∗
i

= 0.5 nt = 200, α∗
i

= 0.5
RLCL = 0.24 RLCL = 0.29 RLCL = 0.32

γRLCL = 0.845 45 γRLCL = 0.738 76 γRLCL = 0.493 74
RUCL = 0.76 RUCL = 0.71 RUCL = 0.68

α̃∗
i γRUCL = 0.84 545 γRUCL = 0.738 76 γRUCL = 0.493 74

0.20 1.3166 1.0626 1.0119
0.25 1.9942 1.3131 1.1080
0.30 3.8600 2.1479 1.5427
0.35 9.6535 5.0309 3.2297
0.40 31.305 17.495 11.245
0.45 129.52 91.041 67.939
0.50 370.40 370.40 370.40
0.55 129.52 91.041 67.939
0.60 31.305 17.495 11.245
0.65 9.6535 5.0309 3.2297
0.70 3.8600 2.1479 1.5427
0.75 1.9942 1.3131 1.1080
0.80 1.3166 1.0626 1.0119

from the Dirichlet(α) distribution and then generate count data xt from the multinomial(nt ; pt ) distribution
given pt . For this data set, we get α̂∗ = (0.6009, 0.1538, 0.1033, 0.095, 0.047) and α̂s,PML = 105.31.

The RUCL, median (the center line), and RLCL can be obtained for the yield and each defect type as follows:

x0t x1t x2t x3t x4t

RUCL 0.82 0.34 0.27 0.26 0.17
γRUCL 0.243 80 0.320 32 0.584 96 0.897 07 0.032 113
median 0.63 0.16 0.1 0.1 0.04
RLCL 0.42 0.04 0.01 0.01 0
γRLCL 0.714 98 0.082 920 0.446 30 0.161 43 0.044 996
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Table V. Effect of estimation error. ARL0 and ARL1 values are listed
for various α̃∗

2 with respect to the 10 000th, 50 000th, and 90 000th
ordered samples out of 100 000 samples, where nt = 50, T = 300.
The control charts are constructed for (α∗

2 , αs) = (̂α∗
2 , α̂s,PML) and

α̃s = α̂s,PML instead of the true (α∗
2 , αs) = (0.1, 100) and α̃s = 100

α̂∗
2 = 0.1004 α̂∗

2 = 0.098 α̂∗
2 = 0.104 87

α̂s = 88.260 α̂s = 79.766 α̂s = 88.262
RLCL = 0 RLCL = 0 RLCL = 0

γRLCL = 0.087 143 γRLCL = 0.072 280 γRLCL = 0.105 81
RUCL = 0.30 RUCL = 0.30 RUCL = 0.30

α̃∗
2 γRUCL = 0.454 95 γRUCL = 0.392 21 γRUCL = 0.143 67

0.0001 11.521 13.889 9.4890
0.001 11.942 14.386 9.8352
0.02 25.602 30.377 21.086
0.04 57.864 67.520 47.665
0.06 131.70 150.55 108.81
0.08 280.52 305.68 239.75
0.10 371.79 361.43 376.10
0.12 210.86 193.71 254.25
0.14 89.876 83.731 111.31
0.16 40.855 38.926 49.738
0.18 20.780 20.173 24.730
0.20 11.725 11.548 13.639
0.22 7.2385 7.2057 8.2540
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Figure 4. The marginal p.m.f. of x2t with nt = 50 and (α∗
2 , αs) = (̂α∗

2 , α̂s,PML) = (0.1004, 88.260)

Now we can monitor the process for polytomous data with the control scheme constructed above. Assume
that the process has shifted such that the yield/defect probability vector pt is now distributed as Dirichlet(α̃),
where α̃ = (55, 15, 10, 10, 10)′. That is to say, the chance of the fourth defect type occurring has increased
while the chances of other defect types remain the same. Generate 100 xt for this situation. Figures 7–11 give
the control charts for each component of (xt /nt ). It is noted that the control charts for both x0t/nt and x4t /nt

show that the process is out of control while the other control charts show that the process remains in control.
This demonstrates the effectiveness of the monitoring scheme for this example since only α0 = 60 is shifted to
α̃0 = 55 and α4 = 5 to α̃4 = 10.

Copyright c© 2004 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2005; 21:13–28



AN EMPIRICAL BAYES PROCESS MONITORING TECHNIQUE FOR POLYTOMOUS DATA 25

0 5 10 15 20 25 30 35 40 45 50
0   

0.05

0.10 

0.15

0.20 

x 
2
 
t

P
ro

ba
bi

lit
y

Figure 5. The marginal p.m.f. of x2t with nt = 50 and (α∗
2 , αs) = (̂α∗

2 , α̂s,PML) = (0.098, 79.766)
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Figure 6. The marginal p.m.f. of x2t with nt = 50 and (α∗
2 , αs) = (̂α∗

2 , α̂s,PML) = (0.104 87, 88.262)
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Figure 7. The control chart of (x0t /nt ) for t = 1, . . . , 100 with nt = 100, α = (55, 15, 10, 10, 10)′, RLCL = 0.42,
CL (center line) ≡ median = 0.63, RUCL = 0.82, γRLCL = 0.71 498, and γRUCL = 0.243 80
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Figure 8. The control chart of (x1t /nt ) for t = 1, . . . , 100 with nt = 100, α = (55, 15, 10, 10, 10)′, RLCL = 0.04,
CL (center line) ≡ median = 0.16, RUCL = 0.34, γRLCL = 0.082 920, and γRUCL = 0.320 32
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Figure 9. The control chart of (x2t /nt ) for t = 1, . . . , 100 with nt = 100, α = (55, 15, 10, 10, 10)′, RLCL = 0.01,
CL (center line) ≡ median = 0.1, RUCL = 0.27, γRLCL = 0.446 30, and γRUCL = 0.584 96
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Figure 10. The control chart of (x3t /nt ) for t = 1, . . . , 100 with nt = 100, α = (55, 15, 10, 10, 10)′, RLCL = 0.01,
CL (center line) ≡ median = 0.1, RUCL = 0.26, γRLCL = 0.161 43, and γRUCL = 0.897 07
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Figure 11. The control chart of (x4t /nt ) for t = 1, . . . , 100 with nt = 100, α = (55, 15, 10, 10, 10)′, RLCL = 0, CL (center
line) ≡ median = 0.04, RUCL = 0.17, γRLCL = 0.044 996, and γRUCL = 0.032 113

7. CONCLUSION

In this paper, we develop an empirical Bayes process monitoring scheme for polytomous data. The yield/defect
count data vector xt is modeled by the multinomial(nt; pt ) distribution given pt . The yield/defect probability
vector pt is allowed to vary, and is modeled by the Dirichlet(α) distribution with unknown hyperparameter
vector α. Thus the variation in the yield/defect count data is decomposed into two sources of variation: (i) the
sampling variation (i.e. the expectation of the conditional variance–covariance matrix of xt /nt given pt ), and
(ii) the process variation (i.e. the variance–covariance matrix of pt ).

To estimate α, two estimation methods, the method of moments and the pseudo maximum likelihood method,
are proposed and studied. It is found by simulation that the PMLE performs slightly better than the MME.

Using the above empirical Bayes methodology control charts are developed, based on the marginal
distributions of the components of xt /nt . To achieve the usual false alarm rate when the process is in control,
we develop a randomized-control-limits scheme. The performance of the control scheme is studied via the
average run length. It is found that if the marginal distribution of the defect/yield proportion is not too skewed,
then the detecting power of the proposed control chart is fairly good. It is also found that the ARLs are somewhat
robust to the estimation error of α̂. Finally, an illustrative example demonstrates the potential usefulness of the
proposed monitoring scheme.
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