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We study the interconnection among steering, uncertainty, and quantum correlation. The practical steering
criteria for bipartite quantum entanglement are proposed using the multiple applications of the Maassen-Uffink
uncertainty relation. The results show that distant steering causes less uncertainty than that in any local-hidden-
variable theories. The reduction of uncertainty in the quantum steering of entangled states leads to quantum
correlation. The steering visibility for the mixed states is also discussed. The experimental results on the proposed
steering criteria are reported.
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I. INTRODUCTION

When two entangled qubits are spatially separated, the
state of one qubit can be “steered” or piloted (as it was
termed by Schrödinger) by the prior measurement of the
other one. Historically, this effect has led to disputes on
the completeness of quantum theory. To depict the Einstein,
Podolsky, and Rosen (EPR) paradox in a nutshell, here we
consider a composite system composed of two qubits, which
are entangled and spatially separated. According to quantum
theory, once the first qubit (system) is measured using one
of two noncommuting observables, the second qubit (system)
will be left in different wave functions. To preserve the locality,
Einstein, Podolsky, and Rosen (EPR) [1] asserted “No real
change can take place in the second system in consequence of
anything that may be done to the first system.” Furthermore,
EPR claimed that the same reality may be assigned to two
different wave functions required by the consequences of
measuring the remote systems. The above argument regarding
locality and reality led EPR to the conclusion that quantum
theory is incomplete, and implied the existence of local hidden
variables (LHV).

Thanks to Schrödinger, local hidden variables as an
explanation of steering was implicitly rejected then [2]. In
addition, Cavalcanti et al. have verified that the notions of
EPR paradox and steering are an equivalent depiction of
nonlocality [3]. These previous works motivated us to tackle
the steering effect using Bell tests on quantum nonlocality. In
the following, we consider the following scenario. Spatially
separated observers Alice and Bob each hold half of the
entangled systems. To perform local measurements, each
party randomly chooses one of two or more noncommuting
operators corresponding to physical quantities. To ensure that
Alice is to steer Bob’s qubit, they initially agree that, in each
round, Alice performs her local measurement prior to Bob’s.
Without classical communication, the no-signal theorem states
that Bob has no information about Alice’s local operation,
which, nevertheless, lets Bob’s qubit behave as a steerable
state resulting in violation of some specific bipartite Bell-type
inequality.

On the other hand, according to EPR’s criteria for reality,
Bob may indeed predict the value of “a” physical quantity
with certainty [4]. However, Bob never predicts the values

of two noncommuting physical quantities with certainty. It is
well known that uncertainty relations among noncommuting
observables play an essential role in quantum theory. A useful
steering criterion as an extended version of EPR’s reality was
proposed by Reid [5], which can be stated as follows. Without
disturbing a system in any way, one can predict the value
of a physical quantity with some specific uncertainty. Caval-
canti et al. further developed Reid’s proposal as quantitative
criteria. In detail, due to Alice’s measurement and hence the
steering effect on Bob’s observables, she can estimate or infer
Bob’s observables using her knowledge of local measurement
outcomes. Such interference or estimation can indeed reduce
the uncertainty, which has been experimentally validated in the
continuous variable case [6]. As shown by Cavalcanti et al., the
product uncertainty relations including the inference variances
of noncommuting observables can be served as the steering
criteria [3,7,8]. The other kind of steering criteria are based on
additive convexity of uncertainty relations, which are sums of
convex functions [3,7,8].

In this paper, we attempt to explore the steering effect in
the Bell tests. The basic idea is that the steering effect in the
Bell tests can be revealed with the knowledge of the time
order of local measurements. Here we propose the uncertainty
relations as the steering criteria, which can be regarded
as alternative expressions of Clauser-Horne-Shimony-Holt
(CHSH) inequality [9,10] and chained Bell inequalities [11]
in terms of conditional marginal probabilities. On this basis,
the experimental setup of the proposed criteria is almost the
same as the corresponding Bell tests, except that the time
ordering of the local measurements must be recorded or
previously settled. Our results show that the steering effect
can reduce less uncertainty than LHV theory in the Bell tests,
which is the reason why quantum theory can violate Bell
inequalities.

Before proceeding further, here we compare the proposed
criteria with Cavalcanti et al.’s steering criteria and Bell-type
inequalities. First, researches on quantum entanglement are
unfolded in two different perspectives, the nonlocality and
steering effect. The former focuses on correlation relations,
whereas the latter focuses on interference ability. The joint
probabilities revealing correlations are usually exploited in
Bell-type inequalities, whereas, based on Alice’s estimation,
the steering criteria usually include conditional probabilities
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or inference variances of local observables [3]. Second,
the conditional probabilities are multiplied in the proposed
criteria, whereas the joint probabilities are summed in Bell-
type inequalities. Cavalcanti et al. constructed the steering
criteria using either the product or the sums of inference
invariance [3,7,8].

The paper is organized as follows. Section II introduces
Maassen and Uffink uncertainty relation as the building
blocks of the proposed criteria. Then we manipulate them to
construct the proposed criteria in Sec. III. The two-setting and
infinite-setting cases are studied respectively. Experimental
verification of two-setting case is shown in Sec. IV. In Sec. V,
we make discussions on local hidden states and visibility of
the steering effect, followed by the conclusions.

II. MAASSEN AND UFFINK UNCERTAINTY RELATION

In 1961, Pollack et al. [12,13] proposed the uncertainty
relation for continuous time-limiting and band-limiting signal
processing. In 1988, Maassen and Uffink (MU) [14] revised
the relation as quantum uncertainty relation as follows. Given a
qubit |ψ〉, one performs the measurement using the orthonor-
mal basis

∣∣Bb
y

〉
, where y is the index of the basis, and b =

{0,1} is the measurement outcome. The maximum probability
of a certain outcome given the basis is py = max{p(b =
0|ψ,y), p(b = 1|ψ,y)}. The MU uncertainty relation can be
formulated as

p0p1 �
(

1 + c

2

)2

, (1)

where c = max
b,b′

|〈Bb
0 |Bb′

1 〉|. Here, |ψ〉 is the maximally proba-

ble state, if the equality of Eq. (1) holds.
In this paper, we exploit Eq. (1) as the building block

of the proposed uncertainty relations, which can serve as
the steering criteria. We demonstrate that the steering effect
in quantum theory can result in less uncertainty than that
in theories with no steering (e.g., local hidden variables).
Wehner and Oppenheimer [15] first considered the connection
between uncertainty relations and Bell-type inequalities. The
relations to be proposed in the present work are much simpler
than theirs from the operational viewpoint. In the following,
|ψ〉〈ψ | = 1

2 [I + (−1)bψ̂ · −→σ ], |Bb
y 〉〈Bb

y | = 1
2 [I + (−1)b n̂y ·

−→σ ], and |Aa
x〉〈Aa

x | = 1
2 [I + (−1)aχ̂x · −→σ ], where the vector−→σ = (σx,σy,σz) and therein σx, σy, and σz are the Pauli

matrices. The vectors χ̂x and n̂y are depicted in Fig. 1.
Before proceeding further, we assign two operational

meanings to Eq. (1). In the one-qubit case, we consider a single
photon impinging on a series of three polarizers. The first and
third polarizer axes are fixed at n̂0 and n̂1, respectively, and
n̂0 · n̂1 = c. Without loss of generality, let the measurement
outcome b = 0 denote that the state of polarization is |B0

0 〉
(|B0

1 〉) when the photon passes the first (third) polarizer. Then
designate the second polarizer axis as the direction vector
ψ̂ . After a photon passes through this polarizer, the state
of polarization then becomes |ψ〉. Once the photon passes
through the first polarizer, the probability passing through the
second and third polarizer is P = p(B0

1 |ψ)p(ψ |B0
0 ). On the

θ

FIG. 1. (Color online) The four coplanar state vectors are on the
Bloch sphere. The angle θ is π

4 and 0 for the best-case and worst-case
scenarios, respectively.

other hand, in quantum theory, the probability

p(m|n) = |〈m|n〉|2 = p(n|m)

representing the state |n〉 (|m〉) is measured using the
orthonormal basis {|m〉,|m⊥〉} ({|n〉,|n⊥〉}), and the posts-
elected state is |m〉 (|n〉). Here, m and n can represent
B0

y and ψ or vice versa. Therefore, p(ψ |B0
0 ) = p(B0

0 |ψ)
and p(B0

1 |ψ)p(ψ |B0
0 ) = p(B0

1 |ψ)p(B0
0 |ψ), which was the

probability of photon ψ passing both polarizers, n̂0 and n̂1.
As a result, let py = p(B0

y |ψ); then the maximal probability
Pmax is the MU uncertainty relation. Finally, the equality holds

when n̂y · ψ̂ =
√

1+c
2 . From the perspective of local hidden

variables, the measurement result can always be set to b = 0,
and the photon always passes through the second polarizer. In
the LHV case, p0 = p1 = 1, there is no uncertainty.

In the two-qubit case, Alice prepares a two-qubit system
and then sends Bob one of these two qubits. Even though
Reid showed that there is unavoidable uncertainty inherent to
the steering effect [5], Alice and Bob still can collaborate to
reduce the uncertainty to the minimum from the perspective
of the MU relation. As for Alice’s operation, she attempts to
pilot the state of Bob’s qubit into a certain maximally probable
state. On the other hand, Bob also adjusts his measurement
observables to maximize the probability product of Eq. (1).
Notably, even though the equality in Eq. (1) holds, it is not
enough to guarantee that Alice can steer Bob’s state. One
of the examples is the case when the qubit at Bob’s hand is
initially in the maximally probable state, which is unentangled
with Alice’s qubit.

Here we sketch the proposed quantum steering criteria as
follows. Alice can convince Bob of her steering ability with
piloting his qubit into a set of nonorthogonal states. Math-
ematically speaking, we exploit the MU relation repeatedly
with different conditional states. In this case, if the uncertainty
is too large, such that it can be explained using local hidden
variables, Bob can reject her claim of steerability. In contrast,
if the uncertainty were too small (as in the finite multisetting
case), it cannot be explained using quantum theory.
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III. STEERING CRITERIA

Wiseman et al. [16] revisited Schrödinger’s concept of
steerability in terms of tasks. From this foundation, we propose
the following steering-convincing task. In the general scheme
of this task, Alice first prepares two bipartite steerable boxes,
and then sends one of the boxes to remote Bob. Then, in the
steering phase, Alice inputs the random bit x into her accessible
box, which outputs a bit α. Finally, in the checking phase, Bob
also inputs the random bit y into his accessible box, which
outputs a bit β. If the nonlocal input-output relation were
physically realized as

α + β = xy + cax + cby mod 2,

where x, y, α, β, ca , and cb ∈ {0,1}, given Alice’s steering
information (x,α), Bob can predict with certainty the output
β = α + xy + cax + cby mod 2. According to Reid’s criteria,
Bob can predict with some specific uncertainty. Here we
evaluate and quantify the uncertainty due to the steering effect
as follows. We define the value

Mαβ =
1∏

x,y=0

p(β = α + yx + cax + cby|α,x,y). (2)

In the proposed protocol, Bob and Alice are to minimize the
uncertainty. That is, they aim to maximize both Mαβ and Mαβ .
If Bob were to predict with certainty, Mαβ = Mαβ = 1.

In the quantum version, the boxes are replaced by two
bipartite qubits. The two-setting scenario is described in detail
as follows. In the preparation phase, Alice initially prepares
the two-qubit Bell state

|	+〉 = 1√
2

(|0〉|0〉 + |1〉|1〉) = 1√
2

(∣∣χ0
x

〉∣∣χ0
x

〉 + ∣∣χ1
x

〉∣∣χ1
x

〉)
,

where |χ0
x 〉 = cos ϕ|0〉 + sin ϕ|1〉, and 〈χ0

x |χ1
x 〉 = 0. In the

steering phase, Alice randomly chooses the orthonormal basis
{|A0

x〉,|A1
x〉}, x ∈ {0,1}, as the measurement basis. As a result,

the states of both qubits are simultaneously collapsed into the
same state |χj

x 〉 = |Aj
x〉, j ∈ {0,1}. In the checking phase, Bob

randomly chooses {|B0
y 〉,|B1

y 〉}, y ∈ {0,1}, as the measurement
basis. Now we consider the ideal case: they agree beforehand
that these vectors, (χ̂0, χ̂1, n̂0, and n̂1), are always coplanar
in the Bloch sphere. Without loss of generality, we set
|A0

0〉 = |0〉, |A1
0〉 = |1〉, |Aa

1〉 = 1√
2
(|0〉 + (−1)a|1〉), and n̂y =

1√
2
[̂z + (−1)y x̂] so that the value of c in the MU relation is

1√
2
. Consequently, |χ0

0 〉, |χ1
0 〉, |χ0

1 〉, and |χ1
1 〉 are all maximally

probable states. Hereafter, the probability with which they
obtain the results a and b from the x and y measurement
directions, respectively, is p(Bb

y |Aa
x) = p(b|a,x,y). In the

following, we state the steering criteria as the main result.
And then, Bob’s qubit is then steerable so long as either

1

4
< M00, M11 �

[
1

2

(
1 + 1√

2

)]4

, (3)

or

1

4
< M01, M10 �

[
1

2

(
1 + 1√

2

)]4

(4)

holds. Without loss of generality, hereafter we set ca =
cb = 0, and hence we have p(β = yx|0,x,y) = p(β = 1 +
yx|1,x,y) = 1

2 (1 + 1√
2
), and therefore M00 = M11 = [ 1

2 (1 +
1√
2
)]4. In this way, Alice can maximally steer Bob’s state.

In contrast, we consider two worst-case scenarios that result
in M00 = M11 = 1

4 . First, the measurement basis is set as
χ̂0 = n̂0 and χ̂1 = −n̂1, and the measurement probabilities
are p(z|z,0,0) = p(z|z,1,1) = 1 and p(z|z,x 	= y) = 1

2 for
∀z ∈ {0,1}. In the perspective of local hidden variables, take a
predetermined output that can be represented as binary vector
(a|x=0, a|x=1, b|y=0, b|y=1); M00 and M11 can then be obtained
with the equal mixing vectors (0, 0, 0, 0), (0, 0, 0, 1), (1, 1, 1,
0), and (1, 1, 1, 1). Second, let χ̂0 = n̂0 = n̂1 and χ̂1 · χ̂0 = 1√

2
,

the probabilities are then p(z|z,0,0) = p(z|z,0,1) = 1 and
p(0|z,1,0) = p(0|z,1,1) = 1

2 . Alice cannot convince Bob that
his qubit is steerable in such cases.

As the end of this section, we interpret M00 and M11 as
a polarized single photon n̂1 that passes through a series of
five polarizers. The polarizations of the first through fourth
polarizers are set to be χ̂0, n̂0, χ̂1, and n̂⊥

1 , respectively. Here,
M00 is the probability of a photon passing through the fifth
polarizer once it has passed the first one. If we simultaneously
rotate these polarizers by 90◦, the corresponding probability
becomes M11. However, in the single-photon case for local
hidden variables, this detection probability is zero, as the
photon’s original polarization and the final polarizers are
orthogonal to one another. Thus, from the perspective of
local hidden variables, the single-qubit case is not completely
equivalent to the two-qubit one.

IV. EXPERIMENTAL SETUP AND RESULTS

We consider the polarization-entangled photon pair to
demonstrate the steering process, and the experimental setup
is shown in Fig. 2. Here, we use second harmonic (390 nm)
of a Ti:sapphire pulse laser (780 nm). The second harmonic
pumps a type-II BBO (β-barium borate) crystal to generate the
polarization-entangled photon pair. Half wave plates (HWPs)
and BBO crystals are used to compensate for group delay
and walkoff in the photon pair. The local measurement was
performed using a quarter wave plate and an HWP. The filters
were used to suppress noise, passing only photons with a
wavelength of 780 ± 3 nm. The polarizers were set at 0◦
(90◦) for the horizontal (vertical) polarization measurement.
Each of the entangled photons was coupled to a single-mode
fiber connected to a single-photon-counting module (SPCM).
The photon-counting signal of Alice (SPCM A) was used
as the stop trigger, introducing electronic delay. Meanwhile,
the nondelayed signal of Bob (SPCM B) was used as the
start trigger in the coincidence measurement. Note that Alice
always measured the photon earlier than Bob. It is an obvious
advantage that it is possible to use the same experimental
setup to test the CHSH inequality (S = 2.76 ± 0.06). The only
difference is that we must ensure the measurement order of the
two local measurements. Experimentally, the results satisfied
our steering criteria of Eq. (3), as M

exp
00 = 0.45 ± 0.02, and

M
exp
11 = 0.51 ± 0.03. Consequently, Alice can exactly steer

Bob’s qubit into the maximally probable states in the entangled
photon pair.

022115-3



HSIN-PIN LO, ATSUSHI YABUSHITA, AND LI-YI HSU PHYSICAL REVIEW A 89, 022115 (2014)

FIG. 2. (Color online) The experimental setup [9]. Tsunami: the laser system; QWP: quarter wave plate; HWP: half wave plate.

V. DISCUSSIONS AND CONCLUSIONS

A. Local hidden states

Wiseman et al. pointed out the fundamental differences
among quantum nonseparability, Bell nonlocality, and steering
in between [16]. In brief, quantum states and local hidden
variables are involved and considered in quantum nonsepara-
bility and Bell nonlocality, respectively. To test the steering
criteria, the local hidden states were proposed [16]. Once
the other remote quantum system is measured, the steerable
states in the quantum system cannot be described as hidden
local states [16], which can be stated as follows. Given the
preparation procedure c, the joint probability for a local hidden
state can be written as

p(a,b|x,y,c) =
∑

λ
p(λ|c)p(a|x,c,λ)pQ(b|y,c,λ),

where pQ(b|y,c,λ) represent probability distributions, which
are compatible with a quantum state. However, the measure-
ment outcomes of the one-qubit system can be simulated using
local hidden variables, which was pointed out by Bell [17]. In
this sense, the local hidden states can be completely simulated
by local hidden variables, and hence cannot be exploited for
the violation of either Eq. (3) or (4).

B. Multisetting case

Now we consider the bipartite multisetting case. The
following proposed uncertainty relation can be regarded as
an alternative description of chained Bell inequalities. In this
process, Alice and Bob each randomly input Ax and By , where
x, y ∈ {1,2, . . . ,N}, and the outputs are a and b ∈ {0,1},
respectively. We define MN

αβ as

MN
αβ =

N∏
y=1

p(b = β|a = α,x = y + 1)

×p(b = β + δy,N |a = α,x = y), (5)

where N + 1 ≡ 1, and the parameter δy,N is unity when y =
N and zero otherwise. Using a similar approach for N = 2,
to reach the upper bound in local hidden variables, we set
a(x) = α and b(y) = β, and furthermore, b(N ) can be set
deterministically to 0 or 1 with equal probability. As a result,
the maximal MN

αβ is 1
4 for local hidden variables.

For the quantum version, we can exploit the same setup
for chained Bell inequalities. Without loss of generality,
Alice performs her measurement Âx = χ̂x · −→σ with the
measurement outcome α = 0. This measurement steers Bob’s
qubit state into |χx〉〈χx | = 1

2 (I + Âx). As for Bob, he performs
the measurement B̂y with the basis {|ny〉,|n⊥

y 〉}. The outcome
b is denoted by 0 or 1 if the postselected state is |ny〉 or
|n⊥

y 〉, respectively. Let the angle between χ̂y and n̂y be π
2N

. As
a result, c = |〈χi |ni〉| = |〈χi+1|ni〉| = cos π

2N
> |〈χi |n⊥

i 〉| =
|〈χi+1|n⊥

i 〉|,∀i ∈ {1,2, . . . ,N}, with χN+1 = χ1. According to
the MU relation, max p(ny−1|χy)p(ny |χy) = ( 1+c

2 )2, MN
00 �

( 1+c
2 )2N , and MN

11 � ( 1+c
2 )2N , replacing χi and ni with χ⊥

i

and n⊥
i , respectively. Then the steering criteria can be stated

as follows. The box systems are steerable if, for some α,
β ∈ {0,1},

1

4
� MN

αβ, MN

αβ
�

(
1 + c

2

)2N

. (6)

Here, MN=2
αβ = Mαβ in Eq. (2). In particular, note that

limN→∞( 1+c
2 )2N = 1, and therefore, M∞

αβ= 1.
Again, one should consider the operational interpretation

of MN
αβ . Notably, MN

00 can be modified to

MN
00 =

N∏
y=1

|〈ny |χy〉|2|〈χy+1|ny〉|2

=
N∏

y=1

p(χy+1|ny)p(ny |χy),
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FIG. 3. (Color online) The 2N coplanar state vectors for the
chained Bell inequalities are on the Bloch sphere.

where we set χy+1 = χ⊥
1 . In the proposed scenario, a single

photon impinges on 2N polarizers, as shown in Fig. 3, which
represents the quantum Zeno effect [18]. Let the polarization of
the incoming photon be χ̂1. The kth polarizer is oriented along
the direction of vector χ̂k/2+1 (̂n(k+1)/2) if k is even (odd) with
respect to Alice and Bob. In this case, MN

00 can be interpreted as
the probability of the photon passing through all 2N polarizers.
Once the polarization of the photon and the orientation of
the polarizers are rotated by 90◦, the transmission probability
becomes MN

11.

C. Nonideal cases

First, suppose that a nonmaximal entanglement is prepared,
e.g., |φ〉 = s|0〉|0〉 + t |1〉|1〉({s,t} ∈ R and s2 + t2 = 1). Alice
can steer Bob’s state into either |0〉 or |1〉 with certainty.
However, from the unitary operation, |φ〉 can be rewritten
as 1√

2
(|+〉|ϕ+〉 + |−〉|ϕ−〉), where |ϕ±〉 = s|0〉 ± t |1〉 is a

nonorthogonal basis 〈ϕ+|ϕ−〉 	= 0. Here, Alice can exploit the
unambiguous quantum measurement of nonorthogonal states
by a selective filter F = 1√

1+|s2−t2| (|+〉〈ϕ⊥
−| + |−〉〈ϕ⊥

+|).
Probabilistically, Alice’s qubit can pass through the filter,
ensuring that Bob’s state will be steered into the same state
as hers. Second, in the biased two-base local measurements,
the upper and lower bounds of Mαβ in Eqs. (3) and (4) are
unchanged. Third, consider the Werner isotropic state [19],

W = (1 − η) 1
4I ⊗ I + η|	+〉〈	+|,

where 0 � η � 1, I is the identity. Such states can be regarded
as depolarizing disturbances from the environment. Isotropic
states are inseparable if η � 1

3 [20] and steerable if η � 1
2 [16]

in the two-level case.
As for the proposed N -setting scheme, we consider the

critical value of ηN such that MN
00 = MN

11 = 1
4 . That is,

1

4
=

[
1

2
(1 − ηN ) + ηN

(
1 + cos π

2N

2

)]2N

,

and hence

ηN = (21−1/N − 1) sec
π

2N
.

That is, the steering effect becomes “visible” if η > ηN as
shown in Fig. 4. Obviously, η2 = 2 − √

2 > 1
2 and

lim
N→∞

ηN = 1.

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

N

FIG. 4. The visibility of the steering effect.

The numerical result is shown in Fig. 4. As a result, the two-
setting setup is optimal for witnessing quantum steering.

D. Min-entropy representation

Finally, we express Eq. (2) in terms of the min-
entropy H∞(X|Y ) = − log2 max P (X|Y ), with a logarithm
of base 2; for a random variable X ∈ {x1, . . . ,xN } and
Y = y, let the arbitrary conditional probability distribution
be P (X|Y ) = {p(x1|y), . . . ,p(xN |y)}. According to Eq. (2),
we have

∑1
x,y=0H∞(b|a,x,y) � − log2 M , and equivalently,

4[2 − log2(2 + √
2)] � − log2 M � 2.

In conclusion, a practical criterion for quantum steering is
proposed that allows us to relate the steering, the uncertainty
relation, and Bell-type inequalities. Indeed, quantum steering
can reduce less uncertainty than LHV. From the operational
perspective, the proposed criteria can be physically realized
using the same set of Bell tests. In particular, the two-setting
case can be performed using the experimental setup of CHSH
inequality. Characteristically, our proposed criteria exploit the
MU relation to revise the joint probability terms of Bell-type
inequalities as the product form of conditional probabilities.
It can be easily verified that, once the measurement outcomes
result in the maximal values of both M00 and M11 ([ 1

2 (1 +
1√
2
)]4), CHSH inequality is maximally violated. In addition,

the two-setting case is the most robust against depolarized
noise. Finally, we believe that the Bell tests and the steering
criteria can be physically performed simultaneously.
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