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Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded
domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations
is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the
homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz
equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for
manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully
used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate,
resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity.
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I. INTRODUCTION

Eigenfrequencies and eigenmodes are fundamental ele-
ments in studying classical and quantum wave systems such
as electromagnetic waveguides [1], acoustic vibrators [2],
optical cavities [3,4], and quantum billiards [5]. Eigenmodes
of the bounded wave systems are generally associated with
the homogeneous Helmholtz equation with boundary condi-
tions [6–8]. Two-dimensional (2D) scientific systems such as
microwave cavities [9,10], vibrating plates [11], oscillating
water tanks [12], and laser resonators [13,14] have been
extensively employed to generate wave patterns of resonant
modes that are presumed to be the experimental observations
for theoretical eigenmodes. However, it is frequently found
that there are significant discrepancies between theoretical
eigenmodes and experimental observations in the one-to-one
correspondence [15–18]. The deviation between resonant
modes and theoretical eigenmodes can be traced back to
experimental studies of free vibrating plates [15,16]. Experi-
mental results indicate that the compounded modes instead of
eigenmodes are usually generated in the vibrating plates owing
to the effects of degeneracy and damping. Moreover, numerous
results of research [18–20] also reveal that external parameters
such as the driven source and measuring device can cause the
resonant modes to display various eigenmode-mixing phe-
nomena. Scattering theory [21,22] has been used to study the
frequency spectra and spatial patterns in microwave cavities
because the entering and measuring antennas take the role
of the scattering channels. However, for other experimental
systems such as laser resonators and vibrating plates, the
spatial patterns of resonant modes can be measured with
the straightforward imaging method instead of the invasive
scattering process. For such resonant systems, a detailed
exploration to analyze the spatial morphologies of resonant
modes and to make a connection between experimental
resonant modes and theoretical eigenmodes is lacking.

From a theoretical point of view, the resonant modes
of a confined system driven by a localized source should
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be analyzed by means of the inhomogeneous Helmholtz
equation with the corresponding boundary condition. The
inhomogeneous Helmholtz equation in electrodynamics is
frequently used to analyze the free-space propagation of the
time-harmonic wave. Nevertheless, it remains an interesting
issue whether the inhomogeneous Helmholtz equation can be
exploited to interpret the spatial patterns observed from the
resonant systems with direct imaging.

In this work we employ the eigenmodes of a 2D confined
system with a boundary condition as the basis to derive
an analytical representation for the resonant modes of the
inhomogeneous Helmholtz equation with the same bounded
domain. The expansion method enables us to express the
resonant modes as the superposition of eigenmodes with
precise weighting coefficients that are clearly associated with
the degeneracy, source position, and damping effects. We
utilize the derived expression to analyze a variety of resonant
nodal-line patterns observed in the famous Chladni experiment
for a square plate with different source locations. All experi-
mental patterns are found to be excellently reconstructed with
the calculated resonant modes. To further manifest the dis-
tinction between experimental resonant modes and theoretical
eigenmodes, we exploit the wave functions for the resonant
modes to reconstruct the experimental patterns in microwave
resonators as well as vertical-cavity surface-emitting lasers
(VCSELs). The striking agreement manifests the significance
of the resonant modes in interpreting the experimental results.

II. DISTINCTION BETWEEN RESONANT MODES
AND EIGENMODES

In general, the eigenvalues kn and normalized eigenmodes
ϕn of a 2D confined system, such as quantum billiards, a
disk resonator, and a vibrating plate, can be obtained from the
homogeneous Helmholtz equation(∇2 + k2

n

)
ϕn(x,y) = 0, (1)

with fixed �|∂� = 0 (Dirichlet) or free ∂�/∂n|∂� = 0
(Neumann) boundary condition, where ∂� is the boundary
of the confinement. The resonant mode �(x,y; k̃) in the
same bounded domain can be solved from the inhomogeneous
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Helmholtz equation

(∇2 + k̃2)�(x,y; k̃) = F (x,y), (2)

where F (x,y) is the distribution of the driven source and k̃ is
the complex wave number. To consider the system dissipation,
we express the complex wave number as k̃ = k + iγ , where k

is the wave number related to the driven frequency and γ is the
damping factor for characterizing the cavity losses. With the
expansion of normalized eigenmodes, the resonant mode and
the source distribution can be expressed as the superposition
of eigenmodes

�(x,y; k̃) =
∑

n

an(k̃)ϕn(x,y) (3)

and

F (x,y) =
∑

n

fnϕn(x,y). (4)

Substituting Eqs. (2) and (3) into Eq. (1), the orthonormal
property of eigenmodes can be used to obtain the relationship
between coefficients an and fn:

an = fn

/(
k̃2 − k2

n

)
. (5)

The damping factor γ is considerably smaller than the wave
number k for most resonant systems. As a result, the resonant
mode can be given by

�(x,y; k,γ ) =
∑

n

fn(
k2 − k2

n

) + 2iγ k
ϕn(x,y), (6)

where

fn =
∫∫

ϕ∗
n(x,y)F (x,y) dx dy. (7)

For the system driven by a pointlike source at the location of
(x ′,y ′), the resonant mode in Eq. (6) can be explicitly expressed
as

�(x,y; k,γ ) =
∑

n

ϕ∗
n(x ′,y ′)(

k2 − k2
n

) + 2iγ k
ϕn(x,y). (8)

Equation (8) clearly reveals that the resonant mode is
mainly contributed by the eigenmodes satisfying two criteria.
First, in the denominator, the eigenfrequencies kn need to be
fairly close to the driven frequency k; second, in the nominator,
the eigenmodes ϕn require one to contribute a sufficient
amplitude at the excitation position (x ′, y ′). In contrast, the
damping factor γ determines the effective resonance width of
the system and leads to the presence of overlapping resonance.
Since |an|2 is the relative probability of the resonant mode
�(x,y; k,γ ) in the eigenstate ϕn(x,y), the resonance strength
can be evaluated from the total summation

∑
n |an|2. For the

resonant modes in Eq. (8), the resonance strength can be given
by

I (x ′,y ′,k,γ ) =
∑

n

|ϕn(x ′,y ′)|2
[
(
k2 − k2

n

)2 + 4(γ k)2]
. (9)

We use Eq. (8) to calculate the spatial morphologies of the
resonant modes in the square and quarter-stadium billiards to
demonstrate the role of degeneracy and damping. The driven
source is set at the center of mass of the billiards. Figures 1(a)
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FIG. 1. (Color online) Resonant mode and eigenmode of (a)
square billiards with normalized k = 18.318L−1 and γ = 0.02L−1

and (b) quarter-stadium billiards with normalized k = 18.042L−1 and
γ = 0.02L−1. (c) Resonance strengths with different damping factor
and their corresponding resonant patterns in quarter-stadium billiards.

and 1(b) show the numerical patterns for the square billiards
with k = 18.318L−1 and the quarter-stadium billiards with
k = 18.042L−1, where a small damping factor of γ = 0.02L−1

is used in the calculation and L is the longest axis of the
billiards. As shown in Fig. 1(a), the property of level clustering
in the square billiards [23] can cause the resonant mode to be
superposed by several degenerate eigenmodes. In contrast, the
effect of level repulsion in the quarter-stadium billiards [24]
can guarantee the resonant mode to be nearly the same as the
eigenmode in the isolated resonance region, as depicted in
Fig. 1(b). To demonstrate the influence of the damping effect
on the overlapping resonance, we use Eq. (9) to calculate the
resonance strength of the quarter-stadium billiards in the range
of k = 15L−1–20L−1. Figure 1(c) shows the calculated results
for the two cases γ = 0.02L−1 and 0.2L−1. It is clear that when
the damping factor γ is greater than the mean level spacing, the
overlapping resonance can induce an additional mode-mixing
phenomenon.

Note that even though Eq. (9) may be used to estimate
the resonance frequencies, this formula does not consider
the effect of leading to a shift of resonances. It has been
found [21] that the influence of surrounding noise or internal
perturbation can cause a shift of resonances. Nevertheless,
the next verification reveals that Eq. (8) can successfully
be exploited to reconstruct the experimental resonant mode
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with a best-fit wave number that is determined by searching
for the calculated pattern that most closely resembles the
experimental result in the vicinity of the unperturbed reso-
nance. In the following, we will make a thorough comparison
between the numerical calculation and the experimental
observation to manifest the importance of the resonant
modes.

III. RECONSTRUCTION OF EXPERIMENTAL
RESONANT MODES

A. Chladni figures in square vibrating plates

We employ the classical Chladni figures in square vibrating
plates to verify the usefulness of the resonant modes. In the
experimental setup, we load the center of a square plate on
a mechanical vibrator with the oscillating frequency from 0
to 6 kHz under sinusoidal wave operation. The mechanical
vibrator is connected to a function generator with a 1.0-
W amplifier. With silica sand uniformly distributed on the
vibrating plate, the resonant modes can be clearly observed
through direct imaging for the nodal patterns forming in the

sand when the driven frequency is close to one of the resonant
frequencies. The square plate is fabricated by aluminum with
a side length a = 240 mm and uniform thickness d = 1 mm.
By continuously changing the frequency of the vibrator, we
record a series of nodal-line patterns with stable structures.
The experimental nodal-line patterns can be classified into
three categories, as shown in Figs. 2(a), 3(a), and 4(a),
respectively.

In the theoretical calculation, we assume a free (Neumann)
boundary condition for the system. Since the ratio a/d = 240 is
rather large, the vibrating behavior of the square plate is similar
to a square membrane, which can be simply described by the
Helmholtz equation [25]. Consequently, the eigenmodes and
eigenvalues of the square plate can be in terms of two integer
indices m and n:

ϕm,n(x,y) = 2

a
cos

(
mπ

a
x

)
cos

(
nπ

a
y

)
(10)

and

km,n = π

a

√
m2 + n2. (11)
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FIG. 2. (Color online) First category of resonant modes for a square plate under the central excitation condition: eigenmodes with m = n.
(a) Experimental nodal-line patterns. (b) Calculated results. (c) Eigenmode composition with a normalized color bar.
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FIG. 3. (Color online) Second category of resonant modes for a square plate under the central excitation condition: normal modes with
exact degeneracy. (a) Experimental nodal-line patterns. (b) Calculated results. (c) Eigenmode composition with a normalized color bar.

With Eq. (8), the resonant modes of the square plate under
point-source excitation can be expressed as

�(x,y; k,γ ) =
(

2

a

)2 ∑
m

∑
n

cos
(

mπ
a

x ′)cos
(

nπ
a

y ′)(
k2 − k2

m,n

) + 2iγ k

× cos

(
mπ

a
x

)
cos

(
nπ

a
y

)
. (12)

To compare with the experimental results, we use
γ = 0.02a−1 in Eq. (12) for the calculation. The value of
the damping factor γ is determined from the best fit to the
experimental results. Figures 2(b), 3(b), and 4(b) show the
calculated results for the nodal-line patterns corresponding
to the experimental observations shown in Figs. 2(a), 3(a),
and 4(a), respectively. It can be seen that the numerical
nodal-line patterns agree very well with the experimental
results for all cases.

With Eq. (12), the eigenmode composition for each resonant
mode can be explicitly evaluated. Figures 2(c), 3(c), and 4(c)
depict the eigenmode compositions for three categories of
resonant modes shown in Figs. 2(b), 3(b), and 4(b), respec-

tively. Since the pointlike driven source is located at the
center of the square plate, the weighting coefficients for the
composed eigenmodes can be found to be symmetrically
distributed along the line of m = n on the plane of the
indices m and n. The first kind of resonant mode shown
in Fig. 2 can be found to be just the pure eigenmodes
ϕm,n(x,y) with m = n. The second case shown in Fig. 3 is the
general normal mode that is superposed by two eigenmodes
of ϕm,n(x,y) and ϕn,m(x,y). The third category shown in
Fig. 4 is the so-called compounded normal mode [15,16]
that is formed by numerous eigenmodes satisfying the nearly
degenerate condition of km,n � const, i.e., m2 + n2 ≈ const.
Note that the generation of compounded normal modes comes
from the accidental degeneracy as well as the damping
effect. Moreover, in there are no convincing theoretical
explanations for the nodal-line patterns of compound normal
modes.

The comparison made above focuses mainly on the
experiment with the driven source at the central position
of (a/2, a/2). For many other resonant systems, it has
been demonstrated that a minute asymmetry and boundary
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FIG. 4. (Color online) Third category of resonant modes for a square plate under the central excitation condition: compounded normal
modes with near degeneracy. (a) Experimental nodal-line patterns. (b) Calculated results. (c) Eigenmode composition with a normalized color
bar.

roughness can lead to more complicated patterns [26,27] as
well as the chaotic nodal domains [28,29]. To further validate
the theoretical model and the asymmetry effect, we perform
the experiment of the square vibrating plate with the driven
source off the central position. In this experiment, we shift
the driven source from the center of the square plate with
a small distance of 0.013a along the direction at an angle
67° with respect to the x axis. Figure 5(a) shows experimental
results for the nodal-line patterns with irregular characteristics.
Substituting the source position and γ = 0.02a−1 into Eq. (12),
the theoretical patterns are calculated. Figures 5(b) and 5(c)
depict, respectively, the numerical nodal-line patterns and the
eigenmode compositions corresponding to the experimental
results shown in Fig. 5(a). Once again, the numerical patterns
are in good agreement with the experimental observations. The
good agreement validates the applicability of the theoretical
model for analyzing the spatial morphologies of resonant
modes. As seen in Fig. 5(c), the resonant modes generated
with an off-center excitation are formed by the superposition of
nearly degenerate eigenmodes and the weighting coefficients
lose the symmetry discussed in the case of central driving.

B. Resonant patterns in microwave cavities

Microwave resonators are now widely used to explore the
properties of high-order wave functions in quantum (wave)
billiards. However, as mentioned in the Introduction, experi-
mental observations are of the resonant modes instead of the
eigenmodes. In this section we employ the developed model
to analyze the experimental wave patterns in the rectangular
microwave cavity [18]. For the rectangular microwave cavity
excited with a pointlike antenna at (x ′, y ′), Eq. (6) can be used
to express the resonant mode as

�(x,y; k,γ ) = 4

ab

∑
m=1

∑
n=1

sin
(

mπ
a

x ′)sin
(

nπ
b

y ′)
(k2 − k2

m,n) + 2iγ k

× sin

(
mπ

a
x

)
sin

(
nπ

b
y

)
, (13)

where km,n = π
√

(m/a)2 + (n/b)2, a and b are the side
lengths, and k is the wave number of the excitation source.
Using Eq. (13) and the information of the experimental
setup, i.e., a = 340 mm, b = 240 mm, x ′ = 250 mm,
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FIG. 5. (Color online) (a) Experimental nodal-line patterns generated by the asymmetrical excitation. (b) Calculated results. (c) Eigenmode
composition with a normalized color bar.

y ′ = 140 mm, and γ = 0.005a−1 [18], the theoretical wave
patterns can be systematically calculated in the vicinity of
the resonance frequencies. Figure 6 shows the comparison
between the experimental patterns (left column) and the
numerical calculations (right column) for the resonant
wave numbers at (a) k = 16.29a−1, (b) k = 16.34a−1,
(c) k = 17.99a−1, (d) k = 18.06a−1, (e) k = 23.11a−1, and
(f) k = 23.15a−1. It is clear that the numerical
patterns agree very well with the experimental
measurements.

In most experiments of microwave billiards, the antennas
frequently arouse the effect of pointlike perturbations, which
may significantly influence the structures of the resonant
modes in the cavity. To take the scattering effect into account,
we add in a finite-size circular scatter with radius r = 0.005a

at the center of cavity and employ the developed expression to
explore the resonant modes once again. If we assume that the
microwave is totally reflected at the inner scatter, the Dirichlet
condition is imposed on the boundary of scatter to solve the
wave functions. To construct the resonant modes of this non-
integrable Sinai-like billiards, we first exploit the expansion
method [6] to evaluate the eigenvalues kn and eigenmodes
ϕn(x,y) under this geometry as a quasicomplete basis. The

detailed mathematics are similar as the derivation in Ref. [30].
Substituting the solved eigenvalues kn and eigenmodes ϕn(x,y)
into Eq. (8) under the same point-excitation position and
damping factor as before, we construct the resonant modes
from a low-order regime to a high-order regime with the
effective wavelength 2π/k = λeff = 0.24a–0.07a. Figure 7
shows the resonant modes of the microwave cavity with
and without the inner scatter. The wave numbers for each
case from the top to the bottom are k = 26.60a−1, 28.29a−1,
41.13a−1, 45.65a−1, 82.65a−1, and 125.50a−1, respectively.
Because the radius of scatter is considerably smaller than λeff

for the low-order states, the effect of pointlike perturbation
is extremely weak and leaves the structures of the resonant
modes nearly unchanged. However, as λeff gradually decreases
and approximates to the scale of inner scatter, the pointlike
perturbation exhibits a drastic scattering effect resulting in
significant change in the structures of resonant modes. This
numerical discussion not only shows the feasibility of the
developed expression to analyze the resonant mode for the
microwave systems under pointlike perturbation but also sheds
light on the exploration of the resonant mode in systems
with even more complicated coupling effects, e.g., the laser
cavity.

022911-6



EXPLORING THE DISTINCTION BETWEEN . . . PHYSICAL REVIEW E 89, 022911 (2014)

(a)
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(c)

(d)

(e)

(f)

FIG. 6. (Color online) Comparison between experimental obser-
vations (left column) [18] and numerical patterns (right column)
for the resonant modes at wave numbers (a) k = 16.29a−1, (b)
k = 16.34a−1, (c) k = 17.99a−1, (d) k = 18.06a−1, (e) k = 23.11a−1,
and (f) k = 23.15a−1.

C. Lasing modes in VCSELs

Optical microcavities have great potential for applications
in miniature lasers, biological sensors, optical telecommuni-
cations, and basic research in modern physics [31–35]. Large-
aperture oxide-confined VCSELs, serving as an analogous
quantum billiards, have been employed to explore quantum
wave functions in mesoscopic systems [35,36]. Because of
the extremely short cavity length, VCSELs inherently emit
a single-longitudinal-mode light wave with a predominantly
propagating wave number. In contrast, the large discontinuities
between the current-guiding oxide layer and the semiconduc-
tor gain materials ensure that the light wave undergoes total
internal reflection at the boundary of transverse confinement.
As a consequence, the VCSEL cavity can be considered as
a planar waveguide with a dominant wave vector along the
longitudinal direction [13,17].

According to the waveguide theory [37], the light fields
with a wave vector kz predominantly propagating along the

(a)                                (b)

FIG. 7. (Color online) Comparison between the numerical reso-
nant modes in the microwave cavity from the low-order regime to the
high-order regime (a) without and (b) with a pointlike perturbation
marked by the yellow (white) solid circle. The wave numbers are
(from top to bottom) k = 26.60a−1, 28.29a−1, 41.13a−1, 45.65a−1,
82.65a−1, and 125.50a−1.

z direction in a uniform medium can be approximated as
E(x,y,z) = ϕ(x,y)ei(kz−ωt), where ω is the angular frequency.
By substituting the expression into the Maxwell equations one
will reach the 2D Helmholtz equation as depicted by Eq. (1)
with transverse wave number k2

n = ω2/c2 − k2
z . Some of the

lasing modes in VCSELs corresponding to the superscarred
wave functions have been observed and explained by a
coherent superposition of eigenmodes [17,36]. Nevertheless,
the lasing modes in VCSELs should correspond to the resonant
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(a)

(b)

(c)

(d)

Experimental patterns Numerical patterns Source distribution

FIG. 8. (Color online) Comparison between experimental lasing
modes (left column) and numerically reconstructed resonant modes
(middle column) with the corresponding source distributions (right
column). The parameters (ξ, η, k) are for patterns (a) (–0.2a, 0.2a,
127.8a−1), (b) (–0.3a, 0.2a, 140.7a−1), (c) (–0.05a, 0.3a, 146.9a−1),
and (d) (–0.07a, −0.1a, 184.4a−1).

modes instead of the eigenmodes. Here we try to reconstruct
the lasing modes emitted from the large-aperture square
VCSEL with the resonant modes in Sec. II. In general, the
transverse orders of the lasing modes can be varied via
detuning of the device temperature. The first column of Fig. 8
depicts four typical lasing patterns observed in the square
VCSELs near threshold with an aperture size of 40 × 40 μm2.
The device structure of the oxide-confined VCSEL is similar
to those described in Ref. [33]. It can be seen that the lasing
mode displays a pattern changing from the quasiperiodic linear
ridge to the diamond-shaped feature for operation temperature
decreasing from 298 to 180 K.

With the square-billiard model, the eigenmodes for the
large-aperture square VCSEL can be given by

ϕm,n(x,y) = 2

a
sin

[
mπ

a

(
x + a

2

)]
sin

[
nπ

a

(
y + a

2

)]
, (14)

where the mode region is defined to be in the range of |x| �
a/2 and |y| � a/2, a is the side length of the active area, and m

and n are the positive integers for the mode indices. Since it is
difficult to determine the source distributions for the VCSELs
with a theoretical approach, we use a phenomenological
way with minimum fitting parameters to reconstruct the
experimental patterns. Based on the fact that the pump current

is injected from the outside edge of the lateral periphery,
the source distribution perpendicular to the sidewall toward
the center is modeled as an exponential decay. In contrast,
the excitation source parallel to the sidewall is modeled
as a Gaussian distribution with sinusoidal modulation. The
sinusoidal modulation is used to consider the effect of spatial
hole burning. The source distribution for the square VCSEL is
explicitly given by

F (x,y) = A[g+(x,y; ξ )g−(x,y; ξ )] + B[h+(x,y; η)

+h−(x,y; η)], (15)

with

g±(x,y; ξ ) = exp

(
−|x ± (a/2)|

d

)
exp

(
− (y ± ξ )2

ω2

)

× sin

[
sπ

a

(
y + a

2

)]
(16)

and

h±(x,y; η) = exp

(
−|y ± (a/2)|

d

)
exp

(
(x ± η)2

ω2

)

× sin

[
sπ

a

(
x + a

2

)]
, (17)

where A and B are the weighting factors for the relative
intensities along the x and y directions, respectively, d is the
parameter for the exponential decay, ω is the effective width
for the Gaussian distribution, ξ and η are the parameters for
the center positions of the Gaussian distribution, and s is the
parameter for the sinusoidal modulation. To reconstruct the
experimental patterns shown in Fig. 8, we numerically confirm
that only the parameters (ξ , η, k) need to be varied and the
values for other parameters can be fixed: A = 1.0, B = 0.1,
d = a/20, ω = a/5, and s = 41. The parameters (ξ , η, k) for
the patterns in Figs. 8(a)–8(d) are numerically found to be
(–0.2a, 0.2a, 127.8a−1), (–0.3a, 0.2a, 140.7a−1), (–0.05a,
0.3a, 146.9a−1), and (–0.07a, −0.1a, 184.4a−1), respectively.
Numerically reconstructed patterns and corresponding exci-
tation sources are shown in the second and third columns
of Fig. 8, respectively. In order to quantitatively analyze
the correlation between experimental and numerical resonant
modes with complex structures, we further calculate the spa-
tial correlation function given by C(�τ ) = ∫

f (�r + �τ )g(�τ )d�r ,
where f (�r + �τ ) and g(�τ ) are normalized functions of the
spatial coordinates. Two spatial functions are regarded as
being highly related as the value of C(�τ ) approaches one.
The calculated values of C(�τ ) for the cases in Fig. 8 are as
follows: (a) 0.84, (b) 0.87, (c) 0.81, and (d) 0.83. The high
values of C(�τ ) show that the experimental patterns can be
nicely reconstructed with the resonant modes and numerical
analysis. Once again, the good agreement not only manifests
the distinction between the resonant modes and eigenmodes
in the bound-state problems but also confirms the significance
of the resonant modes in interpreting the experimental results.
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IV. CONCLUSION

With the inhomogeneous Helmholtz equation and the
expansion method of eigenmodes, we have derived the
wave function of the resonant mode as a superposition of
eigenmodes in the 2D confined system. The derived expression
clearly discloses the effects of degeneracy and damping on the
formation of resonant modes. A variety of Chladni figures gen-
erated from the square vibrating plate have been employed to
validate the developed model. Furthermore, we have exploited
the derived wave function to numerically reconstruct the wave
patterns observed in microwave resonators and VCSELs. The

nice reconstruction not only manifests the importance of the
resonant modes in interpreting the experimental results but
also distinguish the resonant modes from the eigenmodes in
the bound-state problems.
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