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We study the optical conductivity in a (2 + 1)-dimensional non-relativistic field theory holographically
dual to a (3 + 1)-dimensional charged Lifshitz black brane within the Einstein–Maxwell-dilaton theory.
Surprisingly, we find that the optical AC conductivity satisfies the nontrivial (non-)power law scaling
in the high frequency regime rather than approaching to a constant when the dynamical critical
exponent z > 1, which is qualitatively similar to those in various disordered solids in condensed matter
systems. Besides, this (non-)power law scaling behavior shows some universality, which is robust against
the temperatures. We argue that the peculiar scaling behavior of AC conductivity may stem from the
couplings of the dilaton field with the gauge fields and also the logarithmic behavior near the boundary
in the Lifshitz spacetime.

© 2014 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

The AdS/CFT correspondence [1–3] or generally the gauge/grav-
ity duality, has provided us very effective tools to study the prop-
erties of the strongly coupled quantum field theories which live on
the boundary of certain gravitational backgrounds. One of the most
important characteristics of the gauge/gravity duality is that it is a
kind of strong–weak duality. In view of this duality, various impor-
tant phenomena of the strongly coupled field theories can be stud-
ied by performing calculations on their dual weakly coupled grav-
ity side. Recently, motivated from the study in condensed matter
physics, many attempts have been made in constructing bulk grav-
itational solutions to model numerous types of strongly coupled
phenomena in condensed matter systems, especially close to the
phase transition or quantum critical points, including the super-
conductor (superfluid) phase transition [4], Fermi and non-Fermi
liquids [5], superconductor–insulator transitions [6], etc., for recent
review, see [7,8]. There are also some quantum phase transition
systems in condensed matter physics which contain the Lifshitz-
fixed points have received much attention. On one hand, these
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developments successfully extended the gauge/gravity duality into
the more general form, namely, non-relativistic version [9–16].
On the other hand, they allow us to study strongly coupled sys-
tems toward realistic laboratory conditions by holographic princi-
ple, which may also be used as a test for the gauge/gravity duality
itself.

This Letter focuses on dealing with Lifshitz field theory in
the framework of the non-relativistic gauge/gravity duality. Fol-
lowing our previous work [17], we continue studying the holo-
graphic optical conductivity in the quantum field theory which
is dual to the Lifshitz black brane with two independent U (1)

gauge fields [18]. To compare with the phenomena in condensed
matter physics, we work in a (3 + 1)-dimensional Lifshitz space-
time, i.e., the dual field theory is (2 + 1)-dimensional, and we
focus on the case of 1 � z � 2, where z is the dynamical crit-
ical exponent. When z = 1, the Lifshtiz black brane will return
to the usual Reissner–Nordström (RN)–AdS black brane, therefore,
the optical conductivity we obtain is similar to those studied in
previous AdS/condensed matter literatures, such as [7]. However,
when z > 1 the optical conductivity, especially its AC part, shows
interesting behavior which is less discussed before as far as we
know. More explicitly, we find that the optical conductivity will
possess a non-trivial scaling with respect to the frequency in large
frequency regime when z > 1, such as ωs(z) , where s(z) > 0 is
a function of z. This feature is very interesting, since in the pre-
vious literatures people argued that the large frequency behavior
of the electric conductivity in (2 + 1)-dimensional field theory will
ts reserved.
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approach to a constant due to the dimensionless of the conductiv-
ity [19]. While in this Letter we do find a counterexample. We
argue from the viewpoint of non-relativistic gauge/gravity dual-
ity that the particular scaling behavior of the optical conductivity
with respect to large frequency is caused by the couplings be-
tween the dilaton and the electromagnetic fields in the Einstein–
Maxwell-dilaton (EMD) theory. This kind of non-minimal coupling
will probably introduce extra-dimensional scale into the boundary
field system, which results in the peculiar evolution of the opti-
cal conductivity associated with the frequency. For earlier studies
on holographic properties of charged dilatonic black brane in EMD
theory with non-minimal coupling in asymptotically AdS space-
time, see for example [20,21].

More interestingly, we surprisingly find from the condensed
matter literatures that there indeed exists a similar universal be-
havior of the optical conductivity in (2+1)-dimensional condensed
matter systems, such as [22], in which the authors studied the op-
tical conductivity in various disordered solids both experimentally
and theoretically. We observe that the optical conductivity stud-
ied in the present holographic model has very like behaviors to
those in disordered solids in the extreme disorder limit for both
high and low frequencies, at least qualitatively. In order to figure
out this interesting phenomenon in more detail, we extend our
previous study on the optical conductivity [17] into various tem-
peratures and find that in the low frequency regime, the optical
conductivity will decrease as the temperature decreases, which is
consistent with the experiments in [22] qualitatively. In particular,
at zero temperature the conductivity will vanish, which suggests
that the conducting electrons will be frozen at zero temperature.1

In addition, we show that all the optical conductivities will have
the same scaling with respect to the frequency whatever the tem-
perature is for the fixed z in the high frequency regime. This robust
phenomenon for the high frequency behavior of the conductiv-
ity is also in accordance with the experiments [22]. Furthermore,
we also find a linear relation between the logarithmic of the opti-
cal conductivity versus the reciprocal of the temperature in some
regime of the temperatures, which is qualitatively similar to those
in disordered solids [28], as well. All of these consistencies of the
holographic optical conductivity with those in various disordered
solids allow us to guess that there might be some deep relation-
ship between them, although the underlying precise details are not
very clear at present. Strictly speaking, there are no apparent dis-
order parameters in our model, namely, there is neither spatial
inhomogeneity in the background spacetime, nor interaction terms
randomly distributed on the spatial coordinates like those stud-
ied in [29–32]. However, we want to point out that the fluctuation
of the second U (1) gauge field in our construction could be in-
terpreted as the impurity field [33], which interacts with the first
U (1) gauge field indirectly through the dilaton field. The homoge-
neous optical conductivity may relate the extreme disorder limit
of disordered solids in which local randomly varying mobilities of
charge carriers cover many orders of typical length scale of the
condensed matter system [22].

The rest parts of this Letter is organized as follows: The con-
figuration of the asymptotic Lifshitz brane is briefly introduced in
Section 2; We show the numerical results of the optical conduc-
tivity in Section 3; The conclusions and discussions are drawn in
Section 4.

1 This does not conflict with the fact that the extremal Lifshitz black brane has
a nonvanishing entropy, since according to the black hole/CFT correspondence, the
entropy of extremal black hole is contributed from the ground state degeneracy of
the near horizon microstates. It would also be interesting to study the microscopic
entropy of this Lifshitz black brane by extending the methods in the RN/CFT corre-
spondence [23–27]. However, this is beyond the scope of the present Letter.
2. The configuration of the Lifshitz black brane

The bulk gravitational theory we consider is the (3 + 1)-dimen-
sional Einstein–Maxwell-dilaton (EMD) theory with the action

I = 1

16πG4

∫
d4x
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where Λ is the cosmological constant, Faμν = ∂μ Aaν − ∂ν Aaμ
(a = 1,2) are the U (1) gauge field strengths associated with two
independent gauge fields A1μ and A2μ , φ is the dilaton field,
while λ1 and λ2 are the coupling constants between the gauge
fields and the dilaton. The dynamical equations in the bulk are
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One of the solutions for the above EMD theory is a kind of charged
Lifshitz black brane derived in [18]

ds2 = − r2z
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where l is the curvature radius of the Lifshitz spacetime, μ is
the scalar field amplitude, m and q are respectively related to the
mass and charge of the black brane. The Hawking temperature of
the Lifshitz black brane and the entropy density of boundary non-
relativistic field are respectively

T = 1

4π

(
rh

l

)z+1(2(z + 1)

rh
− mz

rz+3
h

)
and s = r2

h

4G4l2
, (4)

where we have denoted the location of the outer event horizon to
be r = rh , i.e. f (rh) = 0.

3. The optical conductivity

In this section, we will numerically compute the optical con-
ductivity of the non-relativistic quantum field theory dual to the
above charged Lifshitz black brane.2 We will show that the holo-
graphic optical conductivity is qualitatively similar to those in

2 The optical conductivity studied in the present Letter is calculated from the
current–current 2-point correlator of the bulk perturbed U (1) gauge field A2 in
the linear perturbation limit, i.e., the bulk effective action is expanded up to the
second order which corresponds to the tree level approximation from the bound-
ary quantum field theory side. Note that the optical conductivity of the disordered
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various of disordered solids in condensed matter systems. In or-
der to calculate the electric conductivity σ , we will turn on the
x-direction perturbation of the gauge field A2, and also the per-
turbation along tx-component of the metric, i.e., we will work out
the electric conductivity with backreaction.3 Specifically, we will
set the perturbation of gauge fields as δAx(t, r) = ax(r)e−iωt , as
well as the perturbations of the metric along tx-direction to be
δgtx(t, r) = htx(r)e−iωt .4 It turns out that the coupled linear EoMs
for the perturbations are

h′
tx − 2

r
htx + qax

r3−z
= 0, (5)
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f
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For r → ∞, Eq. (6) will become
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The general solution for Eq. (7) is
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in which, J±α(β) is the Bessel function of the first kind, while C1
and C2 are the constant coefficients. The explicit asymptotic be-
havior of ax near the infinite boundary for 1 � z � 2 can be found
as (we have set l = 1)

ax(r → ∞) ∼
{

C1 + C2
r3z−2 , 1 � z < 2,

C1 + C1ω
2 log(r)
4r4 + C2

r4 , z = 2,
(9)

in which C1 and C2 might be functions of ω depending on which
z we choose. Explicitly, C1 and C2 are constants for z = 1; C1 is
a constant while C2 = d2ω

5/3 for z = 3/2, where d2 is a constant;
C1 is a constant while C2 = ω2(d2 − 1

8 C1 log(ω)) for z = 2. These
coefficients C1 and C2 (or d2) should be determined by integrat-
ing the Eq. (6) from the horizon to the boundary via numerical
methods. According to the dictionary of gauge/gravity duality, C1
represents the source while C2 represents the vacuum expectation

solids is related to the hopping of electrons or ions, thus it is more appropriate
to consider the charge transport of the fermions, namely, to compute the optical
conductivity from the bulk charged fermions. However, such optical conductivity is
from the one-loop bulk effective action contribution, see [8,40] for related studies
in AdS spacetime. We expect that the optical conductivities obtained by these two
methods reveal different aspects of the boundary condensed matter system and we
will further study their relationship in another work.

3 From [18], we know that A1t is divergent at the boundary r → ∞, it plays a key
role in supporting the geometry of the Lifshitz spacetime instead of contributing
to the free charge of the electromagnetic field; While A2t is the real free electro-
magnetic field. Besides, our numeric results also show that the perturbation of A1,
say a1x , is divergent at the boundary. Thus only the fluctuations of A2, namely, a2x

is the genuine electromagnetic perturbations, which will contribute to the electric
conductivities. Therefore, we only need to turn on the perturbations a2x and htx ,
while turning off the perturbation a1x . In the following we will refer to the pertur-
bations a2x as ax .

4 The fluctuation a2x is the transverse channel and htx is the shear channel, they
are both vector modes and their EoMs can be obtained by applying the combined
variation (diffeomorphism + U (1) gauge transformation) to the bulk Maxwell equa-
tion, which only results in two independent EoMs for a2x and htx as Eq. (5) and
Eq. (6). While other linear perturbations are decoupled with the vector mode and
will not affect the calculation on the optical conductivity.
value of the current operator Jx dual to ax . In addition, the asymp-
totic behavior of htx near the infinity boundary is

htx ∼ r2h(0)
tx + h(1)

tx

r2−z
+ · · · , (10)

where h(1)
tx = C1q/(4 − z), in which C1 is the source term of the

expansions in ax , see Eq. (9).

3.1. Quadratic renormalized on-shell action

In [17], we have derived the on-shell renormalized quadratic
action from which the conductivity can be obtained. Therefore, we
will just show the results in the following without detailed cal-
culations. The total renormalized quadratic on-shell action for the
perturbations ax and htx is
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when z = 2. Therefore, we can readily calculate the optical conduc-
tivity σ(ω) as the following:

σ(ω) =
{

C2(3z−2)
iωC1

, 1 � z < 2,
C2(3z−2)

iωC1
− 2ω

i(3z−2)
, z = 2.

(13)

3.2. Numerical results of conductivity

In the numerical calculations, we have adopted the usual ingo-
ing boundary conditions near the horizon and scaled l = 1, rh = 1,
and μ = 1.

3.2.1. Figure 1
In Fig. 1, we show the real part of conductivity Re(σ ) versus

the frequency ω, for different temperatures T and various z in the
left panel. In order to compare the results to those in condensed
matter physics, we also draw the log–log plot for the conductivity
versus the frequency in the right panel.

• High frequency regime

For large frequencies, the asymptotic behavior of σ can be ob-
tained from the expansions in Eq. (9) and the formula in Eq. (13),
it is

σ(ω 	 1) ∼
⎧⎨
⎩

ω0, z = 1,

ω2/3, z = 3
2 ,

ω(a + log(ω)), z = 2,

(14)

where a is a certain constant independent of ω. We can clearly see
that these large frequency scaling behaviors of the conductivity are
consistent with those in the left panel of Fig. 1.

For high frequency, the real part of the conductivity will tend
to a constant when z = 1, which is similar to the results in study-
ing holographic superconductors, e.g. [7]. But the differences come
from the cases of z = 3 and z = 2, in which the Re(σ ) will depend
2
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Fig. 1. (Left) The real part of conductivity versus the frequency for different temperatures T and various z; (Right) The log–log plot of the real part of the conductivity versus
frequency for different temperatures T and various z.
on ω according to Eq. (14). This is an interesting and new phe-
nomenon from the viewpoint of the gauge/gravity duality, which
has not been observed in the previous literatures as far as we
know. Actually, people always argue that the electric conductiv-
ity in (2 + 1)-dimensional field theory will tend to a constant in
the high frequency region, because conductivity has a vanishing
scaling dimension in this spacetime dimension [19]. However, in
condensed matter physics, the electric conductivity will not al-
ways tend to a constant even in (2 + 1)-dimensional field theory.
For instance, in [22] the author studied the optical conductivity
for various disordered solids in (2 + 1) dimensions both from the
experiments and model building, and showed that there does ex-
ist a nontrivial scaling behavior of the electric conductivity in the
large frequency regime, which is independent of details of the dis-
ordered solids.

In order to compare our holographic results to the results in
condensed matter physics, we also plot the log–log figure of the
conductivity versus the frequency on the right panel in Fig. 1. It
can be found that the behavior of the conductivity is very similar
to those in [22], at least qualitatively. We need to point out that al-
though the coincidence of the holographic conductivity with those
in disordered solids are very surprising, the underlying detailed
correspondence between these two aspects are still unclear so far.
Unlike previous attempts on studying the impurities and disor-
dered systems via gauge/gravity duality in which interactions ran-
domly distributed spatially are added in the action [29–32], there
are no such interaction terms introduced in our model instead of
two spatial uniformly distributed U (1) gauge fields coupled with
the dilaton in Eq. (1). However, we find that the peculiar frequency
dependence of the holographic optical conductivities in Eq. (14)
stem from the coupling of the dilaton with the second Maxwell
field in Eq. (1), i.e. the eλ2φ F 2

2 term. Note that although the sec-
ond U (1) gauge field does not interact with the first one directly,
they indeed interact with each other indirectly via the dilaton field.
In this sense, we regard the fluctuation of the second gauge field
ax as the impurity field, it may relate to the disorder parameter
of disordered solids in the extreme disorder limit when local ran-
domly varying mobilities of charge carriers cover many orders of
typical length scale of the condensed matter system, which results
in the homogeneously distributed local optical conductivity [22].
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In order to see more clearly how we obtain this particular fea-
ture in the optical conductivity, we compare our calculations with
those performed in the Lifshitz black brane which is a solution of
the EMD theory with only one U (1) gauge field (it has a similar
role as A1 in our case) [34]. Rather than two gauge fields case, the
single U (1) gauge field can only supports the geometry of a neutral
Lifshtiz spacetime. To study the conductivities, additional probe
gauge field needs to be added into the background, it is shown
that this kind of probe gauge field actually had the same r depen-
dence as A2 in our Letter. However, the key difference was that the
probe U (1) gauge field added in [34] is minimally coupled, namely,
it does not couple with the background dilaton. However, we have
a natural interaction between the dilaton and the gauge field A2
in the action and consequently, the effect of the dilaton φ will en-
ter into the coefficient of a′

x , i.e., through the (λ2dφ/dr) term in
Eq. (6).5 Besides, the rest terms in Eq. (6) are the same as those
in [34] when approaching the boundary r → ∞. Therefore, this
dilaton contribution to the coefficients of a′

x is very crucial. It will
modify the expansions of ax near the boundary, and finally make
the conductivity varies as well.6 Physically, we speculate that the
interactions between the dilaton and the Maxwell fields will give
extra-dimensional scale into the boundary field system and conse-
quently render the conductivity not to tend to a constant at high
frequency. Although there are a lot of works studying the conduc-
tivity in dilaton gravity from the gauge/gravity duality before, such
as [35–39], they mainly focus on the relativistic case, i.e., z = 1.
Our present work is a further step towards studying the AC optical
conductivity of the non-relativistic quantum field theories dual to
the dilatonic-like Lifshitz spacetime, in the hope of describing the
real condensed matter systems in the laboratory conditions.7

We also find that the high frequency behavior of the conductiv-
ities have the same slope whatever the temperature is. This kind
of universality of the optical conductivity was also similar to those
analyzed in [22]. This property can be understood from what we
have mentioned in the footnote 6 that for large frequency, the
frequency energy will dominant, therefore, the temperature effect
will be minor.

• Low frequency regime

In the low frequency regime, we set the smallest frequency be
10−5 in the numerical calculations, because when ω = 0 there will
be some numerical instability. In the following, we will regard the
DC conductivity to be the conductivity at ω = 10−5 in practice,
rather than the conductivity at ω = 0 in theory. We think that this
will not lead to any misunderstanding. First, we can see that the
DC conductivity will increase as the temperature increases. Par-

5 Note that the dilaton field has a logarithmic behavior in r, i.e., φ ∼ log(r) which
is important to render dφ/dr ∼ 1/r. And then this 1/r behavior will enter into the
coefficients of a′

x at the boundary r → ∞.
6 Turning on the backreaction in the tx component will only affect the conductiv-

ity in the low frequency regime. Because the metric fluctuations will only enter into
the coefficients of ax , and it has a higher order of 1/r than the term contains ω2.
In our Letter, it is 1/r2z+4 which will decay more rapidly than the term 1/r2z+2

which contains ω2 when r → ∞, please see Eq. (6). Therefore, the backreaction
will have a minor modification on the large frequency behavior of the conductivity.
This can also be understood physically, because for large frequency the frequency
energy will be dominant than other ingredients, such as the temperature, chemi-
cal potential, etc. This is also the origin of the universality that the high frequency
behavior of the conductivity is robust against the temperature.

7 In [41], the authors worked in a dilatonic-like Lifshitz spacetime with hyper-
scaling violation factors. However, they studied the conductivity for a special case
θ = d − 1, where θ is a hyperscaling violation exponents, while d is the spacial di-
mension of the boundary. In order to compare their spacetime background to ours,
one should impose θ ≡ 0, i.e., d = 1. Therefore, they studied the conductivity for
a (1 + 1)-dimensional field theory, if compared to our backgrounds.
ticularly, when the temperature is zero the DC conductivity will
vanish for any z. Physically this means the conducting electrons
are ‘frozen’ at T = 0. Second, from the right panel of Fig. 1, we find
that when the temperature is a little bigger than zero, the slope of
the conductivity in low frequency is very flat. The exception oc-
curs when T = 0, at which the slope is much deeper than those at
a finite T . The above low frequency behaviors of the holographic
optical conductivity are also consistent with those in [22].

3.2.2. Figure 2
In the left panel of Fig. 2, we plot the real part of the conductiv-

ity versus the temperature under different frequency and various z.
We find that for a fixed temperature, when frequency increases the
conductivity will increase as well. And for a fixed low frequency
(say ω = 10−5 or ω = 1), the conductivity will grow as the tem-
perature grows; however, for a fixed high frequency (say ω = 12),
the conductivity will always be flat with respect to temperature.
This reflects the universality we have mentioned above. The con-
ductivity for ω = 4 is in between with the low and high frequency,
it will grow more moderate according to the temperature. The ex-
ception is for z = 1, because in this case the conductivity for ω = 4
is in the bump part in the upper-left plot for Fig. 1. The above anal-
ysis is consistent with the Fig. 1, so we will not discuss them at
length.

In order to compare the above results to the condensed matter
literature more apparently, such as [28], we also draw the log plot
of the conductivity versus the reciprocal of the temperature T −1

in the right panel of Fig. 2. The range of T −1 is roughly 4.3 ∼ 6.5,
therefore, the temperature T is about 0.15–0.23 which is in the
higher temperature regime in the left panel of Fig. 2. We can read-
ily find that the log(Re(σ )) is linearly proportional to T −1 in this
temperature regime. This linear behavior is consistent with the re-
sults in [28] qualitatively. In paper [28], the author studied the
conductivities in a hopping model which was used to investigate
the disordered solids. Therefore, from Fig. 2 we find that the be-
havior of the conductivity is consistent with that in disordered
solids in experiment as well. We think that these consistencies
should have some deep relations between the dilatonic-like Lifshitz
spacetime and the disordered solids, but the more clear physical
picture needs to be further explored.

3.2.3. Figure 3
In the right panel of Fig. 2, we find a linear relation between

log(Re(σ )) and the reciprocal of the temperature T −1 in a finite
range of the temperature. However, for the whole range of the
temperature we considered in this Letter, this linear relation will
not hold anymore. It was suggested in [28] that the DC conductiv-
ity could be approximated by the following relation

σ(T ) = σ0 exp

[
− T0

T γ

]
, (15)

where σ0 represents the conductivity when T → ∞, T0 is a pa-
rameter which can characterize the disorder, while γ is related to
the dimension of the field theory, so in our case γ = 1/3 if we
admit the above relation Eq. (15). But in our Letter, we will re-
gard γ as an undetermined parameter which will be set by the
data, and then compare the discrepancy between the γ we de-
duce with that γ = 1/3.

In Fig. 3, the squares, dots and circles are the data of DC con-
ductivity from Fig. 2, while the solid lines are the fitting curves
of the data by virtue of the relation Eq. (15). The parameters we
have fitted are shown in Table 1. We find that γ will decrease ac-
cording to the growth of z, rather than γ = 1/3 in [28], however,
we can see that γ we fitted does not departure from γ = 1/3
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Fig. 2. (Left) The real part of conductivity versus temperatures for different frequency ω and various z; (Right) The log plot of the conductivity versus the reciprocal of
temperatures for different frequency ω and various z.
Fig. 3. Fitting of the DC conductivity versus the temperature for various z.

Table 1
The fitted values of the parameters in Eq. (15) for various z.

σ0 T0 γ

z = 1 205755.251 6.194 0.477
z = 3/2 9306.565 6.611 0.264
z = 2 3812.844 6.649 0.205

very much. If our holographic model can genuinely mimic the dis-
ordered solids, the dynamical critical exponents of the disordered
solids must lie between 1 < z < 3/2. T0 for various z are around 6,
which does not also change very much. σ0 will decrease as z in-
creases, which indicates that the dual field theory for z = 1 will
have the largest conductivity when T → ∞. But as we have dis-
cussed above, the deep relations between our holographic model
and the disordered solids are still unclear, so the real physical
meanings of the parameters γ , T0 and σ0 are still vague in the
gravity side.
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4. Conclusions and discussions

In this Letter, we calculated the optical conductivity in the
background of a 4-dimensional charged Lifshitz black brane with
two independent U (1) gauge fields in the EMD theory. When
z = 1, we found that the behavior of the conductivity was sim-
ilar to previous studies in the AdS/Condensed matter literatures.
However, for z > 1, we observed a peculiar behavior of the optical
conductivity which would not tend to a constant in the high fre-
quency regime even in (2 + 1)-dimensional field theory. Strikingly,
we found that the (non-)power law scaling behavior of the AC
conductivity was consistent with the experiments in various disor-
dered solids at least qualitatively. Furthermore, this kind of scaling
behavior showed a universality for a fixed z whatever the tem-
perature was. In the low frequency regime, the conductivity would
decrease if the temperature decreased. In addition, we also found
a linear relation between the logarithmic of the conductivity versus
the reciprocal of the temperature in certain regimes of the tem-
perature. This linear relation was also qualitatively consistent with
the experiments in disordered solids. Even though the holographic
optical conductivity we obtained performed some special features
analogous to those in the disordered solids, we have to point out
there was no apparent disorder parameter in our model, namely,
there was neither spatial inhomogeneity in the background space-
time, nor interaction terms randomly distributed on the spatial
coordinates.8 However, as we have explained in the introduction,
physically, the fluctuation of the second U (1) gauge field could be
interpreted as the impurity field, which interacted with the first
U (1) gauge field indirectly through the dilaton. While the result-
ing homogeneous optical conductivity may relate to the extreme
disorder limit of disordered solids in which local randomly vary-
ing mobilities of charge carriers could cover many orders of typical
length scale of the condensed matter system. Technically, the pecu-
liar scaling behavior of the optical conductivity actually stemmed
from the couplings of the dilaton to the Maxwell fields, which lead
to an unusual expansions for the perturbation of gauge fields and
thus altered the conductivity. Thus we would like to say that we
observed the phenomenon similar to the optical conductivities in
disordered solids via the gauge/gravity duality, instead of claiming
that we have found a good holographic model that could genuinely
describe the disordered solids. We believe that there should have
some deep physics to explain the coincidence but the underlying
details and the holographic model require further investigations.
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8 Actually in this probe limit, the imaginary parts of the conductivity will diverge
at low frequency, this will force the real parts of the conductivity be a delta function
at zero frequency due to the Kramers–Kronig relation. Physically, it is due to the
translational symmetry in our model because apparently we did not introduce any
spatial inhomogeneity. This delta function in the real parts of the conductivity or
the pole in the imaginary parts of the conductivity is a shortcoming of the probe
limit for the holographic study of the conductivity transport coefficients without
superconductivity. A possible way to avoid this situation is maybe one can introduce
a spatial dependent lattice structure into the system, just like the paper [42] did.
However, this is beyond the scope of our current work, we will consider this in our
future work.
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