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Achievable Rate Analysis and Feedback Design for
Multiuser MIMO Relay with Imperfect CSI
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Abstract—This paper investigates a multiuser MIMO relay
downlink system with imperfect channel estimation and limited
feedback. We analyze the achievable rate loss due to channel
state information (CSI) mismatch arising from both channel
estimation and quantization feedback. We first derive an upper
bound to characterize the effect of imperfect CSI, and then
present a limited feedback strategy for both the two-hop channels
in the relay system. This newly presented feedback strategy
reveals the relationship among the CSI quantization levels,
the transmit power, and the pilots for channel estimation. An
optimized pilot design at the base station and the relay is also
presented by applying the derived bounds for the two-hop system.

Index Terms—Achievable rate, limited feedback, imperfect
CSI, MIMO relay, channel estimation

I. INTRODUCTION

RELAYING has been well acknowledged as a promis-
ing technique for improving the cell-edge performance

of conventional cellular networks. Meanwhile, applying the
multiple-input multiple-output (MIMO) technique can signif-
icantly improve the capacity of wireless systems [1] [2]. By
combining the relaying and MIMO techniques, MIMO-relay
techniques can thus make use of their advantages to increase
data rate at the cell edge and extend the network coverage
[3]-[5].

The theoretical capacity for a single user MIMO relay
system has been widely investigated in [6]-[10]. Specially, in
[6]-[8], ergodic capacity and precoding schemes for a MIMO
system with a single relay were studied. The average capacity
with relay selection for multiple-relay MIMO system was
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analyzed in [9], and the capacity of a multi-hop relay channel
was characterized in [10]. The performance of a multiuser
MIMO relay system with different beamforming methods was
studied in [11], while a linear precoding design was presented
in [12] for the system by jointly optimizing the precoders at
both source and relay sides.

In the above-mentioned literatures, the authors all assumed
that channel state information (CSI) at the transmitter (CSIT)
and the receiver (CSIR) are perfect. However, in practice,
either exact CSIT or exact CSIR is hard to achieve. A common
way to deal with this problem is to deploy channel estimation
at the receiver and then send a quantized version of CSI back
to the transmitter for precoding design [13] [14]. This process
degrades the system performance due to imperfect CSI at both
sides. Generally, there exist three imperfect CSI scenarios: 1)
imperfect CSIR, without quantization errors in the backhaul
channel, 2) imperfect CSIT due to quantization errors, but
having perfect CSI at receiver, 3) without perfect CSI at both
transmitter and receiver, saying that both estimation errors and
quantization errors exist.

In the first imperfect CSI scenario, the receiver commonly
uses pilots sent by the transmitter to estimate channels with er-
rors. For a point-to-point MIMO relay system, a superimposed
training strategy and the bit error rate (BER) performance have
been investigated [15]-[18]. The capacity lower bound when
using pilot to estimate the source-relay-destination channel
was then derived in [19]. The authors of [20] then analyzed the
robustness for a multipoint-to-multipoint MIMO relay system
with channel estimation errors at both source-relay and relay-
destination channels.

In the second imperfect CSI scenario, the transmitter is
unable to obtain the CSI perfectly, especially in a frequency
division duplexing (FDD) system. The design of an effective
limited feedback mechanism is crucial to deal with this issue,
where each receiver sends back a finite number of bits of CSI
to the corresponding transmitter [14] [21]. In [22], the capacity
and an optimized feedback strategy have been presented for a
multiuser relay system with imperfect CSIT at both the base
station (BS) and the relay.

In the third imperfect CSI scenario which is more practical
in applications, the channel estimation and limited feedback
techniques are applied to obtain the CSIR and CSIT, respec-
tively. Nevertheless, to our best knowledge, few existing works
have considered both channel estimation and limited feedback
in MIMO relaying systems. Two noticeable exceptions are
[23] and [24]. In [23], the authors analyzed the achievable rate
and relay precoder design for a MIMO point-to-point two hop
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Fig. 1. MIMO relay system model.

network, and the authors of [24] investigated the throughput
for a single user multi-hop MIMO relay system. However,
both studies were confined to a single user relay system, and
the CSI feedback strategy was not considered.

In this work, we investigate the effects of various CSI mis-
matches under a multiuser two-hop relay downlink channel.
We will first characterize the rate loss due to both channel
estimation errors and limited feedback by deriving a rate loss
upper bound. This bound is then utilized for developing a
scaling CSI feedback strategy to improve the entire system
performance, hence the well-known “interference limited”
effect [14] for limited feedback systems is avoided. Moreover,
we also derive an optimized BS-relay pilot design to assist
channel estimation.

The remainder of this paper is organized as follows. Sec-
tion II presents the multiuser MIMO relaying system model
under consideration. Section III analyzes the rate loss as well
as the achievable rate bounds for the system. Section IV
presents the scaling number of feedback bits in order to
maintain a predetermined rate loss and designs the optimal
numbers of pilots for channel estimation. Section V provides
numerical simulations before conclusions in Section VI.

Notation: Boldface upper and lower case letters respectively
denote matrices and column vectors; (.)H stands for Hermitian
transpose. The complex number field is represented by C. IM
is an identity matrix of size M ×M . CN (μ, ν) stands for the
complex Gaussian distribution with mean μ and covariance ν.
E {·} denotes the expectation operator. Aij denotes the (i, j)th
element of a matrix A, while ak,n represents the nth element
of a vector ak. ‖a‖ and |a| stand for the Euclidean norm of
a vector a and the norm of scalar a, respectively. h (x) is the
differential entropy of random variable x, and I (x; y) is the
mutual information between random variables x and y.

II. SYSTEM MODEL

Consider an amplify-and-forward (AF) MIMO relay wire-
less system in Fig. 1. There is an M -antenna BS serving K
single-antenna users through a relay station (RS) equipped
with N antennas. In this paper, we neglect the direct link
from the BS to users due to severe path loss. Denote that
H ∈ CN×M is the channel matrix of the channel from BS to
RS, and gk ∈ CN×1 (k = 1, · · ·K) is the channel vector from
RS to the kth user. Then, the received symbol at the kth user
for the input symbol vector x ∈ C

K×1 is given by

yk =
√
ρ1ρ2g

H
k FHWx+

√
ρ2g

H
k Fn+ zk (1)

where W ∈ CM×K and F ∈ CN×N are precoding matrices
for the BS and the RS, respectively; n ∈ C

N×1 and zk
denote the complex additive white Gaussian noises (AWGNs)
at the RS and the kth user, respectively; and ρ1 and ρ2 are

scaling factors for the transmit symbols at the BS and the RS,
respectively. Note that the channel input symbols x normalized
by E

{
xxH

}
= IK are Gaussian independent and identically

distributed (i.i.d.) random variables. In this paper, we consider
the Rayleigh fading channels with independent fading from
block to block, and the entries of H, gk, n and zk are
independent complex Gaussian variables with zero-mean and
unit variance. Also, we assume that the number of antennas at
the BS is not less than that at the RS, which means M ≥ N . To
focus our study on the effect of limited feedback and channel
estimation, we consider K = N .

A. Linear Precoding

In this study, we exploit the precoding scheme in [22] with
either perfect or limited CSI feedback. First, we briefly review
the precoding scheme. The RS performs the singular value
decomposition (SVD) of H, which yields

H = U[Σ 0][V Vr]
H (2)

where U is an N×N unitary matrix, Σ is an N×N diagonal
matrix, and V is a column unitary matrix with size M ×N .
The precoding matrix W at the BS is

W = V , (3)

and the precoding matrix F at the RS follows

F = FGU
H (4)

where FG = [fG,1, · · · ,fG,N ] is calculated according to zero-
forcing beamforming (ZFBF) [14], fG,k is the normalized
kth column of GH(GGH)−1, and G is defined by G =
[g1, · · · ,gN ]H . By exploiting the precoding matrices in (3)
and (4), the system model in (1) becomes

yk =
√
ρ1ρ2g

H
k FGΣx+

√
ρ2g

H
k FGn̄+ zk (5)

where n̄ = UHn. Since every column of UH is an unit-
norm vector, the equivalent AWGN n̄ is complex Gaussian
distributed with an identity variance IN . Given the BS transmit
power constraint P1 and the RS transmit power constraint P2,
the scaling factors ρ1 and ρ2 are determined by [22]

ρ1 =
P1

N
, ρ2 =

P2

MP1 +N
. (6)

B. Channel Estimation

In this subsection, we characterize both two-hop channels
with estimation error. In order to obtain H and gk at corre-
sponding receivers, we employ channel estimation techniques
using pilots at the relay and remote users. Like [25], we
assume that the BS uses β1M orthogonal pilots for M transmit
antennas at the BS. The β1M pilots are then utilized at the re-
lay for estimating H via minimum mean square error (MMSE)
estimation. Meanwhile, a similar procedure is implemented
at remote users to estimate gk with β2N orthogonal pilots.
Then the relationships between the real channels and their
estimations are modeled by [25] [26]

H = H̃+E , (7)

and
gk = g̃k + ek (8)
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where H̃ and g̃k are the estimations of H and gk, respec-
tively. E and ek are the corresponding estimation errors that
are independent of their estimated channel components. The
entries of H̃ are i.i.d. complex Gaussian distributed with its
elements H̃ij ∼ CN (

0, 1− δ21
)

and g̃k,n ∼ CN (0, 1 − δ22).
Similarly, the entries of E and ek follow Eij ∼ CN (0, δ21)
and ek,n ∼ CN (0, δ22), respectively. Further, given that the
energy of noise is normalized, we have δ21 = 1

1+β1P1
and

δ22 = 1
1+β2P2

.

C. Channel State Information Feedback

In this subsection, we consider the precoding scheme pre-
sented in Subsection II-A to scenarios using estimated and
quantized CSI. When a RS obtains H̃, it performs SVD of H̃
as follows:

H̃ = Ũ[Σ̃ 0][Ṽ Ṽr]
H (9)

where Ũ is an N×N unitary matrix, Σ̃ is an N×N diagonal
matrix, and Ṽ is a column unitary matrix with size M ×N .
We use B1 bits (as an index) to quantize each column of Ṽ
via random vector quantization (RVQ) [27], and then the RS
sends the index to the BS. Let V̂e = [v̂e,1, · · · , v̂e,N ] be the
quantization of Ṽ where v̂e,k is column quantization of Ṽ
given by

v̂e,k = arg max
vqj

∈VQ

∣∣∣ṽH
k vqj

∣∣∣ (10)

and VQ =
[
vq1, · · · ,vq2B1

]
is the codebook. The precoding

matrix W is equal to

W = V̂e . (11)

Meanwhile at the user side, after obtaining g̃k through
channel estimation, the kth user quantizes the vector with B2

bits. Let ĝk be the quantized version of g̃k. We have

ĝk = arg max
gqj∈GQ

∣∣∣g̃H
k gqj

∣∣∣ . (12)

where GQ =
[
gq1, · · · ,gq2B2

]
is the codebook. By defining

Ĝ = [ĝ1, · · · , ĝN ]H at the RS, F is designed by

F = F̂GŨ
H (13)

where F̂G = [̂fG,1, · · · , f̂G,N ] and f̂G,k is the normalized kth

column of ĜH
(
ĜĜH

)−1

. Further by substituting (7), (11),
and (13) into (1), it gives

ỹk =
√
ρ2g

H
k F (

√
ρ1HWx+ n) + zk

=
√
ρ1ρ2g

H
k F̂GŨH̃V̂ex+

√
ρ1ρ2g

H
k F̂GŨEV̂ex

+
√
ρ2g

H
k F̂Gñ+ zk (14)

where ñ = ŨHn. Note that if there is no estimation and
quantization error, implying that H̃ = H, g̃k = gk, E = 0,
V̂e = V, F̂G = FG, and Ũ = U, the received signal in (14)
reduces to (5). It indicates that yk is a special case of ỹk.

III. ACHIEVABLE RATE BOUNDS

In this section, we study the effect of CSI imperfection on
the achievable rate in a MIMO relaying system. We first derive
a lower bound of the achievable rate for each user, which then
generates an upper bound of the rate loss due to both channel
estimation error and quantized CSI feedback.

A. Upper Bound of the Rate Loss

Specially, when perfect CSI are available at both BS and RS,
the achievable rate by using linear precoding in Section II-A
can be easily formulated. From (5), the SINR for the kth user
is

γk =
λ2
k

∣∣gH
k fG,k

∣∣2
1
ρ1

∣∣gH
k fG,k

∣∣2 + 1
ρ1ρ2

(15)

where λk is the kth diagonal element of Σ. Thus the ergodic
achievable rate for the entire system with perfect CSI equals

R =
N

2
E {log2 (1 + γk)} (16)

where the factor 1/2 results from the fact that data is trans-
mitted over two time-slots.

For the scenario with imperfect CSI considering both chan-
nel estimation and quantized CSI feedback, we derive a lower
bound on the mutual information for the kth user, which
is indicated by R̃k � 1

2I
(
xk; ỹk, H̃, g̃k

)
. The following

theorem gives a lower bound on the achievable rate under
imperfect CSI.

Theorem 1: The ergodic achievable rate for the kth user
with imperfect CSI can be lower bounded by

R̃k � 1

2
E

⎧⎪⎨
⎪⎩log2

⎛
⎜⎝1 +

∣∣∣g̃H
k F̂GŨ

HH̃v̂e,k

∣∣∣2
T

⎞
⎟⎠
⎫⎪⎬
⎪⎭ (17)

where T is defined by (37) in Appendix A.
Proof: See Appendix A.

From Theorem 1, it is easy straightforward to obtain the
lower bound of the achievable rate for the entire system given
by the following lemma.

Lemma 1: The achievable rate of the entire system with
imperfect CSI can be lower bounded by

R̃ =

N∑
k=1

R̃k ≥ N

2
E

⎧⎪⎨
⎪⎩log2

⎛
⎜⎝1 +

∣∣∣g̃H
k F̂GŨ

HH̃v̂e,k

∣∣∣2
T

⎞
⎟⎠
⎫⎪⎬
⎪⎭

� R̃lower (18)

Here, from (16) and (18), we can quantify the effects of
imperfect CSI by characterizing the rate loss as follows:

ΔR � 1

N

(
R− R̃

)
. (19)

Note that it is difficult to analyze ΔR with exact closed form
expressions. Hence, we resort to deriving an upper bound to
ΔR, which will be shown useful to offer some guidelines for
the system design. Now, by using Theorem 1, we are able to
derive a useful upper bound to the rate loss ΔR in (19). The
rate loss is characterized in Theorem 2.

Theorem 2: The rate loss per user due to the channel
estimation error and limited feedback for high SNRs can be
upper bounded by

ΔR � 1

2
log2 (1 + ρ1ρ2 (α1ε̄+ α2τ̄ + α3)) +O (1) � ΔRh

(20)

where ε̄ and τ̄ are quantization errors, ε̄ = M−1
M 2−

B1
(M−1) ,

and τ̄ = N−1
N 2−

B2
(N−1) . In (20), notations α1, α2, and α3 are
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defined by (54), (55), and (56) in Appendix B, respectively,
and they are constants depending on fixed system parameters
P1, P2, β1, β2, M , and N .

Proof: See Appendix B.
From Theorem 2, we have the following remark:
Remark 1: A special case is δ21 = δ22 = 0 when there is no

estimation error. In this case, we obtain that α1 = M(N−1)
M−1 ,

α2 = MN + N/ρ1, and α3 = 0. Then Theorem 2 reduces
to Theorem 1 in our previous work [22] with perfect channel
estimation.

Remark 2: The rate loss increases with increasing transmit
powers P1 and P2, while it decreases with increasing numbers
of feedback bits B1 and B2, and it also decreases with
increasing numbers of pilot symbols β1 and β2. In detail, the
quantization errors ε̄ and τ̄ decrease exponentially with B1

and B2; while the variances of estimation errors δ21 and δ22 are
inversely proportional to β1 and β2. Hence, we can observe
that the rate loss decreases more quickly with the increment
of feedback bits than with that of the pilot symbols.

We can obtain large achievable rate in the high SNR regions
for the MIMO relay system, and imperfect CSI mainly affects
these regions. However, we can not obtain the exact system
performance in the high SNR regions, we will analyze the
asymptotic performance in the following lemma.

Lemma 2: As P2 = κP1 grows large, the upper bound of
rate loss in the high SNR region can be characterized by

ΔR∞ =
1

2
log2 (1 + �) +O (1) (21)

where � is defined by (62) in Appendix C.
Proof: See Appendix C.

In order to analyze the effect of channel estimation on the
rate loss, we consider the special case with no quantization
error. For the special case, the quantization errors ε̄ and τ̄

are equal to zero, thus, we have � = 1
M

(
κ
β1

+ M
β2

)
. In the

high SNR regions, the term O (1) can be neglected. Then, the
behavior of ΔR∞ with no quantization error is characterized
by the following lemma.

Lemma 3: As P2 = κP1 grows large, the upper bound of
rate loss in the high SNRs with no quantization error can be
written by

lim
B1→+∞
B2→+∞

ΔR∞ =
1

2
log2

(
1 +

1

M

(
κ

β1
+

M

β2

))
� ΔRB

∞ .

(22)
From (22), it is observed that the upper bound of rate loss in

the high SNR regions decreases with β1 and β2, and increases
with κ = P2

P1
when there is no quantization error.

Fig. 2 shows the lower bound of the achievable sum rate for
estimated channel with no quantization error and perfect CSI
for a system with β1 = β2 = 1, β1 = β2 = 3, and P2 = κP1.
In the system, both BS and RS deploy four antennas, i.e.,
M = N = 4, and there are four users, i.e., K = 4. In this
figure, R̃lower is defined by (18), while in the simulation, the
term T in (18) is calculated by its closed-form expression
T1 defined by (38) in Appendix B. For this special case, in
(38), it is noted that v̂e,i = ṽi, G̃ = [g̃1, · · · , g̃N ]H , F̂G =
F̃G = [̃fG,1, · · · , f̃G,N ], and f̃G,k is the normalized kth column

of G̃H
(
G̃G̃H

)−1

. From this figure, it is observed that the
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Fig. 2. The achievable rate with perfect CSI and estimated CSI with no
quantization error for M = N = K = 4 and P2 = κP1 with increasing
transmit power.

rate loss gap between perfect CSI and the estimated channel
decreases with β1 and β2 and increases with κ in the whole
SNR regions, which coincides with ΔRB

∞ in (22). And the
gap is upper bounded by N ·ΔRB

∞ bps/Hz, thus, Lemma 3 is
verified by the numerical results.

B. Upper Bound of the Achievable Rate

An upper bound of the achievable rate is directly derived by
considering perfect CSIR at both RS and users, i.e., H̃ = H
and g̃k = gk. The upper bound is given in the following
lemma.

Lemma 4: The achievable rate for the system with both the
channel estimation error and limited feedback can be upper
bounded by

R̃ � N

2
E {log2 (1 + γ̄k)} � R̃upper (23)

where γ̄k is the SINR of the kth user with limited feedback
and no estimation error, and γ̄k is defined by (63) in Appendix
D.

Proof: See Appendix D.
From [22], it is observed that R̃upper in above lemma is

equal to RQ in [22, eq.(24)], and it means that R̃upper is
also the achievable sum rate for the scheme proposed in [22].
It means that the achievable sum rate of this work is upper
bounded by that of [22].

IV. FEEDBACK AND PILOT DESIGN

In this section, we will specify the required numbers of
feedback bits for the multiuser relay system to maintain a
certain rate loss gap according to the rate loss upper bound.
Moreover, considering the channel estimation, we also derive
an optimized β1 and β2 for joint BS-RS pilot design via
maximizing the lower bound of the achievable rate in the high
SNR regions.
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A. Scaling Feedback

It is known in [14] that, due to the “interference-limited
effect” phenomenon, the system performance will be upper
bounded in a limited feedback system when SNR grows large.
In order to let the rate performance always increase with the
system SNR, one needs to assign more feedback bits for CSI
quantization. Theorem 2 has predicted how the rate loss varies
with a growing SNR and the numbers of feedback bits. The
following theorem allows us to further specify a sufficient
scaling of the feedback bit numbers B1 and B2 to maintain a
bounded rate loss gap.

Theorem 3: In order to maintain the rate offset no larger
than 1

2 log2b per user, it is sufficient to scale B1 and B2

according to (24) and (25), respectively. Specially, as P2 =
κP1 → +∞, B1 and B2 can be scaled according to simpler
expressions (26) and (27).

B1 = (M − 1)

[
log2 (ρ1ρ2α1)− log2

(
b− 1− ρ1ρ2α3

2

)]

+ (M − 1) log2

(
M − 1

M

)
(24)

B2 = (N − 1)

[
log2 (ρ1ρ2α2)− log2

(
b− 1− ρ1ρ2α3

2

)]

+ (N − 1) log2

(
N − 1

N

)
(25)

B∞
1 = (M − 1) (log2P2 − log2M)

+ (M − 1) log2

⎛
⎝ 2(N − 1)

N (b− 1)− N
M

(
κ
β1

+ M
β2

)
⎞
⎠

(26)

B∞
2 = (N − 1) log2P2

+ (N − 1) log2

⎛
⎝ 2 (N − 1)

N (b − 1)− N
M

(
κ
β1

+ M
β2

)
⎞
⎠ .

(27)

Proof: See Appendix E.
Remark 3: In the high SNR regions, (26) and (27) reveal

that the numbers of feedback bits increases with P2 (the SNR
at the RS) and κ (the ratio of the SNR at the RS and the
SNR at the BS), and decrease with β1 and β2 (the numbers
of pilots). And in (26) and (27), the terms (M − 1) log2P2

and (N − 1) log2P2 dominate B∞
1 and B∞

2 , respectively.
This indicates that the numbers of feedback bits increase
approximately linearly with log2P2 in the high SNR regions.

Remark 4: Further, we consider a special case when there
is no channel estimation error, i.e., δ21 = δ22 = 0. With this
case, we obtain that α1 = M(N−1)

M−1 , α2 = MN +N/ρ1, and
α3 = 0, then our derived Theorem 3 and Theorem 4 reduce
to Theorem 1 and Theorem 3 in [22], respectively.

B. Optimal Number of Pilot Symbols

By substituting (21) into (19), the lower bound of the
achievable rate in the high SNRs is specified as (28) on the
top of the next page.

Firstly, we analyze the tightness of R̃∞
lower. However, it is

quite difficult to stringently characterize the tightness of the
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Fig. 3. The lower bound of achievable rate for M = N = K = 2,
P2 = P1 − 4 dB, B1 = B2 = 10 with increasing transmit power.

bound. Hence, in order to address the tightness in a qualitative
way, we focus on the high SNR regime which is the most
interest in our work. In (28), only the term ΔR∞ is affected
by the numbers of feedback bits (B1 and B2) and the numbers
of pilot symbols (β1 and β2). Thus, the main term affecting
the tightness of R̃∞

lower is ΔR∞ in (21).
From the system viewpoint, if B1, B2, β1, and β2 are

large enough in the high SNR regimes, CSIT and CSIR are
approximately perfect, and the rate loss is approximately equal
to zero. While, for the above similar scenario, the terms
2−

B1
M−1 , 2−

B2
N−1 , and 1

M

(
κ
β1

+ M
β2

)
in (21) converge to zero,

and thus, ΔR∞ converges to zero. From the above analysis,
it is observed that ΔR∞ becomes tighter as B1, B2, β1, and
β2 increase. According to (26) and (27) in Theorem 3, B1 and
B2 scale linearly with log2P2, and they are large in the high
SNR regions. Therefore, R̃∞

lower is also tight in the high SNR
regions.

Then, we provide some simulation results in Fig. 3 to test
the tightness. Fig. 3 considers a system with P2 = P1− 4 dB,
β1 = β2 = 3, and B1 = B2 = 10. In the system, both BS
and RS deploy two antennas, i.e., M = N = 2, and there are
two users, i.e., K = 2. In Fig. 3, R̃lower defined in (18) is the
lower bound of the achievable sum rate, and R̃∞

lower defined in
(28) is the lower bound for the high SNR regions. From this
figure, it is observed that R̃∞

lower converges to R̃lower with
increasing transmit power. Thus, R̃∞

lower becomes tighter for
the high SNR regimes.

From Lemma 2, we observe that ΔR∞ is a function of β1

and β2. In the following lemma, we will find the optimal β1

and β2 to obtain better performance.
Lemma 5: In order to maximize the lower bound of the

achievable rate in the high SNR regions (i.e., P2 = κP1 →
+∞) under the condition that β1 + β2 = Cβ , we use the
Lagrange multiplier method to obtain the optimal β1 and β2

as

β1_opt =
1√

M
κ + 1

Cβ , (29)
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R̃∞
lower � R −NΔR∞ = R− N

2
log2

(
P2

N

N − 1

M
2−

B1
M−1 + P2

N − 1

N
2−

B2
N−1 +

(
1 +

1

M

(
κ

β1
+

M

β2

)))
−O (N) (28)
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Fig. 4. The achievable rate with different number of feedback bits for M =
N = K = 4, β1 = β2 = 3, P2 = P1−4 dB and B1 = B2 with increasing
transmit power.

and

β2_opt =

√
M
κ√

M
κ + 1

Cβ (30)

Proof: See Appendix F.
If both β1 and β2 are integers, pilot symbols can be

orthogonal in time, i.e., β1 pilots are successively transmitted
from each of the M BS antennas for a total of β1M channel
realizations, and β2 pilots are successively transmitted from
each of the N RS antennas for a total of β2N channel
realizations.

For arbitrary values of β1 and β2, from [29], it is found
sufficient for both β1M and β2N to be integers. Therefore,
we should set β1_opt or β1_optM to be an integer. In the same
way, we can also set β2_opt or β2_optN to be an integer for RS.
Thus, if 1√

M
κ +1

Cβ is an integer, we set β1_opt =
1√
M
κ +1

Cβ

and β2_opt =

√
M
κ√

M
κ +1

Cβ , which are defined by (29) and

(30), respectively. If 1√
M
κ +1

Cβ is not an integer, we set

β1_opt =

⌈
M√
M
κ

+1
Cβ

⌉
M and β2_opt =

⌈
(Cβ−β1_opt)N

⌉
N , where

the function 	x
 stands for the smallest integer that is not less
than x.

V. NUMERICAL RESULTS

This section presents some numerical results for the relay
system under various scenarios. It is noted that in the following
figures, the lower bound of the achievable sum rate R̃lower is
defined by (18), and for the simulation results, the term T in
(18) is calculated by its closed-form expression T1 defined by
(38) in Appendix B.
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Fig. 5. The number of feedback bits calculated by two different equations
for M = N = K = 4, β1 = β2 = 3, P2 = P1 − 4 dB and b = 4 with
increasing transmit power.

Firstly, we investigate how the quantization level influences
the system performance. Regardless of how many feedback
bits (B1 and B2) are used, the system eventually becomes in-
terference limited because both interference and signal power
scale linearly with P1 and P2. Fig. 4 shows the achievable
rate with fixed B1 and B2 for a system with β1 = β2 = 3,
P2 = P1 − 4 dB, and B1 = B2. In the system, both BS
and RS deploy four antennas, i.e., M = N = 4, and there
are four users, i.e., K = 4. As shown in this figure, the
performance of the limited feedback is very close to the
perfect CSI when the SNRs are small, while the rate loss
gap between the limited feedback and perfect CSI becomes
larger as the SNRs increase. As the numbers of feedback bits
increase, the gap becomes smaller. Thus, we can improve the
quality of feedback to get larger achievable rate. In Fig. 5,
we show the scaled numbers of feedback bits to maintain the
rate loss no larger than 1

2 log2 b bps/Hz/user for a system with
β1 = β2 = 3, P2 = P1 − 4 dB and b = 4. In the system,
both BS and RS deploy four antennas, i.e., M = N = 4,
and there are four users, i.e., K = 4. The scaled numbers B1

and B2 are calculated by (24), (25), and simple expressions
(26), (27) in Theorem 3, respectively. Note that if B1 or B2

is smaller than three, its value is set to three. In the high SNR
regions, it is observed that B1 calculated by (24) and (26)
are also very close when P1 is larger than 15 dB, while B2

calculated by (25) and (27) are very close when P1 is larger
than 9 dB. Therefore, in the high SNR regions, we can use
the simple expressions (26) and (27) to respectively calculate
B1 and B2.

Furthermore, we show that the achievable rate grows with
the system SNRs by using scaled B1 and B2. We assume that
B1 and B2 are scaled according to (24) and (25) in Theorem 3.

1) M = N = K . In Figs. 6–7, the achievable rates
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are shown to compare perfect CSI, quantized feedback using
scaled B1 and B2, and quantized feedback with fixed B1 and
B2. Fig. 6 displays the achievable rate for a system with
P1 = P2, β1 = β2 = 1, b = 2, and b = 4. In the system,
both BS and RS deploy two antennas, i.e., M = N = 2,
and there are two users, i.e., K = 2. For the system with a
fixed B1 = B2 = 3 and B1 = B2 = 5, the rate loss due to
quantized feedback is unbounded and grows with P1 and P2,
thereby resulting in an upper bounded system rate when P1

and P2 increase. However, coinciding with Theorem 3, it is
observed that the rate loss is smaller than 1 bps/Hz (b = 2) and
2 bps/Hz (b = 4) in the whole tested SNR regime by using the
proposed scaled feedback strategy. Fig. 7 plots the achievable
rate for a system with P2 = P1 − 4 dB, β1 = β2 = 3,
b = 2, and b = 4. In the system, both BS and RS deploy
four antennas, i.e., M = N = 4, and there are four users, i.e.,
K = 4. By using scaled B1 and B2, the system rate grows
with the system SNRs and the rate loss is always maintained
within 2 bps/Hz (b = 2) and 4 bps/Hz (b = 4) with increasing
transmit power P1 and P2.
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β2 = 3, and b = 2, 4 with increasing SNR.

2) M > N = K . Fig. 8 demonstrates the results for P2 =
P1, β1 = β2 = 3, and b = 2, 4. In the system, BS deploys four
antennas, i.e., M = 4, RS deploys two antennas, i.e., N = 2,
and there are two users, i.e., K = 2. By adopting feedback
strategy in Theorem 3, the system rate loss is always controlled
to remain within 1 bps/Hz (b = 2) and 2 bps/Hz (b = 4) in
the whole SNR regions. Note that although the scaled B1 and
B2 in Theorem 3 are derived by omitting the O(1) term in
the whole tested SNR regime, the results in the above three
figures verify its accuracy and effectiveness for different tested
cases.

Then, we compare the performance of this scheme with the
scheme proposed in [22]. Fig. 9 shows the achievable rate with
P1 = P2, β1 = β2 = 1, and B1 = B2 = 18. In the system,
both BS and RS deploy four antennas, i.e., M = N = 4,
and there are four users, i.e., K = 4. In Fig. 9, R̃lower in
(18) is the lower bound of the achievable sum rate for our
proposed scheme, while R̃upper in (23) is the upper bound of
the achievable sum rate for the scheme. As detailed in Lemma
4, R̃upper is also the achievable sum rate for the scheme
proposed in [22]. Due to considering the channel estimation
errors, the achievable sum rate of this work is smaller than that
of [22] in the low and medium SNR regions. However, in the
high SNR regions, the system can obtain the approximately
perfect CSIR. Thus, the performance in this work is very
close to the performance of [22] in the high SNR regions.
As it is shown in Fig. 9, R̃lower does converge to R̃upper

with increasing SNRs.
In addition, the effect of κ = P2

P1
on the system performance

is illustrated in Fig. 10. This figure displays the lower bound
of achievable rate for a system with increasing κ and constant
total power, i.e., P1 + P2 = 20 dB and P1 + P2 = 25 dB.
In the system, both BS and RS deploy four antennas, i.e.,
M = N = 4, and there are four users, i.e., K = 4. From
the numerical results, it is observed that there exist different
optimal values of κ for different scenarios. For the system
with P1 + P2 = 20 dB, β1 = β2 = 3, and B1 = B2 = 15,
the optimal κ is 1.9, while the optimal κ is 2.5 for the system
with P1 + P2 = 25 dB, β1 = β2 = 3, and B1 = B2 = 18.
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At last, we show that the achievable rate for a system with
the optimal number of pilots. In Fig. 11, throughput curves
are shown for a system with P2 = P1/4, κ = 1/4, and Cβ =
β1 + β2 = 5 as feedback bits increase. In the system, both
BS and RS deploy four antennas, i.e., M = N = 4, and there
are four users, i.e., K = 4. The optimal numbers of pilots
calculated by (29) and (30) are β1 = 1 and β2 = 4 when
Cβ = 5. It is observed that we can obtain more achievable
rate by optimizing the number of pilots in the whole tested
SNRs regime.

VI. CONCLUSIONS

In this paper, we have investigated the effects of various
imperfect CSI on the performance of the multiuser AF MIMO
relay downlink system. Compared with the system using
perfect channel state information (CSI), we have analyzed the
achievable rate loss due to CSI mismatch arising from both
channel estimation and CSI quantization feedback. In order
to quantitatively characterize the effect of imperfect CSI, we
have derived an upper bound to the rate loss. Given the rate
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Fig. 11. The achievable rate of optimal number of pilots for M = N =
K = 4, P2 = P1/4, κ = 1/4, and Cβ = β1 + β2 = 5 with increasing
numbers of feedback bits.

loss bound, we then presented a limited feedback strategy
for both two-hop channels in the relay system to guarantee
a bounded rate loss for growing SNRs. It’s found that this
newly presented strategy reveals the relationship among CSI
quantization level and other system parameters, including the
transmit power and the pilots for channel estimation. As a
special case where there is no channel estimation error in
the two-hop channels, we found that our derived Theorem 2
and Theorem 3 respectively reduce to the Theorem 1 and
Theorem 3 in [22], and hence the model in this paper is
more general. Besides these, we also have derived the optimal
numbers of pilots by using the upper bound considering both
channel estimation and quantization errors in the high SNR
regions. This result can serve as a guideline for optimal
channel estimation pilot design in practical applications.

APPENDIX A
PROOF OF THEOREM 1

The proof is inspired by Theorem 1 of [25] and Lemma
B.0.1 of [30]. From (14), we have

I
(
xk; ỹk, H̃, g̃k

)
= h (xk)− h

(
xk

∣∣ỹk, H̃, g̃k

)
= log2 (πe)− h

(
xk

∣∣ỹk, H̃, g̃k

)
(31)

where the last equality holds because the entropy h (xk)
equals to log2 (πe) as xk is a complex Gaussian input with
unity variance [31]. Then, by further concerning the second
term of the last equality in (31), the conditional entropy
h
(
xk

∣∣ỹk, H̃, g̃k

)
satisfies

h
(
xk

∣∣ỹk, H̃, g̃k

)
(a)
= h

(
(xk − θỹk)

∣∣ỹk, H̃, g̃k

)
(b)

� h
(
(xk − θỹk)

∣∣H̃, g̃k

)
(32)

where (a) holds for any deterministic factor θ depending
only on ỹk, H̃ and g̃k, and (b) follows from the fact that
conditioning reduces entropy. By substituting (32) into (31),
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we have

I
(
xk; ỹk, H̃, g̃k

)
≥ log2 (πe)− h

(
(xk − θỹk)

∣∣H̃, g̃k

)
≥ log2 (πe)− E

{
log2

(
πe ·E

{
|xk − θỹk|2

∣∣H̃, g̃k

})}
.

(33)

In (33), we use fact that Gaussian distributed random
variable maximizes the entropy given a fixed variance [31].
In detail, if

(
(xk − θỹk)

∣∣H̃, g̃k

)
is a complex Gaussian ran-

dom variable with its variance E
{
|xk − θỹk|2

∣∣H̃, g̃k

}
, the

entropy h
(
(xk − θỹk)

∣∣H̃, g̃k

)
is thus maximized to achieve

the second term in the last inequality, which yields (33).
In order to obtain a tighter bound in (33), we need

to select a proper value of the scaling factor θ to maxi-
mize the right hand side of (33), equivalently to minimize
E
{
|xk − θỹk|2

∣∣H̃, g̃k

}
. This corresponds to using a linear

MMSE estimator to xk given ỹk, H̃ and g̃k. According to
[25], θ is determined by

θ =
E
{
xkỹ

∗
k

∣∣H̃, g̃k

}
E
{
|ỹk|2

∣∣H̃, g̃k

} (34)

where (·)∗ denotes the conjugation of the complex input. By

substituting (14) in Section II-C into E
{
xkỹ

∗
k

∣∣H̃, g̃k

}
and

E
{
|ỹk|2

∣∣H̃, g̃k

}
, and using the fact that E, ek, x, ñ, and zk

are independent, zero-mean Gaussian random variables, we
have

E
{
xkỹ

∗
k

∣∣H̃, g̃k

}
=

√
ρ1ρ2

(
g̃H
k F̂GŨ

HH̃v̂e,k

)∗
, (35)

and

E
{
|ỹk|2

∣∣H̃, g̃k

}
= ρ1ρ2

(∣∣∣g̃H
k F̂GŨ

HH̃v̂e,k

∣∣∣2 + T

)
(36)

where T is defined by

T =
1

ρ1
Eek

{∥∥∥gH
k F̂G

∥∥∥2
}
+ Eek

{∣∣∣eHk F̂GŨ
HH̃v̂e,k

∣∣∣2
}

+
1

ρ1ρ2
+ EE,ek

{∥∥∥gH
k F̂GŨ

HEV̂e

∥∥∥2
}

+
∑
j �=k

Eek

{∣∣∣gH
k F̂GŨ

HH̃v̂e,j

∣∣∣2
}

. (37)

Then, with simple calculations, the closed-form of T is
written by

T1 = δ22

∥∥∥F̂GŨ
HH̃v̂e,k

∥∥∥2 +Nδ21

∥∥∥g̃H
k F̂G

∥∥∥2 +N2δ21δ
2
2

+
∑
j �=k

∣∣∣g̃H
k F̂GŨ

HH̃v̂e,j

∣∣∣2 +∑
j �=k

δ22

∥∥∥F̂GŨ
HH̃v̂e,j

∥∥∥2

+
1

ρ1

∥∥∥g̃H
k F̂G

∥∥∥2 + 1

ρ1
Nδ22 +

1

ρ1ρ2
. (38)

From (34), (35), and (36), we have the corresponding
MMSE as

E
{
|xk − θỹk|2

∣∣H̃, g̃k

}

= E
{
|xk|2

∣∣H̃, g̃k

}
−

∣∣∣E {
xkỹ

∗
k

∣∣H̃, g̃k

}∣∣∣2
E
{
|ỹk|2

∣∣H̃, g̃k

}

= 1−
ρ1ρ2

∣∣∣g̃H
k F̂GŨ

HH̃v̂e,k

∣∣∣2
E
{
|ỹk|2

∣∣H̃, g̃k

} =
T∣∣∣g̃H

k F̂GŨHH̃v̂e,k

∣∣∣2 + T
.

(39)

Now that, by substituting (39) into (33), we have (17),
which completes the proof.

APPENDIX B
PROOF OF THEOREM 2

By substituting (16) and (18) in Theorem 1 into (19), the
rate loss ΔR is upper bounded by (40) on the top of the next
page. In (40), the last equality comes from the fact that f̂G,k

and fG,k follow the same distribution. In the following, we
separately calculate Δa and Δb.

From (37) and (40), Δa is bounded by (41) on the top of the
next page. In (41), V̂ = [v̂1, · · · , v̂N ] denotes the quantization
of V = [v1, · · · ,vN ]. Inequality (a) holds by dropping some
positive terms in the denominator and using the equality∑
j �=k

Eek

{∣∣∣gH
k F̂GŨ

HH̃v̂e,j

∣∣∣2
}

=
∑
j �=k

∣∣∣g̃H
k F̂GŨ

HH̃v̂e,j

∣∣∣2 +
∑
j �=k

Eek

{∣∣∣eHk F̂GŨ
HH̃v̂e,j

∣∣∣2
}

, and the facts that gk and

H̃ are statistically equivalent to 1√
1−δ22

g̃k and
√
1− δ21H

, respectively. In (b), we use the fact that λ2
k

∣∣∣g̃H
k f̂G,k

∣∣∣2 =∣∣∣g̃H
k F̂GΣVHvk

∣∣∣2, and drop some positive terms in the nu-

merator. Inequality (c) comes from the inequality vkv
H
k −

v̂kv̂
H
k ≺−

√
φkIM [22], and dropping some positive terms

in the denominator. In (41), we obtain (d) by using the
generalized Rayleigh quotient theorem [32] and the Jensen’s
inequality, where φk = 1− ∣∣v̂H

k v̂k

∣∣2, λmin (·) is the minimum
eigenvalue of a matrix, and matrix Q is defined by

Q = VHV̂V̂HV . (42)

Then we calculate Δb and derive (43) (on the top of
the next page) from (37) and (40). In (43), (a) holds for
the fact that gk is statistically equivalent to 1√

1−δ22
g̃k, and

the inequality follows from 1

ρ1(1−δ22)

∣∣∣g̃H
k f̂G,k

∣∣∣2 � 0 and the

Jensen’s inequality. By respectively deriving the upper bounds
to the five variables Δb1, Δb2, Δb3, Δb4, and Δb5 in (43), we
can obtain an upper bound on Δb. Before calculating them,
we need to recall some preliminary results as in (44) and (45)
from [22], (46), and (47).

EVe

{
VH

e v̂e,kv̂
H
e,kVe

}
= (1− ε̄) sks

H
k +

∑
j �=k

1

M − 1
ε̄sjs

H
j

(44)
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2ΔR � E

⎧⎨
⎩log2

⎛
⎝ 1

ρ1

∣∣gH
k fG,k

∣∣2 + λ2
k

∣∣gH
k fG,k

∣∣2 + 1
ρ1ρ2

1
ρ1

∣∣gH
k fG,k

∣∣2 + 1
ρ1ρ2

⎞
⎠
⎫⎬
⎭− E

⎧⎪⎨
⎪⎩log2

⎛
⎜⎝T +

∣∣∣g̃H
k F̂GŨ

HH̃v̂e,k

∣∣∣2
T

⎞
⎟⎠
⎫⎪⎬
⎪⎭

= E

⎧⎪⎨
⎪⎩log2

⎛
⎜⎝

1
ρ1

∣∣∣gH
k f̂G,k

∣∣∣2 + λ2
k

∣∣∣gH
k f̂G,k

∣∣∣2 + 1
ρ1ρ2

T +
∣∣∣g̃H

k F̂GŨHH̃v̂e,k

∣∣∣2
⎞
⎟⎠
⎫⎪⎬
⎪⎭

︸ ︷︷ ︸
Δa

+E

⎧⎪⎨
⎪⎩log2

⎛
⎜⎝ T

1
ρ1

∣∣∣gH
k f̂G,k

∣∣∣2 + 1
ρ1ρ2

⎞
⎟⎠
⎫⎪⎬
⎪⎭

︸ ︷︷ ︸
Δb

(40)

Δa

(a)

� E

{
log2

(
1

(1− δ22)

(
1

ρ1

∣∣∣g̃H
k f̂G,k

∣∣∣2 + λ2
k

∣∣∣g̃H
k f̂G,k

∣∣∣2 + 1− δ22
ρ1ρ2

))}

− E

{
log2

((
1− δ21

) ∥∥∥g̃H
k F̂GΣVHV̂

∥∥∥2 + 1

ρ1

∥∥∥g̃H
k F̂G

∥∥∥2 + 1

ρ1ρ2

)}

(b)

� log2

(
1

1− δ22

)
+ E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
log2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +
δ21g̃

H
k F̂GΣVHvkv

H
k VΣ

(
g̃H
k F̂G

)H
(1− δ21)

∥∥∥g̃H
k F̂GΣVHV̂

∥∥∥2 + 1
ρ1

∥∥∥g̃H
k F̂G

∥∥∥2 + 1
ρ1ρ2

+

(
1− δ21

)
g̃H
k F̂GΣVH

(
vkv

H
k − v̂kv̂

H
k

)
VΣ

(
g̃H
k F̂G

)H
(1− δ21)

∥∥∥g̃H
k F̂GΣVHV̂

∥∥∥2 + 1
ρ1

∥∥∥g̃H
k F̂G

∥∥∥2 + 1
ρ1ρ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(c)

� log2

(
1

1− δ22

)
+ E

⎧⎪⎨
⎪⎩log2

⎛
⎜⎝1 +

δ21 g̃
H
k F̂GΣVH v̂kv̂

H
k VΣ

(
g̃H
k F̂G

)H
(1− δ21)

∣∣∣g̃H
k F̂GΣVH v̂k

∣∣∣2 +

√
φkg̃

H
k F̂GΣΣ

(
g̃H
k F̂G

)H
(1− δ21)

∥∥∥g̃H
k F̂GΣVHV̂

∥∥∥2
⎞
⎟⎠
⎫⎪⎬
⎪⎭

(d)

� 1

2
log2

(
1

1− δ21

)
+ log2

(
1

1− δ22

)
+

1

2
log2

(
1 + E

{ √
φk

λmin (Q)

})
(41)

Δb
(a)
= E {log2T} − E

{
log2

(
1

ρ1 (1− δ22)

∣∣∣g̃H
k f̂G,k

∣∣∣2 + 1

ρ1ρ2

)}

= E

⎧⎪⎨
⎪⎩log2

⎛
⎜⎝1 +

T − 1

ρ1(1−δ22)

∣∣∣g̃H
k f̂G,k

∣∣∣2 − 1
ρ1ρ2

1

ρ1(1−δ22)

∣∣∣g̃H
k f̂G,k

∣∣∣2 + 1
ρ1ρ2

⎞
⎟⎠
⎫⎪⎬
⎪⎭

� log2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + ρ2
∑
j �=k

E

{∣∣∣gH
k f̂G,j

∣∣∣2
}

︸ ︷︷ ︸
Δb1

+ ρ1ρ2E

{∥∥∥gH
k F̂GŨ

HEV̂e

∥∥∥2
}

︸ ︷︷ ︸
Δb2

+ ρ1ρ2
∑
j �=k

E

{∣∣∣gH
k F̂GŨ

HH̃v̂e,j

∣∣∣2
}

︸ ︷︷ ︸
Δb3

+ ρ1ρ2E

{∣∣∣eHk f̂GŨ
HH̃v̂e,k

∣∣∣2
}

︸ ︷︷ ︸
Δb4

+ ρ2E

{∣∣∣eHk f̂G,k

∣∣∣2
}

︸ ︷︷ ︸
Δb5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(43)

∑
j �=k

EVe

{
VH

e v̂e,j v̂
H
e,jVe

}
=

N − 1

M − 1
ε̄sks

H
k

+
∑
j �=k

(
1− M −N + 1

M − 1
ε̄

)
sjs

H
j

(45)

E

{∣∣∣gH
k f̂G,j

∣∣∣2
}

= E

{∣∣∣g̃H
k f̂G,j

∣∣∣2
}
+ E

{∣∣∣eHk f̂G,j

∣∣∣2
}

(a)
=

N
(
1− δ22

)
τ̄

N − 1
+ δ22 (46)

E

{∣∣∣gH
k f̂G,k

∣∣∣2
}

= E

{∣∣∣g̃H
k f̂G,k

∣∣∣2
}
+ E

{∣∣∣eHk f̂G,k

∣∣∣2
}

= 1

(47)

where ε̄ = E
{
1− ∣∣vH

j v̂j

∣∣2} = M−1
M 2−

B1
(M−1) and τ̄ =

E

{
1−

∣∣∣∣
(

g̃k

‖g̃k‖2

)H
ĝk

∣∣∣∣
}

= N−1
N 2−

B2
(N−1) [22]. In (46), (a)

holds because E

{∣∣∣g̃H
k f̂G,j

∣∣∣2
}

=
N(1−δ22)τ̄

N−1 [22]. Note that,

si in (45) represents the vector with 1 at the ith element and
zeros elsewhere.
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By using (46), Δb1 in (43) is rewritten by

Δb1 = ρ2N
(
1− δ22

)
τ̄ + ρ2 (N − 1) δ22 . (48)

Concerning Δb2 in (43), we have (49) at the bot-
tom of the next page. In (49), G̃ = [g̃1, · · · , g̃N ]H .

Due to EE

{(
EV̂e

)(
EV̂e

)H}
= tr

(
V̂eV̂

H
e

)
δ22IN =

tr
(
V̂H

e V̂e

)
δ22IN = Nδ22IN , inequality (a) in (49) establishes.

By substituting (46) and (47) into (a), we have (b).
Now, we calculate Δb3 in (43) as (50) at the bottom of

the next page. In (50), (a) uses (45), and (b) holds because
EΣ̃

{
Σ̃2
}
= M

(
1− δ21

)
IN and using (46) and (47).

Then, Δb4 in (43) is calculated by (51) at the bottom of
the next page. In (51), (a) uses (44), and (b) holds because

E

{∣∣∣eHk f̂G,k

∣∣∣2
}

= δ22 and E

{∣∣∣eHk f̂G,j

∣∣∣2
}

= δ22 .

At last, by using E

{∣∣∣eHk f̂G,k

∣∣∣2
}

= δ22 , we have

Δb5 = ρ2δ
2
2 . (52)

Here, we substitute (48), (49), (50), (51), and (52) into (43).
It gives

Δb ≤ 1

2
log2 (1 + ρ1ρ2 (α1ε̄+ α2τ̄ + α3)) (53)

where notations α1, α2, and α3 are defined in (54),
(55), and (56), respectively. In (53), the inequality
holds for ρ1ρ2

M(M−N+1)N
M−1

(
1− δ21

) (
1− δ22

)
ε̄τ̄ � 0 and

ρ1ρ2
M(MN−N2)

M−1

(
1− δ21

)
δ22 ε̄ � 0.

α1 =
M (N − 1)

M − 1

(
1− δ21

) (
1− δ22

)
(54)

α2 = N
(
1− δ22

)(
Nδ21 +M

(
1− δ21

)
+

1

ρ1

)
(55)

α3 = Nδ21 +MN
(
1− δ21

)
δ22 +N (N − 1) δ21δ

2
2 +

Nδ22
ρ1

.

(56)

At this step, by substituting (41) and (53) into (40), the rate
loss can be readily bounded by

ΔR � 1

2
log2 (1 + ρ1ρ2 (α1ε̄+ α2τ̄ + α3)) +

1

2
log2

(
1

1− δ21

)

+
1

2
log2

(
1

1− δ22

)
+

1

2
log2

(
1 + E

{ √
φk

λmin (Q)

})
.

(57)

In (57), the rate loss upper bound consists of four compo-
nents. The first component increases with P1 and P2, while
the second and third components decrease with P1 and P2,
respectively. In the high SNR regions, both the second and
the third components converge to 0 since δ21 = 1

1+β1P1
and

δ22 = 1
1+β2P2

go to 0. The fourth component is a function of
φk and Q, which only depend on B1 and are independent of
SNR. Thus, we can conclude that the rate loss upper bound
is dominated by the first component at high SNRs. Therefore,
a more concise expression for the rate loss bound in the high
SNR regions can be obtained as (20), which completes the
proof.

APPENDIX C
PROOF OF LEMMA 2

As P2 = κP1 → +∞, three equations can be obtained as
(58), (59) (at the bottom of the next page), and (60) at the
bottom of the next page.

lim
P2→+∞

ρ1ρ2α1 = lim
P2→+∞

ρ1ρ2
M (N − 1)

M − 1

(
1− δ21

) (
1− δ22

)
=

P2

N

N − 1

M − 1
, (58)

By substituting (58) – (60) into (20), it gives

ΔR∞ � lim
P2→+∞

ΔRh

=
1

2
log2 (1 + �) +O (1)

+
1

2
log2

⎛
⎝1 +

N(1+β1)κ
Mβ1

N−1
N 2−

B2
(N−1)

1 + �

⎞
⎠ (61)

In (61), � is defined by

� =
P2

N

N − 1

M
2−

B1
M−1 + P2

N − 1

N
2−

B2
N−1 +

1

M

(
κ

β1
+

M

β2

)
.

(62)

From results above, we further consider the following term.

lim
P2→+∞

N(1+β1)κ
Mβ1

N−1
N 2−

B2
(N−1)

1 + �

< lim
P2→+∞

(N − 1) (1 + β1)κ2
− B2

(N−1)

P2Mβ1
= 0 .

Thus, the third term of (61) converges to 0. Then we have
(21), which completes the proof.

APPENDIX D
PROOF OF LEMMA 4

When there is no estimation error, the RS and the kth user
can respectively obtain H and gk. Let V̂ = [v̂1, · · · · · · , v̂N ]
and ḡk denote the quantizations of V and gk, respectively.
We define Ḡ = [ḡ1, · · · , ḡN ]H and F̄G = [̄fG,1, · · · , f̄G,N ],
where f̄G,k is the normalized kth column of ḠH(ḠḠH)−1.
Then, the SINR for the kth user is given by

γ̄k =

∣∣gH
k F̄GU

HHv̂k

∣∣2∑
j �=k

∣∣gH
k F̄GUHHv̂j

∣∣2 + 1
ρ1

∥∥gH
k F̄G

∥∥2 + 1
ρ1ρ2

. (63)

By respectively defining sets Ãk and Āk as Ãk � {H̃, g̃k}
and Āk � {H,gk}, it is observed that Ãk is a noisy version
of Āk. Then, by using the data-processing inequality, we can
obtain

R̃k =
1

2
I
(
xk;

(
ỹk, Ãk

))
� 1

2
I (xk;

(
ȳk, Āk

))
=

1

2
E {log2 (1 + γ̄k)} (64)

Thus, the achievable rate for the system is upper bounded by
(23), which completes the proof.
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APPENDIX E
PROOF OF THEOREM 3

In order to characterize a sufficient scaling law of feedback
bits, we set ΔRh in (20) equal to 1

2 log2b. Then we have

1

2
log2 (1 + ρ1ρ2 (α1ε̄+ α2τ̄ + α3)) +O (1) =

1

2
log2b .(65)

By omitting the O (1) term for high SNRs, (65) reduces to

1

2
log2 (1 + ρ1ρ2 (α1ε̄+ α2τ̄ + α3)) =

1

2
log2b (66)

which implies that

α1ε̄+ α2τ̄ =
(b− 1− ρ1ρ2α3)

ρ1ρ2
. (67)

To get a more meaningful result, we introduce a new
variable ζ ∈ (0, 1) to rewrite (67) by

ε̄ =
ζ(b− 1− ρ1ρ2α3)

ρ1ρ2α1
, (68)

and

τ̄ =
(1− ζ) (b− 1− ρ1ρ2α3)

ρ1ρ2α2
. (69)

where different values of ζ result in different solutions to ε̄
and τ̄ , while keeping the rate loss requirement guaranteed.

By substituting ε̄ = M−1
M 2−

B1
(M−1) and τ̄ = N−1

N 2−
B2

(N−1)

into (68) and (69), respectively, we have

B1 = (M − 1) (log2 (ρ1ρ2α1)− log2 (ζ(b− 1− ρ1ρ2α3)))

+ (M − 1) log2

(
M − 1

M

)
, (70)

and

B2 = (N − 1) (log2 (ρ1ρ2α2)− log2 ((1− ζ) (b− 1− ρ1ρ2α3)))

+ (N − 1) log2

(
N − 1

N

)
. (71)

From the above results in (70) and (71), it is found that there
are many pairs of B1 and B2 as a function of ζ to guarantee
the required rate loss bound. Therefore, we are able to find

Δb2 = ρ1ρ2EG̃,ek,V̂e,Ũ

{(
gH
k F̂GŨ

H
)
EE

{
EV̂e

(
EV̂e

)H}(
gH
k F̂GŨ

H
)H}

(a)
= ρ1ρ2Nδ21EG̃,ek

⎧⎨
⎩
∣∣∣gH

k f̂G,k

∣∣∣2 +∑
j �=k

∣∣∣gH
k f̂G,j

∣∣∣2
⎫⎬
⎭

(b)
= ρ1ρ2N

(
1 +N

(
1− δ22

)
τ̄ + (N − 1) δ22

)
δ21 (49)

Δb3 = ρ1ρ2EG̃,ek,Σ̃

⎧⎨
⎩gH

k F̂GΣ̃

⎧⎨
⎩
∑
j �=k

EṼ

{
ṼH v̂e,j v̂

H
e,jṼ

}⎫⎬
⎭ Σ̃

(
gH
k F̂G

)H⎫⎬
⎭

(a)
= ρ1ρ2EG̃,ek

⎧⎨
⎩gH

k F̂G

(
EΣ̃

{
Σ̃2
})⎛⎝N − 1

M − 1
ε̄sks

H
k +

∑
j �=k

(
1− M −N + 1

M − 1
ε̄

)
sjs

H
j

⎞
⎠(

gH
k F̂G

)H⎫⎬
⎭

(b)
= ρ1ρ2M

(
1− δ21

)(N − 1

M − 1
ε̄+

(
1− M −N + 1

M − 1
ε̄

)(
N
(
1− δ22

)
τ̄ + (N − 1) δ22

))
(50)

Δb4 = ρ1ρ2EG̃,ek,Σ̃

{
eHk F̂GΣ̃

{
EṼ

{
ṼH v̂e,kv̂

H
e,kṼ

}}
Σ̃
(
eHk F̂G

)H}

(a)
= ρ1ρ2EG̃,ek

⎧⎨
⎩eHk F̂G

(
EΣ̃

{
Σ̃2
})⎛⎝(1− ε̄) sks

H
k +

∑
j �=k

1

M − 1
ε̄sjs

H
j

⎞
⎠(

eHk F̂G

)H⎫⎬
⎭

(b)
= ρ1ρ2M

(
1− δ21

)(
1− M −N

M − 1
ε̄

)
δ22 (51)

lim
P2→+∞

ρ1ρ2α2 = lim
P2→+∞

ρ1ρ2N
(
1− δ22

)(
Nδ21 +M

(
1− δ21

)
+

1

ρ1

)
= P2 +

N (1 + β1)κ

Mβ1
, (59)

and

lim
P2→+∞

ρ1ρ2α3 = lim
P2→+∞

ρ1ρ2

(
Nδ21 +MN

(
1− δ21

)
δ22 +N (N − 1) δ21δ

2
2 +

Nδ22
ρ1

)
=

1

M

(
κ

β1
+

M

β2

)
(60)
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an optimized ζ to minimize the total number of feedback bits
(B1 + B2) while satisfying the conditions in (68) and (69).
It is not hard to obtain the optimal ζ = 0.5 when M = N .
By substituting ζ = 0.5 into (70) and (71), we have (24) and
(25).

A procedure similar as Lemma 2 is carried out to analyze
the number of feedback bits in the high SNR regions. As
P2 = κP1 → +∞, we have (58) – (60) in Appendix C. By
substituting (58) – (60) into (70) and (71), B1 and B2 can be
scaled according to (26) and (27), respectively.

APPENDIX F
PROOF OF LEMMA 5

Under the constraint β1 + β2 = Cβ , the optimization
problem is formulated as

maximize
β1,β2

R̃∞
lower

subject to β1 + β2 = Cβ (72)

Then, we use the Lagrangian multiplier method to solve the
problem. The Lagrangian function is (73) on the top of the
next page. By calculating its partial derivative with respect to
β1 and β2, and equating them to zero, we obtain (74) on the
top of the next page. Then, by solving the equations in (74),
the proof of Lemma 5 completes.

ACKNOWLEDGMENT

The authors would like to thank the editor and the anony-
mous reviewers for their constructive comments that have
helped improve the quality of this paper.

REFERENCES

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[2] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits
of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp.
684–702, June 2003.

[3] L.-L. Xie and P. R. Kumar, “An achievable rate for the multiple-level
relay channel,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1348–1358,
Apr. 2005.

[4] H. Bölcskei, R. U. Nabar, Ö. Oyman, and A. J. Paulraj, “Capacity scaling
laws in MIMO relay networks,” IEEE Trans. Wireless Commun., vol. 5,
no. 6, pp. 1433–1444, June 2006.

[5] C.-B. Chae, T. Tang, R. W. Health, and S. Cho, “MIMO relaying with
linear processing for multiuser transmission in fixed relay networks,”
IEEE Trans. Signal Process., vol. 56, no. 2, pp. 727–738, Feb. 2008.

[6] B. Wang, J. Zhang, and A. Høst-Madsen, “On the capacity of MIMO
relay channels,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 29–43, Jan.
2005.

[7] R. Mo and Y. H. Chew, “Precoder design for non-regenerative MIMO
relay systems,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 5041–
5049, Oct. 2009.

[8] R. Mo and Y. H. Chew, “MMSE-based joint source and relay precoding
design for amplify-and-forward MIMO relay networks,” IEEE Trans.
Wireless Commun., vol. 8, no. 9, pp. 4668–4676, Sep. 2009.

[9] L. Sun and M. R. McKay, “Opportunistic relaying for MIMO wireless
communication: relay selection and capacity scaling laws,” IEEE Trans.
Wireless Commun., vol. 10, no. 6, pp. 1786–1797, June 2011.

[10] A. I. Sulyman, G. Takahara, H. S. Hassanein, and M. Kousa, “Multi-
hop capacity of MIMO-multiplexing relaying systems,” IEEE Trans.
Wireless Commun., vol. 8, no. 6, pp. 3095–3103, June 2009.

[11] J. Joung and A. H. Sayed, “Multiuser two-way amplify-and-forward
relay processing and power control methods for beamforming systems,”
IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1833–1846, Mar. 2010.

[12] W. Xu, X. Dong, and W.-S. Lu, “Joint precoding optimization for mul-
tiuser multi-antenna relaying downlinks using quadratic programming,”
IEEE Trans. Commun., vol. 59, no. 5, pp. 1228–1235, May 2011.

[13] F. Gao, T. Cui, and A. Nallanathan, “On channel estimation and optimal
training design for amplify and forward relay network,” IEEE Trans.
Wireless Commun., vol. 7, no. 5, pp. 1907–1916, May 2008.

[14] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE
Trans. Inf. Theory, vol. 52, no. 11, pp. 5045–5060, Nov. 2006.

[15] Y. Rong, “Robust design for linear non-regenerative MIMO relays with
imperfect channel state information,” IEEE Trans. Signal Process., vol.
59, no. 5, pp. 2455–2460, May 2011.

[16] B. Gedik and M. Uysal, “Impact of imperfect channel estimation on the
performance of amplify-and-forward relaying,” IEEE Trans. Wireless
Commun., vol. 8, no. 3, pp. 1468–1479, Mar. 2009.

[17] J. Ma, P. Orlik, J. Zhang, and G. Y. Li, “Pilot matrix design for
estimating cascaded channels in two-hop MIMO amplify-and-forward
relay systems,” IEEE Trans. Wireless Commun., vol. 10, no. 6, pp. 1956–
1965, June 2011.

[18] F. Gao, B. Jiang, X. Gao, and X.-D. Zhang, “Superimposed training
based channel estimation for OFDM modulated amplify-and-forward
relay networks,” IEEE Trans. Commun., vol. 59, no. 7, pp. 2029–2039,
July 2011.

[19] T. A. Lamahewa, P. Sadeghi, and X. Zhou, “On lower bounding the
information capacity of amplify and forward wireless relay channels
with channel estimation errors,” IEEE Trans. Wireless Commun., vol.
10, no. 7, pp. 2075–2079, July 2011.

[20] B. K. Chalise and L. Vandendorpe, “MIMO relay design for multipoint-
to-multipoint communications with imperfect channel state informa-
tion,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2785–2796, July
2009.

[21] D. J. Love, R. W. Heath Jr., V. K. N. Lau, D. Gesbert, B. D. Rao, and M.
Andrews, “An overview of limited feedback in wireless communication
systems,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 1341–1365,
Oct. 2008.

[22] W. Xu, X. Dong, and W.-S. Lu, “MIMO relaying broadcast channels
with linear precoding and quantized channel state information feedback,”
IEEE Trans. Signal Process., vol. 58, no.10, pp. 5233–5245, Oct. 2010.

[23] R. Mo, Y. H. Chew, and C. Yuen, “Information rate and relay precoder
design for amplify-and-forward MIMO relay networks with imperfect
channel state information,” IEEE Trans. Veh. Technol., vol. 61, no. 9,
pp. 3958–3968, Nov. 2012.

[24] B. Yi, S. Wang, and S. Y. Kwon, “On MIMO relay with finite-rate
feedback and imperfect channel estimation,” in Proc. 2007 IEEE Global
Telecommun. Conf., pp. 3878–3882.

[25] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
achievable rates with downlink training and channel state feedback,”
IEEE Trans. Inf. Theory, vol. 56, no.6, pp. 2845–2866, June 2010.

[26] T. Yoo and A. Goldsmith, “Capacity and power allocation for fading
MIMO channels with channel estimation error,” IEEE Trans. Inf. Theory,
vol. 52, no. 5, pp. 2203–2214, May 2006.

[27] W. Santipach and M. L. Honig, “Signature optimization for CDMA
with limited feedback,” IEEE Trans. Inf. Theory, vol. 51, no. 10, pp.
3475–3492, Oct. 2005.

[28] M. Kobayashi, N. Jindal, and G. Caire, “Training and feedback opti-
mization for multiuser MIMO downlink,” IEEE Trans. Commun., vol.
59, no. 8, pp. 2228–2240, Aug. 2011.

[29] T. L. Marzetta and B. M. Hochwald, “Fast transfer of channel state
information in wireless systems,” IEEE Trans. Signal Process., vol. 54,
no. 4, pp. 1268–1278, Apr. 2006.

[30] A. Lapidoth and S. Shamai, “Fading channels: how perfect need
“perfect-side information” be?,” IEEE Trans. Inf. Theory, vol. 48, no.
5, pp. 1118–1134, May 2002.

[31] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley and Sons, 1991.

[32] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1990.

Zhangjie Peng (S’10) is currently a Ph.D. student
at the National Mobile Communications Research
Laboratory, Southeast University, China, where he
received his M.S. degree in 2007. He received his
B.S. degree from Southwest Jiaotong University,
Chengdu, China, in 2004. His current research in-
terests are in the area of wireless communications.



PENG et al.: ACHIEVABLE RATE ANALYSIS AND FEEDBACK DESIGN FOR MULTIUSER MIMO RELAY WITH IMPERFECT CSI 793

L (β1, β2, ϕ) = R− N

2
log2

(
P2

N

N − 1

M
2−

B1
M−1 + P2

N − 1

N
2−

B2
N−1 +

(
1 +

1

M

(
κ

β1
+

M

β2

)))

+ ϕ (β1 + β2 − Cβ)−O (N) (73)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N

2M ln 2
(

P2

N
N−1
M 2−

B1
M−1 + P2

N−1
N 2−

B2
N−1 +

(
1 + 1

M

(
κ
β1

+ M
β2

))) κ

β2
1

+ ϕ = 0

N

2M ln 2
(

P2

N
N−1
M 2−

B1
M−1 + P2

N−1
N 2−

B2
N−1 +

(
1 + 1

M

(
κ
β1

+ M
β2

)))M

β2
2

+ ϕ = 0

β1 + β2 − Cβ = 0

(74)

Wei Xu (S’07-M’09) received his B.Sc. degree in
electrical engineering in 2003 and his M.S. and
Ph.D. degrees in communication and information
engineering in 2006 and 2009, respectively, all from
Southeast University, Nanjing, China. He is cur-
rently an Associate Professor at the National Mobile
Communications Research Lab (NCRL), Southeast
University. Between 2009 and 2010, he was a post-
doctoral research fellow with the Department of
Electrical and Computer Engineering, University of
Victoria, Canada.

Dr. Xu is an Editor of IEEE COMMUNICATIONS LETTERS. He has been
involved in Technical Program Committees for many international conferences
including the IEEE Global Communications Conference (Globecom), the
IEEE Wireless Communications and Networking Conference (WCNC), the
IEEE Vehicular Technology Conference (VTC), etc. He has co-authored
more than 60 papers and has over 10 patents pending. He was elected
Core Team Member of the Jiangsu Innovation Team in 2012. His research
interests include communication theory, cooperative communications, and
signal processing and optimization theory for wireless communications.

Li-Chun Wang (M’96-SM’06-F’11) received the
B.S. degree from National Chiao Tung University,
Taiwan, R.O.C., in 1986, the M.S. degree from
National Taiwan University in 1988, and the Ms.Sci.
and Ph.D. degrees from the Georgia Institute of
Technology, Atlanta, in 1995, and 1996, respec-
tively, all in electrical engineering.

From 1990 to 1992, he was with the Telecom-
munications Laboratories of the Ministry of Trans-
portation and Communications in Taiwan (currently
Telecom Labs of Chunghwa Telecom Co.). In 1995,

he was affiliated with Bell Northern Research of Northern Telecom, Inc.,
Richardson, TX. From 1996 to 2000, he was with AT&T Laboratories, where
he was a Senior Technical Staff Member in the Wireless Communications
Research Department. In August 2000, he joined the Department of Electrical
and Computer Engineering of National Chiao Tung University in Taiwan
and is currently Chairman of the same department. His current research
interests are in the areas of radio resource management, cross-layer optimized
techniques for heterogeneous wireless networks, and cloud computing for
mobile applications.

Dr. Wang was elected to the IEEE Fellow grade in 2011 for his contri-
butions in cellular architecture and radio resource management in wireless
networks. He won the Distinguished Research Award of the National Science
Council, Taiwan, in 2012, and was a co-recipient (with Gordon L. Stüber and
Chin-Tau Lea) of the 1997 IEEE Jack Neubauer Best Paper Award for his
paper “Architecture Design, Frequency Planning, and Performance Analysis
for a Microcell/Macrocell Overlaying System,” IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY, vol. 46, no. 4, pp. 836–848, 1997. He has
published over 150 journal and international conference papers. He served
as an Associate Editor for the IEEE TRANSACTIONS ON WIRELESS COM-
MUNICATIONS from 2001 to 2005, the Guest Editor of the Special Issue on
“Mobile Computing and Networking” for the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS in 2005, and on “Radio Resource Management
and Protocol Engineering in Future IEEE Broadband Networks” for IEEE
Wireless Communications Magazine in 2006. He holds 10 US patents.

Chunming Zhao (M’93) received the B.S. and
M.S. degrees from Nanjing Institute of Posts and
Telecommunications in 1982 and 1984, respectively.
In 1993, he received his Ph.D. degree from the De-
partment of Electrical and Electronic Engineering,
University of Kaiserslautern, Germany. He has been
a Postdoctoral Researcher at the National Mobile
Communications Research Lab, Southeast Univer-
sity, where he is currently a professor and vice
director of the lab. He has managed several key
projects of the Chinese Communications High Tech.

Program and was awarded as an “excellent researcher” from the Ministry
of Science and Technology, China. He also won the First Prize of the
National Technique Invention of China in 2011. His research interests include
communication theory, coding/decoding, mobile communications, and VLSI
design.


