
0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E January/February 2014 | IEEE SoftwarE 39

Improving the
Accuracy of
Automated
GUI Testing
for Embedded
Systems
Ying-Dar Lin, National Chiao Tung University

Edward T.-H. Chu, National Yunlin University of Science
and Technology

Shang-Che Yu, National Chiao Tung University

Yuan-Cheng Lai, National Taiwan University of Science
and Technology

// The Smart Phone Automated GUI (SPAG) batches

and reproduces event sequences on the device under

test to ensure that they are performed on time. //

AutomAted GuI testInG for
smartphones faces two major chal-
lenges: nondeterministic events and
execution interference. Owing to

uncertainty in the runtime execu-
tion environment, such as timing
delay variations in communication,
the device under test (DUT) might

not reproduce interpreted events on
time. As a result, actual intervals
between events can differ from the
predefined intervals given in the test
script. Nondeterministic event se-
quences can easily lead to incorrect
GUI operations. For example, the
Android fling action occurs when a
user scrolls a touch panel and then
quickly lifts his or her finger. The de-
vice uses a sequence of motion events
to represent the operation. When an
automated GUI tool replays these
event sequences, each motion event
should be triggered on time to repro-
duce the fling with the same scrolling
speed. If not, the scrolling speed of
the reproduced fling action will lead
to an incorrect result. To address the
issue of nondeterministic events, a
commonly used method is to use a
trackball instead of the fling action.
However, not all smartphones are
equipped with trackballs.

An uncertain runtime execution
environment can interfere with or
delay an application’s execution, es-
pecially when the DUT is under a
heavy load. A delayed application
can fail to process an event cor-
rectly if the response to the previous
event hasn’t been completed. For ex-
ample, an event might be dropped
if the application under test (AUT)
receives the event ahead of time and
isn’t ready to process it. To solve
this problem, an intuitive method is
to delay the execution of the opera-
tions. However, this requires experi-
enced engineers to set the delay for
each operation properly so that the
application can receive the repro-
duced events.

We aimed to design an automated
GUI testing system to maximize ac-
curacy within the uncertainty of
runtime execution environments.
The accuracy of an automated

FOCUS: new PersPectives on soFtware Quality

FOCUS: New PersPectives oN software quality

40 IEEE SoftwarE | w w w.comPuter.org/soFt ware | @ieeesoFt ware

GUI-testing tool is defined as the suc-
cess rate of examining a bug-free ap-
plication. The higher the success rate,
the higher the accuracy. Thus, we de-
signed the Smart Phone Automated
GUI (SPAG) testing tool, based on
Sikuli, a popular open source auto-
mated GUI tool.2,3 Using the Sikuli
integrated development environment,
we can write GUI test cases, execute
the script, automate GUI operations
on a desktop, and verify GUI ele-
ments presented on a screenshot. To
avoid nondeterministic events, we
batched the event sequence and re-
produced the events on the DUT.

In addition, SPAG can monitor
the target application’s CPU usage
during runtime and dynamically
change the timing of following op-
erations so that all event sequences
and verifications can be performed
on time, even when the DUT is heav-
ily loaded. We conducted several ex-
periments on an Acer Liquid smart-
phone to investigate the applicability
and performance of SPAG and com-
pared our method with Monkey-
Runner (http://developer.android.
com /tools /help/monkeyrunner_
concepts.html). For related work on
GUI testing, please see the sidebar.

overview
We adopted a commonly used
software- testing technique called re-
cord/replay for embedded systems.
Figure 1a shows the recording stage,
where the screen of the DUT is first
redirected to the host PC, which
runs the test tool. An engineer inter-
acts with the DUT remotely: when-
ever the engineer performs a GUI
operation on the host PC, such as a
key press or a finger touch, the test
tool sends events associated with
the GUI operation to the DUT and
records them in a test case. The
test case also includes verification

RelAted WoRk In GuI testInG
Researchers have dedicated much work to automated GUI
testing. The most common approach is model-based testing
(MBT), which models target applications’ behaviors and uses
the test cases the models generate to validate the device un-
der test. Tommi Takala and his colleagues adopted Monkey-
Runner and Windows services to generate GUI events,1 and
Zhifang Lin and his colleagues utilized the concept of virtual
devices to test applications.2 These methods rely on image-
based pattern matching, which is sensitive to images’ quality.
The Smart Phone Automated GUI (SPAG) testing tool uses GUI
components for pattern matching to improve the stability and
the speed of validation.

Several techniques and architectures were developed to
cope with complex application tests. MoGuT, a variant of the
finite-state machine (FSM)-based test framework, uses image
flow to describe event changes and screen response.3 How-
ever, it lacks flexibility. Gray-box testing adopted APIs to con-
struct calling contexts and parameters from input files.4 Based
on a logging mechanism, gray-box testing verifies testing
results. However, for complex software, it becomes difficult to
describe the testing logic and calling context. Recently, Cuix-
iong Hu and his colleagues developed an approach to automate
the testing process of Android applications using JUnit and the
MonkeyRunner tools.5 Wei Yang and his colleagues proposed
a method to automatically extract a model of an application.6
However, both of the methods used a fixed delay between

consecutive GUI operations, whereas SPAG determines the
delay dynamically by using the Smart Wait function. Domenico
Amalfitano and his colleagues designed a method to automati-
cally generate a model of application by using dynamic crawl-
ing.7 However, their method required the source codes of the
applications under test. SPAG doesn’t require the source code.

References
 1. T. Takala, M. Katara, and J. Harty, “Experiences of System-Level

Model-Based GUI Testing of an Android Application,” Proc. Int’l Conf.
Software Testing, Verification and Validation (ICST 11), IEEE CS, 2011,
pp. 377–386.

 2. L. Zhifang, L. Bin, and G. Xiaopeng, “Test Automation on Mobile
Device,” Proc. 5th Workshop Automation of Software Test (AST 10),
ACM, 2010, pp. 1–7.

 3. O.-H. Kwon and S.-M. Hwang, “Mobile GUI Testing Tool Based on
Image Flow,” Proc. 7th IEEE/ACIS Int’l Conf. Computer and Information
Science (ICIS 08), IEEE CS, 2008, pp. 508–512.

 4. V.R. Vemuri, “Testing Predictive Software in Mobile Devices,” Proc.
Int’l Conf. Software Testing, Verification and Validation (ICST 08), IEEE
CS, 2008, pp. 440–447.

 5. C. Hu and I. Neamtiu, “Automating GUI Testing for Android Applica-
tions,” Proc. 6th Int’l Workshop on Automation of Software Test (AST
11), ACM, 2011, pp. 77–83.

 6. W. Yang, M.R. Prasad, and T. Xie, “A Grey-Box Approach for Auto-
mated GUI-Model Generation of Mobile Applications,” Proc. 16th Int’l
Conf. Fundamental Approaches to Software Engineering (FASE 13),
Springer, 2013, pp. 250–265.

 7. D. Amalfitano et. al., “Using GUI Ripping for Automated Testing of
Android Applications,” Proc. 27th IEEE/ACM Int’l Conf. Automated
Software Engineering (ASE 12), ACM, 2012, pp. 77–83.

 January/February 2014 | IEEE SoftwarE 41

operations, added by the engineer,
to verify the DUT’s response. Figure
1b shows the replay stage, where the
test executer first reads GUI opera-
tions from the test case and replays
them on the DUT. Finally, the test
executer verifies the testing results
according to the DUT’s response.

C denotes a test case that in-
cludes n operations {O1, O2, …,
On}. An operation can be a GUI op-
eration or a verification operation:
a GUI operation can be a key press
or a finger touch, and a verification
operation is used to verify the test
result. The interval between Oi–1
and Oi is given by Ti. A GUI opera-
tion consists of a sequence of events
{ei,1, ei,2, …, ei,m}. For example, when
a user performs a fling operation,
the Android system generates the
associated move events.

Owing to the uncertainty of run-
time execution environments and
variations in the communication
delay between the host PC and the
DUT, the DUT might not reproduce
each event ei,j on time. Such nondeter-
ministic event sequences can lead to
an incorrect GUI operation and inval-
idate verification operations. Further-
more, the runtime execution environ-
ment of the DUT might also affect
the interval Ti between Oi–1 and Oi.
The GUI application might drop the
new arrival events of Oi because the
previous events of Oi–1 haven’t been
processed yet. Such dropped events
will also lead to test failures.

sPAG design
We designed SPAG to accurately re-
produce GUI operations and verify
test results. In the record stage, SPAG
monitors GUI operations and stores
these GUI operations and associ-
ated CPU times of the DUT in a test
script. An engineer also adds verifi-
cation operations to the test script to

verify the results. In the replay stage,
GUI and verification operations are
batched and sent to the DUT so that
the events can be triggered on time.
Based on the CPU utilization of the
DUT, SPAG dynamically modifies
the duration of two operations. The
testing results are sent back to the
host PC for verification.

Event Batch
In the replay stage, the applica-
tion running on the DUT continues
monitoring GUI events and takes
corresponding operations. For ex-
ample, a gesture, such as a swipe op-
eration, includes several multitouch
events. After receiving the multi-
touch events, the application scrolls
the screen up. However, some GUI
operations are sensitive to the timing
of associated events. For example,
the onFling GUI operation consists
of many move events. The speed of

onFling is sensitive to both displace-
ment and time difference between
two continuous move events. If the
actual interval between two move
events is longer than the interval de-
scribed in the test script, the speed
of the reproduced onFling GUI will
be slower than expected, and the
incorrect GUI operation could lead
to test failure. Therefore, in the re-
play stage, it’s crucial to trigger each
event at the DUT on time to avoid
possible test failures.

In our implementation, SPAG
stored the associated events of each
GUI operation and event intervals
in the test script. In addition, a tag,
such as ACTION_DOWN, ACTION_MOVE, or
ACTION_UP, was attached at the end
of each GUI operation to differenti-
ate continuous GUI operations. In
the replay stage, SPAG first batched
all events and sent them to the DUT.
Next, a module at the DUT rather

(a)

Host PC

Test tool

Remote GUI of DUT

Test case
Veri	cations

Script IDE

Demonstrate GUI testing

Add veri	cation

Engineer

Screenshot

GUI actions
GUI

actions

Engineer

(b)

Host PC

Test tool

Test executer

Test case

Component Control

DataDocument

Substance

Start testing

Test result

Screenshot

GUI actions
Operations

GUI actions and
veri	cations

Device
under
test

Device
under
test

Figure 1. The system architecture of the record/replay method and the device under

test: (a) the recording stage and (b) the replay stage.

FOCUS: New PersPectives oN software quality

42 IEEE SoftwarE | w w w.comPuter.org/soFt ware | @ieeesoFt ware

than a module at the host PC trig-
gered the events to remove the ef-
fect of commutation uncertainty be-
tween the DUT and host PC.

Smart Wait
In the replay stage, the recorded GUI
operations are sent to the associated
application accordingly. However,
the execution time of the applica-
tion can be longer than expected if
the execution environment is heavily
loaded, and the prolonged applica-
tion might have failed to process a
GUI operation correctly if the op-
eration came earlier than expected.
For example, if the DUT received
the push-bottom operation ahead of
time and the AUT wasn’t ready to
process the GUI operation, it would
be dropped and lead to test failure.
A practical method to avoid execu-
tion interference was to ask experi-
enced engineers to set the duration
of each pair of GUI operations so
that the application could process
GUI operations on time while main-
taining a reasonable testing time.

But the cost of manually adjusting
durations is high.

To improve the efficiency of the
test process, SPAG can automati-
cally adjust delay time between two
GUI operations based on CPU time
used to perform GUI operations.
The function is called Smart Wait.
In this function, p denotes the pro-
cess that performs the GUI opera-
tions. In the record stage, when op-
eration O

i–1 occurs, SPAG monitors

the CPU time cpui of process p at du-
ration Ti between Oi–1 and Oi. This
is achieved by parsing data from
the Linux OS virtual directory /proc.
From /proc/<PID>/stat, we obtain the
time the process spends in both the
user space and kernel space. In ad-
dition, we obtain from /proc/stat the
time the CPU spends in both the user
and kernel space. Based on this in-
formation, SPAG calculates the CPU
usage cpui of the process p at dura-
tion Ti. Both cpui and Ti are stored
in the test script as CMD(Ti, cpui).
Note that p' denotes the process that
performs the GUI operations in the
replay stage. When Oi–1 is executed,
SPAG monitors the CPU time cpui'
of p'. If cpui' is smaller than cpui,
SPAG assumes that Oi–1 is incom-
plete and calculates a proportional
delay time for remaining GUI opera-
tions. For example, in the recording
stage, if Oi–1 uses 5 milliseconds of
CPU time out of 4 seconds for ex-
ecution, then cpui is 5 milliseconds
and Ti is 4 seconds. SPAG inserts a
command CMD(4000 ms, 5 ms) in

the test script right after Oi–1. In the
replay stage, when Oi–1 is replayed,
SPAG first waits 4 seconds and reads
the associated cpui' from the DUT.
If cpui' is 2 ms, SPAG assumes that
Oi–1 is unfinished and estimates its
completion time as 4 s × 5 ms/2 ms =
10 s. In this case, the next operation
Oi is postponed by 6 seconds.

Implementation
SPAG integrates two popular open

source tools: Android screencast and
Sikuli. Android screencast is a desk-
top application that redirects the
screen of the DUT to the host PC
and allows an engineer to interact
remotely with the DUT by using a
mouse or keyboard. Sikuli is a desk-
top application that automatically
tests GUIs via screenshot images. In
the recording stage on the host PC,
SPAG records all GUI operations per-
formed inside the redirected screen
of the DUT. An engineer uses Sikuli’s
IDE to insert a verification operation
at the end of one or several contin-
ued GUI operations by selecting a
region of the redirected screen. The
class name and activity name of the
redirected screen are also logged at
that time. In the replay stage, SPAG
reproduces GUI operations by send-
ing associated events to the DUT.

We adopted both Smart Wait
and Event Batch to reduce the un-
certainty of the runtime execution
environment. Event Batch aims to
remove the communication uncer-
tainty between the DUT and PC,
whereas Smart Wait aims to remove
the uncertainty of the DUT runtime
execution environment. They can
be applied together or separately
depending on the communication
uncertainty and runtime execution
environment. When performing a
verification operation, SPAG first
checks the class name and activity
name of the redirected screen. If the
check fails, SPAG instantly makes an
image comparison between the re-
directed screen and the predefined
image. Note that the methodologies
of Smart Wait and Event Batch are
portable. To take advantage of these
two techniques to perform GUI test-
ing on other platforms, you would
need to use an equivalent of Android
screencast to remotely control the
DUT and integrate that tool with

The execution time of the application can
be longer than expected if the execution

environment is heavily loaded.

 January/February 2014 | IEEE SoftwarE 43

Sikuli or an equivalent tool to record
user interaction.

experimental Results
To evaluate the accuracy of SPAG
and MonkeyRunner, we ran several
experiments.

Experiment Setup
To investigate the accuracy of SPAG,
we adopted the Acer Liquid smart
phone for evaluation. We compared
SPAG with MonkeyRunner, an au-
tomated testing tool included in
the Android software developer’s
kit. MonkeyRunner reproduces
predefined operations, such as key
presses, by generating associated
events and sending the events from
the host PC to the DUT.1 Our test
script included five commonly used
scenarios: browsing a contact entry,
installing an application over Wi-
Fi, taking a picture, making a video,
and browsing Google Maps over
Wi-Fi. Figures 2 and 3 show how we
used a busy-loop program to adjust
the CPU utilization from 25 to 100
percent and adopted an intensive
flash read/write program to simulate
input/output burst condition. For
each configuration, CPU utilization
is 25, 50, 75, or 100 percent. We
repeated the same experiment 40
times and took the average value of
accuracy for comparison.

Test Accuracy
We checked the accuracy of Mon-
keyRunner manually because it
didn’t support a sufficient image
comparison function to verify test-
ing results. MonkeyRunner’s ac-
curacy dropped significantly when
the CPU utilization increased or the
I/O subsystem was busy. Specifically,
MonkeyRunner’s accuracy dropped
to 64.5 percent when CPU utiliza-
tion was 100 percent and to 26.5

Normal 25% CPU 50% CPU 75% CPU 100% CPU I/O busy

100

90

80

70

60

50

40

30

20

10

0

Additional workload

Ac
cu

ra
cy

99.5 97.5 98.5 96.5 96.5 90.088.0 85.5
77.5

65.5 64.5

26.5

MonkeyRunner

SPAG

Figure 2. Testing with the Smart Phone Automated GUI (SPAG) and MonkeyRunner.

The accuracy of MonkeyRunner dropped significantly when the CPU utilization

increased or the I/O subsystem was busy. The accuracy of SPAG was over 90 percent in

all configurations we tested.

Normal 25% CPU 50% CPU 75% CPU 100% CPU I/O busy

100

90

80

70

60

50

40

30

20

10

0

Additional workload

Ac
cu

ra
cy

 (%
)

SPAG (Smart Wait)

SPAG (Batch Event)

MonkeyRunner

SPAG

Figure 3. Testing with Event Batch and Smart Wait. They can be applied together

or separately depending on the communication uncertainty and runtime execution

environment. The Smart Wait function contributed more than the Event Batch function in

improving accuracy if the system is busy.

FOCUS: New PersPectives oN software quality

44 IEEE SoftwarE | w w w.comPuter.org/soFt ware | @ieeesoFt ware

percent when an I/O burst occurred.
This was because the tested appli-
cation was deferred for execution
when the system was heavily loaded.
MonkeyRunner doesn’t dynamically
modify the duration of two continu-
ous operations. As a result, the new
communing events were dropped
or ignored, which made Monkey-
Runner tests fail. On the contrary,
with the Smart Wait function, the
accuracy of SPAG decreased only
slightly when CPU utilization in-
creased or I/O bursts occurred; its
accuracy was over 90 percent in all
the configurations we tested. Under
normal conditions in which CPU uti-
lization was less than 25 percent, the
accuracy stayed at 99.5 percent.

With the same experimental
setup, we also adopted three popu-
lar mobile apps—Skype, Twitter,
and Facebook—to evaluate the ac-
curacy of SPAG and MonkeyRunner.
The major gesture activity of Skype
was tapping, whereas that of Twit-
ter and Facebook was flinging. Table
1 shows that the SPAG maintained
a very high level of accuracy in all
configurations, whereas Monkey-
Runner performed poorly when the
system was busy, especially for Twit-
ter and Facebook. This is because

ta
b

l
e

 1 Accuracy of SPAG and MonkeyRunner by percentage.

Workload

Skype Twitter Facebook

SPAG MonkeyRunner SPAG MonkeyRunner SPAG MonkeyRunner

Normal 97.5 92.5 99.5 92.5 97.5 72.5

25% CPU 97.5 99.5 99.5 92.5 97.5 65.0

50% CPU 99.5 99.5 99.5 72.5 97.5 60.0

75% CPU 99.5 99.5 99.5 40.0 92.5 60.0

100% CPU 99.5 99.5 99.5 37.5 92.5 40.0

I/O busy 99.5 72.5 95.0 20.0 92.5 40.0

YInG-dAR lIn is a professor in the Department of Computer
Science at National Chiao Tung University (NCTU). His research
interests include embedded systems, network protocols, and
algorithms. Yin received a PhD in computer science from the
University of California, Los Angeles. He’s an IEEE Fellow and di-
rects the Embedded Benchmarking Lab and Networking Bench-
marking Lab at NCTU. Contact him at ydlin@cs.nctu.edu.tw.

edWARd t.-H. CHu is an assistant professor in the Depart-
ment of Computer Science and Information Engineering at Na-
tional Yunlin University of Science and Technology. His research
interests include embedded system software. Chu received a
PhD in computer science from National Tsing Hua University.
Contact him at edwardchu@yuntech.edu.tw.

sHAnG-CHe Yu is a software engineer with Hope Bay
Technologies, Taiwan. He received an MS in computer science
from National Chiao Tung University. Contact him at comet.jc@
gmail.com.

YuAn-CHenG lAI is a professor in the Department of Infor-
mation Management at National Taiwan University of Science
and Technology. His research interests include performance
analysis and wireless networks. Lai received a PhD in computer
science from National Chiao Tung University. Contact him at
laiyc@cs.ntust.edu.tw.

a
b

o
u

t
 t

h
e

 a
u

t
h

o
r

s

 January/February 2014 | IEEE SoftwarE 45

MonkeyRunner can’t trigger events
on time that are associated with
flinging.

Effects of Smart Wait and
Event Batch on Accuracy
Figure 3 shows how in the case of a
100 percent CPU workload, the ac-
curacy of SPAG was 77.5 percent
with the Event Batch function and
92 percent with the Smart Wait func-
tion. Smart Wait contributed more
than Event Batch in improving accu-
racy when the system was busy. This
is because Smart Wait can be applied
to all GUI operations, whereas Event
Batch can only improve the accuracy
of moving GUI operations, such as
scrolling and flicking.

W e designed SPAG to
avoid nondeterministic
events by batching the

event sequence and reproducing it on
the DUT directly. In addition, SPAG
monitors target applications’ CPU
usage at runtime and dynamically
changes the timing of the next opera-
tion so that all event sequences and
verifications can be performed on
time, even though the DUT is heav-
ily loaded. Our experiments showed
that SPAG can maintain a high ac-
curacy of up to 99.5 percent. Accord-
ing to our current design, as long as a
smartphone is supported by Android
screencast, we can test it with SPAG
without needing to modify anything.
In the future, we plan to design a

fully platform- independent auto-
mated GUI testing system.

Acknowledgements
This work was supported in part by the
National Science Council and the Institute
for Information Industry in Taiwan.

References
 1. T. Yeh, T.-H. Chang, and R.C. Miller, “Si-

kuli: Using GUI Screenshots for Search and
Automation,” Proc. 22nd Ann. ACM Symp.
User Interface Software and Technology
(UIST 09), ACM, 2009, pp. 183–192.

 2. T.-H. Chang, T. Yeh, and R.C. Miller,
“GUI Testing Using Computer Vision,”
Proc. 28th Int’l Conf. Human Factors
in Computing Systems (CHI 10), ACM,
2010, pp. 1535–1544.

IEEE SoftwarE CALL FOR PAPERS

Special Issue on Virtual Teams
Submission deadline: 1 April 2014 • Publication: November/December 2014

Projects with team members located around the globe
have become increasingly common in software, R&D, and
business processes across all industry sectors. Improving the
effectiveness and efficiency of virtual teams is therefore an
increasingly business-critical issue.

Although much research has focused on globally distributed
teams, little is known about systematic, efficient, and
empirically proven methods to establish a performing virtual
team with regard to its management and tool support, as
well as impacts on a team’s performance that can arise from
human factors and cultural differences.

This special issue aims at collecting empirically validated
solutions that help to increase the efficiency and
effectiveness of virtual teams or that increase the quality
of their outcomes. We invite contributions relating but not
limited to

• solutions for establishing and managing virtual teams,
• measurement of virtual teams’ efficiency,
• social and human aspects in the context of distributed

projects,
• processes and methods for distributed projects,
• tools to support distributed projects and virtual teams

with empirical demonstration or validation of their
impacts,

• evaluation of the feasibility (for example, by
experimentation) of teaming approaches in global
software development,

• hands-on examples that demonstrate the applicability of
different solutions in practice, and

• industry experience, case studies, and field studies.

Each article should clearly outline the problem to be
addressed, the solution or the findings, (at least) a proof
of concept, and the options for transferring the solution/
findings into practice.

Questions?
For more information about the focus, contact the guest
editors:

• Marco Kuhrmann, kuhrmann@in.tum.de
• Patrick Keil, patrick.keil@keil-ktm.com
• Darja Smite, darja.smite@bth.se

Full author guidelines:
www.computer.org/software/author.htm
Submission details:
software@computer.org
Submit an article:
https://mc.manuscriptcentral.com/sw-cs

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

