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Abstract

An isometric path between two vertices in a graphG is a shortest path joining them. The isometric-path number ofG, denoted
by ip(G), is the minimum number of isometric paths required to cover all vertices ofG. In this paper, we determine exact valu
of isometric-path numbers of block graphs. We also give a linear-time algorithm for finding the corresponding paths.
 2004 Elsevier B.V. All rights reserved.
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An isometric path between two vertices in a grap
G is a shortest path joining them. Theisometric-path
number of G, denoted by ip(G), is the minimum num-
ber of isometric paths required to cover all vertic
of G. This concept has a close relationship with
game of cops and robbers described as follows.
game is played by two players, thecop and therob-
ber, on a graph. The two players move alternative
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subsequent move, a player may choose either to
at the same vertex or to move to an adjacent v
tex. The object for the cop is to catch the robb
and for the robber is to prevent this from happeni
Nowakowski and Winkler [7] and Quilliot [8] inde
pendently proved that the cop wins if and only if t
graph can be reduced to a single vertex by suc
sively removing pitfalls, where apitfall is a vertex
whose closed neighborhood is a subset of the clo
neighborhood of another vertex. As not all graphs
cop-win graphs, Aigner and Fromme [1] introduc
the concept of thecop-number of a general graphG,
denoted byc(G), which is the minimum number o

.
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cops needed to put into the graph in order to catch
the robber. On the way to giving an upper bound for
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2. Block graphs
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the cop-numbers of planar graphs, they showed
a single cop moving on an isometric pathP guar-
antee that after a finite number of moves the rob
will be immediately caught if he moves ontoP . Ob-
serving this fact, Fitzpatrick [4] then introduced t
concept of isometric-path cover and pointed out t
c(G) � ip(G).

The isometric-path number of the Cartesian pr
uct Pn1 × Pn2 × · · · × Pnd has been studied in the li
erature. Fitzpatrick [5] gave bounds for the case w
n1 = n2 = · · · = nd . Fisher and Fitzpatrick [3] gav
exact values for the cased = 2. Fitzpatrick et al. [6]
gave a lower bound, which is in fact the exact va
if d + 1 is a power of 2, for the case whenn1 = n2 =
· · · = nd = 2.

The purpose of this paper is to give exact valu
of isometric-path numbers of block graphs. We a
give a linear-time algorithm to find the correspon
ing paths. For technical reasons, we consider a slig
more general problem as follows. Suppose every
tex v in the graphG is associated with a non-negati
integerf (v). We call such functionf a vertex label-
ing of G. An f -isometric-path cover of G is a family
C of isometric paths such that the following conditio
hold.

(C1) If f (v) = 0, thenv is in an isometric path inC.
(C2) If f (v) � 1, thenv is an end vertex of at leas

f (v) isometric paths inC, while the counting is
twice if v itself is a path inC.

The f -isometric-path number of G, denoted by
ipf (G), is the minimum cardinality of anf -isometric-
path cover ofG. It is clear that whenf (v) = 0 for all
verticesv in G, we have ip(G) = ipf (G). The attempt
of is paper is to determine thef -isometric-path num
ber of a block graph. Recall that ablock graph is a
graph in which every block is a complete graph. Acut-
vertex of a graph is a vertex whose removal results i
graph with more components than the original gra
It is well known that in a block graph all internal ve
tices of an isometric path are cut-vertices.
In this section, we determine thef -isometric-path
numbers for block graphsG. Without loss of general
ity, we may assume thatG is connected. First, a usef
lemma.

Lemma 1. Suppose x is a non-cut-vertex of a block
graph G with a vertex labeling f . If vertex labeling
f ′ is the same as f except that f ′(x) = max{1, f (x)},
then ipf (G) = ipf ′(G).

Proof. As any internal vertex of an isometric path
a block graph is a cut-vertex butx not a cut-vertex
x must be an end vertex of any isometric path. It f
lows that a collectionC is anf -isometric-path cover i
and only if it is anf ′-isometric-path cover. The lemm
then follows. �

So, now we may assume thatf (v) � 1 for all non-
cut-verticesv of G, and call such a vertex labelin
regular. Now, we have the following theorem for th
inductive step.

Theorem 2. Suppose G is a block graph with a regular
labeling f , and x is a non-cut-vertex in a block B with
exactly one cut-vertex y or with no cut-vertex in which
case let y be any vertex of B − {x}. When f (x) = 1, let
G′ = G − x with a regular vertex labeling f ′ which is
the same as f except f ′(y) = f (y)+1. When f (x) �
2, let G′ = G with a regular vertex labeling f ′ which
is the same as f except f ′(x) = f (x)−1 and f ′(y) =
f (y) + 1. Then ipf (G) = ipf ′(G′).

Proof. We first prove that ipf (G) � ipf ′(G′). Sup-
poseC is an optimalf -isometric-path cover ofG.
Choose a pathP in C havingx as an end vertex. W
consider four cases.

Case 1.1.P = x andf (x) = 1 (i.e.,G′ = G − x).
In this case,C ′ = (C − {P }) ∪ {y} is an f ′-isomet-
ric-path cover ofG′. Hence, ipf (G) = |C| � |C ′| �
ipf ′(G′).

Case 1.2. P = x andf (x) � 2 (i.e., G′ = G). In
this case,C ′ = (C − {P }) ∪ {xy} is anf ′-isometric-
path cover ofG′. Hence, ipf (G) = |C| � |C ′| �
ipf ′(G′).
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Case 1.3.P = xz for some vertexz in B−{x, y}. In
this case,C ′ = (C−{P })∪{xy} is anf ′-isometric-path
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cover ofG′. Hence, ipf (G) = |C| � |C ′| � ipf ′(G′).
Case 1.4.P = xyQ, whereQ contains no vertice

in B. In this case,C ′ = (C − {P }) ∪ {yQ} is anf ′-iso-
metric-path cover ofG′. Hence, ipf (G) = |C| � |C ′| �
ipf ′(G′).

Next, we prove that ipf (G) � ipf ′(G′). SupposeC ′
is an optimalf ′-isometric-path cover ofG′. Choose a
pathP ′ in C ′ havingy as an end vertex. We consid
three cases.

Case 2.1. P ′ = yx. In this case,G′ = G andC =
(C ′ − {P ′}) ∪ {x} is anf -isometric-path cover ofG.
Hence, ipf (G) � |C| � |C ′| = ipf ′(G′).

Case 2.2.P ′ = yz for somez in B − {x, y}. In this
case,C = (C ′ − {P ′}) ∪ {xz} is an f -isometric-path
cover ofG. Hence, ipf (G) � |C| � |C ′| = ipf ′(G′).

Case 2.3.P ′ = yQ, whereQ contains no vertex in
B. In this case,C = (C ′ − {P ′}) ∪ {xyQ} is anf -iso-
metric-path cover ofG. Hence, ipf (G) � |C| � |C ′| =
ipf ′(G′).

Consequently, we have the following result f
f -isometric-path numbers of connected block grap

Theorem 3. If G is a connected block graph with a
regular vertex labeling f , then ipf (G) = �s(G)/2�,
where s(G) = ∑

v∈V (G) f (v).

Proof. The theorem is obvious whenG has only one
vertex. For the case whenG has more than one ve
tex, we apply Theorem 2 repeatedly until the gra
becomes trivial. Notice thats(G′) = s(G) when The-
orem 2 is applied. �

For the isometric-path-cover problem, we have

Corollary 4. If G is a connected block graph, then
ip(G) = �nc(G)/2�, where nc(G) is the number of
non-cut-vertices of G.

Proof. The corollary follows from Theorem 3 and th
fact that ip(G) = ipf (G) for the regular vertex la
beling f with f (v) = 1 if v is a non-cut-vertex an
f (n) = 0 otherwise. �
Based on Theorem 2, we are able to design an
gorithm for the isometric-path-cover problem in blo
graphs. Notice that we may only consider connec
block graphs with regular vertex labelings. To spe
up the algorithm, we may modify Theorem 2 a litt
bit so that each time a non-cut-vertex is handled.

Theorem 5. Suppose G is a block graph with a regular
labeling f , and x is a non-cut-vertex in a block B with
exactly one cut-vertex y or with no cut-vertex in which
let y be any vertex in B − {x}. Let G′ = G − x with
a regular vertex labeling f ′ which is the same as f

except f ′(y) = f (y)+f (x). Then ipf (G) = ipf ′(G′).

Proof. The theorem follows from repeatedly applyin
Theorem 2. �

Now, we are ready to give the algorithm.

Algorithm PG. Find thef -isometric-path number ipf (G)

of a connected block graph.

Input. A connected block graphG and a regular vertex la
belingf .

Output. An optimal f -isometric-path coverC of G and
ipf (G).

Method.

1. construct a stackS which is empty at the beginning;
2. letG′ ← G;
3. while (G′ has more than one vertex)do
4. choose a blockB with exactly one cut-vertexy or

with no cut-vertex in which case choose anyy ∈ B;
5. for (all verticesx in B − {y}) do
6. f (y) ← f (y) + f (x);
7. push(x, y,f (x)) into S;
8. G′ ← G′ − x;
9. end for;

10. end while;
11. ipf (G) ← �f (r)/2�, wherer is the only vertex ofG′;
12. letC be the family of isometric paths containing ip(G)

copies of the pathr ;
13. while (S is not empty)do
14. pop(x, y, i) from S;
15. choosei copies of pathP in C usingy as an end

vertex;
16. if (P = yx) then
17. replace thei copies ofP by i copies ofx in C;
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18. if (P = yz for some vertexz in the block ofG con-
tainingx) then
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19. replace thei copies ofP by i copies ofxz in C;
20. if (P = yQ whereQ has no vertices in the block of

G containingx) then
21. replace thei copies ofP by thei copies ofxyQ

in C;
22. end while.

Algorithm PG can be implemented in time linear
the number of vertices and edges. Notice that we
use the depth-first search to find all blocks and c
vertices of a graph in linear time, see [2].
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