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We propose a matrix-matrix multiplication by using anisotropic self-diffraction in BaTiO3. The input
matrices are carried by the two incident beams with special Bragg-matched incident angles. The output
matrices are produced by anisotropic self-diffraction with the polarization orthogonal to those of the
incident matrices. By thresholding the output this architecture is particularly suitable for the
applications of optical interconnects and an optical switch.

Introduction
Optical computing has been extensively studied and
is getting more attraction because of the inherent
parallelism of optics. Optical vector-matrix multipli-
cation is useful for applications of signal processing
including neural networks and large-scale interconnec-
tions.' Recently, real-time dynamic recording prop-
erties of photorefractive materials have been used to
perform image processing and multiwave mixing.2

Several architectures for parallel vector-matrix mul-
tiplications and programmable interconnections have
been proposed by using photorefractive crystals.3
In general we achieve matrix-matrix multiplication
by decomposing it into a series of vector-matrix
multiplications. 4 Thus, for an X x X matrix, the
vector-matrix multiplication needs N-time opera-
tions to complete the matrix-matrix multiplication.
In the past several years, direct matrix-matrix multi-
plications have been proposed by using degenerate or
nondegenerate four-wave mixing in bulk photorefrac-
tive crystals.35 6 In this paper we propose a new
method for performing matrix-matrix multiplication
by using photorefractive anisotropic self-diffraction
in BaTiO3. The characteristics of this architecture
are that the whole system needs only two incident
beams for carrying the input matrices. The multipli-
cation output is obtained by self-diffraction from a
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BaTiO3 crystal, and no extra reading beam is needed.
Because of the nonlinear property of wave mixing in
photorefractive crystals, the best results are obtained
when the outputs are thresholded to become binary
types. This architecture is useful in particular for
performing two-dimensional to two-dimensional inter-
connections.

Anisotropic Self-Diffraction in BaTiO3

Photorefractive crystal is one kind of real-time dy-
namic holographic recording material. When the
photogenerated mobile charges are redistribued in-
side the crystal corresponding to the light fringes, a
space-charge field is built and the local refractive
index is changed through the Pockels effect. As a
result, a phase volume hologram is formed.7 In
anisotropic bulk crystal, the Bragg condition deter-
mines the diffraction conditions. As shown in Fig. 1,
the optic axis is in the direction perpendicular to the
plane of incidence, kei and ke2 are the two incident
wave vectors inside the crystal, and Kg is the grating
vector defined as

Kg = ke2 - ke. (1)

If k0, and k02 are the diffracted waves, then the Bragg
conditions for anisotropic self-diffraction are

k. 2 = ke2 + Kg,

k., = kei - Kg.

(2)

(3)

In addition to the Bragg condition, the coupling
strength of the diffraction depends on the magnitude
of the effective coupling coefficient r, which is defined
as8

r = d* * i, (4)
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The coupling efficiency in anisotropic self-diffrac-
tion9 can be expressed as

IO(l) - 1

1 +mKAnl

(11)
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Fig. 1. Wave-vector diagram of anisotropic self-diffraction in
BaTiO3. The writing beams are both in extraordinary polariza-
tion and the self-diffracted beams are in ordinary polarization,
which is orthogonal to the optic axis.

where X is the coupling tensor that is described by
incident light polarization and crystal orientation,

= (R . .- sc* (5)

where 6i, 6d, and 6,, are unit vectors of incident light,
diffracted light, and the space-charge field, respec-
tively, e is the second-rank optical dielectric tensor,
and j is the electro-optic tensor.

In BaTiO3 with the incident condition shown in
Fig. 1, the refractive indices for ordinary and extraor-
dinary polarizations are both isotropic. If we define
the direction of the grating vector as kg,

kg = (1, 0, o), (6)

then the ordinary and extraordinary polarizations are

e = (cos 0, sin 0, 0),

6 = (0, 0, 1),

(7)

(8)

where 0 is the angle of ordinary light with respect to
they axis. From Eqs. (4)-(6), the effective coupling
coefficient in BaTiO3 can be obtained as

no2jzn 2Y42

0 6j.

0

where Il) is the intensity of diffracted light with
ordinary polarization, Ie(O) is the intensity of incident
light with extraordinary polarization at position z =
0, m is the modulation depth of the grating, K is the
wave number in vacuum, is the interaction length,
An is the local change of the refractive index,8"l0 and

An = 1 RT Kg ]n n 2 Y42, (12)

where

K- ( EEOKBT)½
(13)

KBT is the thermal energy, q is the electronic charge,
NA is the trap density, and e is the effective dielectric
constant in the direction of the grating vector. It
can be seen that the diffraction efficiency in Eq. (11) is
different from that of Kogelnik's formula." In this
case the incident beams act as both writing and
reading beams, and the grating dynamics is different
from that of a general case.

Matrix-Matrix Multiplication
An X x X matrix-matrix multiplication can be
written as

(14)

where the element of the output matrix is

cij = E aikbkj. (15)
0 0

r = d*° ° 
n,2n, 2'Y42 0

Because of the zero diagonal elements of the matrix in
Eq. (9), the coupling between two beams with the
same polarization is inhibited. On the other hand,
when the incident beams are extraordinarily polar-
ized and the diffracted beams are ordinarily polarized,
from Eqs. (7)-(9) the effective coupling coefficient is

-= no2 e2 Y42 cos 0. (10)

It is seen that a large effective coupling coefficient
exists between different polarized beams because of
the direct contribution from the largest electro-optic
coefficient Y42 of BaTiO3. In addition, under the
Bragg conditions shown in Fig. 1, the incident lights
kei and ke2 not only construct the grating Kg but are
also coupled to kol and ko2, respectively. This is the
case of anisotropic self-diffraction in BaTiO3.8 10

T

matrix A matrix B
Fig. 2. Schematic diagram of 
using anisotropic self-diffraction.
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Fig. 3. Experimental setup: M, mirror; L, lens; CL, cylindrical
lens; BS, beam splitter; BE, beam expander; 1/2X, half-wave plate.

Equation (15) shows that the matrix-matrix multipli-
cation can be obtained in two steps: parallel multipli-
cation and summation. The parallel multiplication
operation of matrix-matrix multiplication can be
performed by using anisotropic self-diffraction in
BaTiO3. In this method only two incident beams are
needed. As an example, Fig. 2 shows the signals of
matrices JT and AR, which are carried by the two
incident beams, and the signals of the corresponding
elements of the output matrix are carried by the
diffracted beams. For 2 x 2 matrics, there are two
layers of interaction regions in the vertical direction.
Each layer is confined in a horizontal plane. And
each layer consists of the interaction units of the
corresponding row of the first input matrix with the

(a)H

Fig. 5. Converging incident beams induce different incident angles
in different interaction units.

same row of the second input matrix. In this ex-
ample, four interaction spots in the interaction layer
for (a2l, all) and (bl, b12) are shown. For X x t
input matrices, there are N interaction layers inside
the crystal and each layer has N 2 interaction spots.
Totally there are N 3 interaction regions inside the
crystal. The right-hand part of Fig. 2 shows the
second step of the matrix-matrix multplication.
Summation of the diffracted beams along the vertical
column produces the element of the output matrix.
As an example, cl, is the sum of the diffracted beams
alibi, from the upper layer and al2b2l from the lower
layer.

In practical situations the maximal scale of the
matrix that can be operated is limited by the crystal
dimensions because we need a crystal with enough
size along the light propagation direction to accommo-
date all interaction regions of the corresponding
rows. In the vertical direction we only need the
crystal size to be larger than the size of the matrix
column. By using a simple geometric method, it can
be shown that the interaction length d and crystal
length D must satisfy

d = a. (w, + 2wlw2 cos 1 + w2
2)'/2 < D,

(b)

U
(C)

X

(16)

where wl and w2 are the widths of the input beams
inside the crystal, respectively, d is the whole interac-
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Fig. 4. Inputs and experimental results. The slant outputs of (b)
and (c) were caused by the inclination of the output plate.

Interaction length [mm]

Fig. 6 Theoretical calculations of maximum and minimum diffrac-
tion efficiencies as functions of interaction length.
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tion length, and , is the incident angle inside the
crystal that satisfies the Bragg condition9:

sin - (n' - n2 (17)

For an incident wavelength at 488 nm, n0 is 2.52 and
ne is 2.46.12 By applying Eq. (17), 4 is 4.5° inside the
crystal. If w = W2 _ w and we assume that the
spacing between the elements of column and row are
equal, the requirement of the crystal length is

2 cos-
D 2
-> . 25. (18)
w sin

In equality (18) shows that a long crystal is required
for large-scale operations.

Experimental Results
The experimental setup is shown in Fig. 3. We used
a single longitudinal mode TEMOO argon-ion laser at
488 nm as the light source. The writing beams are
extraordinarily polarized and are expanded and colli-
mated. The input signals are two 2 x 2 matrices.
The crystal dimensions are 5.7 mm x 5.2 mm x 5 mm
(a x b x c). From inequality (18) the effective input
beamwidth must be less than 0.23 mm in order that

all the interaction regions can be covered inside the
crystal. However, in the experiment, the effective
input beamwidth is 3 mm. In order to cover all the
interaction regions in the crystal, we used a spherical
lens with 400-mm focal length to focus the input
beam to be required size of 0.23 mm. A cylindrical
lens was added to recollimate the input beam in the
vertical direction because in this direction the crystal
dimension must only be larger than the width of the
input beam. Figure 4 shows outputs of the multpli-
cation for three different input matrices. In each of
the three cases, the upper drawing shows the ele-
ments of the input matrices and the corresponding
diffracted patterns, and the lower photograph shows
the experimental results. In the experiments we
adjusted the two incident beams around the Bragg
angle so that the output intensities are as nearly
uniform as possible. In fact, nonuniformity occurs
as shown in Figs 4(b) and 4(c). This nonuniformity
is due to the Bragg mismatch produced by horizontal
focusing of the input beams. As shown in Fig. 5, if
the input matrices are both 2 x 2, then the focusing
makes the incident angles different for the four
interaction regions. Let the incident angles be *A,

hB, 1c, and *D, respectively. Then it can be found by
geometry that *A is the largest angle and D is the
smallest. If the Bragg angle is located at the angle
between *B and *c, the Bragg conditions are better

Table 1. Theoretical Calculations of the Diffraction Intensity when the Interaction Length in Every
Interaction Unit is 1 mma

m

x
(I

Matrix A

"Both inputs aro 10 x 10 matrices, and the intensity of every input channel is 100 units.
interaction layer is shown.
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1 0 LK

1 2 3 4 5 6 7 8 9 10

1 65.24 58.96 45.06 33.60 26.09 21.12 17.66 15.15 13.24 11.75

2 20.50 26.77 30.29 24.95 19.77 16.23 13.75 11.94 10.56 9.48

3 6.42 7.86 16.08 21.37 17.96 14.63 12.31 10.66 9.42 8.40

4 2.63 2.41 4.42 13.09 18.24 16.86 12.62 10.70 9.33 8.30

5 1.36 1.07 1.38 3.52 11.70 16.42 13.86 11.41 9.72 8.49

6 0.81 0.60 0.66 1.11 3.13 10.60 14.96 12.64 10.45 8.92

7 0.54 0.89 0.38 0.53 0.98 2.83 9.69 13.74 11.66 9.66

8 0.38 0.27 0.25 0.31 0.47 0.89. 2.58 8.97 12.78 10.86

9 0.28 0.20 0.18 0.21 0.28 0.42 0.81 2.88 8.38 11.99

10 0.22 0.16 0.14 0.15 0.19 0.25 0.38 0.74 2.22 7.90

YERS*.....

-- I

10I
Only one



matched by tpB and ij than those of 4
jA and ID. This

is why the two central spots are brighter than the side
spots in Figs. 4(b) and 4(c). Therefore, in large-scale
operations, collimated input beams are required for
obtaining uniform output.

Discussion
In the following subsections we discuss the dynamic
range of output intensity and system speed of this
device.

Dynamic Range of the Output Intensity

From Eq. (11) the output intensity is a function of
both the modulation depth and the intensities of the
input beams. In the operation of A X X matrix
multiplications, each element of one matrix interacts
with N elements in the corresponding row of the
second matrix. For simplification we assume that N
is 10 and the intensity of all the input elements is
normalized to be 100 units. Numerical calculations
of the maximum and minimum diffraction intensities
for interaction length from 0.01 to 1 mm are shown in
Fig. 6. In this figure we found that the dynamic
range of the output intensity is a function of interac-
tion length. Tables 1 and 2 show the output inten-
sity of each interaction unit for interaction lengths of
1 and 0.08 mm, respectively. Note that there are ten
such layers stacked vertically for the total output of
the matrix multiplication, and Tables 1 and 2 show
only one such layer. We have to sum up these ten
layers in order to obtain the final output matrix.

The parameters we used for the calculations are NA =

2 x 1016 cm-3 , Y42 = 1640 pm/V, and E/E. = 3700.13
As shown in Table 1, long interaction length provides
strong diffraction, but at the same time it leads to
large nonuniformity of the output. Therefore, we
need to choose a moderate interaction length to
obtain large diffraction efficiency and good uniformity.
An example is shown in Table 2, where the diffraction
efficiency is in the range of (1.12 ± 0.11)% and the
system efficiency is greater than 10%. Here we want
to point out that this architecture is difficult for
performing general matrix-matrix multiplications.
The reason is that, as shown in Eq. (11), the output
intensity is a nonlinear function that depends both on
the incident intensity and the modulation depth of
each interaction unit. Especially when the matrix is
large, the modulation depth of an interaction spot can
be different from one spot to another spot. In this
case the interaction length should be kept short;
otherwise great nonlinearity results, as shown in
Table 1. Although an analog matrix-matrix multipli-
cation is not achievable, the output can be thresh-
olded, which makes it more appropriate as an optical
interconnect. As an example, input A can be treated
as a control of the interaction between input B and
output C.

System Speed
In photorefractive devices the operation speed de-
pends on the material, mobility of carriers, operation
temperature, and total incident intensity.14 The to-

Table 2. Theoretical Calculations of Diffraction Outputs when the Interaction Length in Every
Interaction Unit is 0.03 mm

10 LA:YERS

i --

10
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Matrix A

m
x
L_4-'
(U

1 2 3 4 5 6 7 8 9 10

1 1.187 1.187 1.187 1.187 1.186 1.186 1.185 1.186 1.184 1.184

2 1.173 1.173 1.173 1.173 1.172 1.172 1.172 1.171 1.171 1.170

3 1.159 1.159 1.159 1.159 1.159 1.159 1.158 1.158 1.157 1.157

4 1.145 1.145 1.145 1.145 1.146 1.145 1.145 1.145 1.144 1.144

5 1.131 1.131 1.131 1.131 1.132 1.132 1.131 1.131 1.131 1.131

6 1.117 1.117 1.118 1.118 1.118 1.118 1.118 1.118 1.118 1.118

7 1.103 1.104 1.104 1.104 1.106 1.106 1.106 1.106 1.106 1.106

8 1.090 1.090 1.091 1.091 1.091 1.092 1.092 1.092 1.092 1.092

9 1.076 1.077 1.077 1.078 1.078 1.078 1.079 1.079 1.079 1.079

10 1.063 1.064 1.064 1.065 1.066 1.065 1.066 1.066 1.066 1.066
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Table 3. Theoretical Calculations of the Total Incident Intensity at Each Unit when the Interaction Length
In the Unit is 0.03 mm

Matrix A 1 0 LAYERS
T--7- -- ---- 4~~- -

- 2 3 4 6 6 7 8 9 10

1 200.0 199.5 199.1 198.6 198.1 197.7 197.2 196.7 196.3 195.9

2 199.5 199.1 198.6 198.1 197.7 197.2 196.7 196.3 196.8 195.4

3 199.1 198.6 198.1 197.7 197.2 196.7 196.3 195.8 196.4 194.9

4 198.6 198.1 197.7 197.2 196.7 196.3 195.8 195.4 194.9 194.5

5 198.1 197.7 197.2 196.7 196.3 195.8 195.4 194.9 194.4 194.0

6 197.7 197.2 196.7 196.3 195.8 195.4 194.9 194.4 194.0 193.5

7 197.2 198.7 196.3 195.8 196.4 194.9 194.4 194.0 193.5 193.1

8 196.8 196.3 195.8 198.4 194.9 194.4 194.0 193.6 193.1 192.6

9 196.8 196.8 196.4 194.9 194.4 194.0 193.5 193.1 192.6 192.2

10 195.9 196.4 194.9 194.5 194.0 193.5 193.1 192.6 192.2 191.7

iQI

tal intensity of each interaction unit corresponding to
Table 2 is shown in Table 3. Light intensity of the
input matrix elements is assumed to be uniform and
is normalized to 100 units, and we obtained the
intensity at each interaction unit inside the crystal by
summing up the two undiffracted beams that passed
through the previous units. Since the response speed
of the photorefractive crystal is sublinearly propor-
tional to the incident intensity,14 the speed of each
interaction region can be estimated from these inten-
sities. It is seen in Table 3 that the intensity decays
approximately linearly from the upper-left pixel to
the lower-right corner along the diagonal direction.
By calculating the average intensity of the maximum
and minimum intensities, the average speed of each
interaction region can be estimated. The matrix
multiplication is performed inside the crystal as the
light beams propagate from the upper-left corner to
the lower-right corner of Table 3. The latter units
cannot reach steady state until the former units are
in steady state. As a result, they form a 2N - 1
temporal series of interaction spots for completing an
X x X matrix-matrix multiplication operation.
This temporally sequential behavior for the output
has been observed in our optical experiment. There-
fore, operation time of the system will be around
2N - 1 times the average response time of a unit.
This means that the system speed is approximately
proportional to 1/(2N - 1) of the average speed of a
unit. By applying a sublinear relationship between
the light intensity and speed, we can estimate the

system speed simply by calculating the effective sys-
tem intensity:

(19)Iavsys 2N -1

where

Ia Im. + mi..2 +lay 2 (20)

Therefore the system speed can be estimated by using
Eqs. (19) and (20).

Conclusions
We have proposed a new architecture for performing
matrix-matrix multiplication by using anisotropic
self-diffraction in BaTiO3 . The advantages of this
device are that only two input matrices are needed for
the operation, and the polarizations of the output
lights are orthogonal to the input lights. We have
also shown that the diffraction efficiency and the
uniformity of the output depend on the length of
interaction units inside the crystal. By selecting a
proper interaction length a compromise between the
diffraction efficiency and output uniformity can be
achieved. In general, the diffracted intensity is a
nonlinear function of the modulation depth of the
input signals. Therefore, this method is not appro-
priate for ordinary matrix-matrix multiplications.
Instead, by thresholding the output, the system is
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particularly suitable for applications in optical inter-
connects and optical switches.
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