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Abstract

The path-partition problem is to find a minimum number of vertex-disjoint paths that cover all vertices of a given graph. This
paper studies the path-partition problem from an algorithmic point of view. As the Hamiltonian path problem is NP-complete
for many classes of graphs, so is the path-partition problem. The main result of this paper is to present a linear-time algorithm
for the path-partition problem in graphs whose blocks are complete graphs, cycles or complete bipartite graphs.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A path partitionof a graph is a collection of vertex-disjoint paths that cover all vertices of the grappattigartition problem
is to find thepath-partition numbep (G) of a graphG, which is the minimum cardinality of a path partition@f Notice thatG
has a Hamiltonian path if and onlyf(G)=1. Since the Hamiltonian path problem is NP-complete for planar gf@pHspartite
graphgq10], chordal graphglL0], chordal bipartite grapH44] and strongly chordal grapli$4], so is the path-partition problem.

On the other hand, the path-partition problem is polynomially solvable for {ice$6] interval graphg1,2,7), circular-arc
graphg2,7], cographg5,6,13] cocomparability graphi8], block graphg17—19]and bipartite distance-hereditary grapds].
For some references of related problems,[8e£12,15,20]

The purpose of this paper is to give a linear-time algorithm for the path-partition problem for graphs whose blocks are complete
graphs, cycles or complete bipartite graphs. For technical reasons, we consider the following generalized problem, which is a
labeling approactor the problem.

Suppose every vertaxin the graphG is associated with an integgi(v) € {0, 1, 2, 3}. An f-path partitionis a collection?
of vertex-disjoint paths such that the following conditions hold:

(P1) Any vertexv with f(v) # 3 is in some path i?.
(P2) If f(v) =0, thenv itself is a path in2.
(P3) If f(v) =1, thenv is an end vertex of some pathin
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Thef-path-partition problenis to determine thépath-partition numbep ;(G) which is the minimum cardinality of afipath
partition of G. Itis clear thatp(G) = p s (G) when f (v) = 2 for all verticesv in G.

In the rest of this section, we review some terminology in graphsutAvertexis a vertex whose removal results in a graph
having more components than the original grapbl@ckis a maximal connected subgraph without a cut-vertex. Notice that the
intersection of two distinct blocks contains at most one vertex; and a vertex is a cut-vertex if and only if it is the intersection of
two or more blocks. Consequently, a graph with one or more cut-vertices has at least two bloeks. Bockis a block with
exactly one cut-vertex.

2. Path partition in graphs

The labeling approach used in this paper starts from the end blocks. Supmaa end block whose only cut-vertexxs
Let A be the graplG — (V(B) — {x}). Notice that we can viey as the “composition” oA andB, i.e.,G is the union ofA and
B which meet at a common vertexThe idea is to get the path-partition numbeGofrom those ofA andB.

In the lemmas and theorems of this paper, we use the following notation. Supip@sspecified vertex of a graphin which
fis avertex labeling. Far=0, 1, 2, 3, we define the functiorf; : V(H) — {0, 1, 2, 3} by f; (y) = f (y) for all verticesy except
fitkx)=1i.

Lemma 1. Suppose x is a specified vertex in a graph H. Then the following statements hold

V) pr(H)<prp(H)<pp(H)<pp(H).

@) pp(H)<pr(H)<pp(H) + 1.

4) pr(H)y=min{p s, (H), pr(H —x)}<pr(H —x)=pp(H) — 1.
®) pr(HYZpp(H) - 1.

Proof. (1) The inequalities follow from that ayi -path partition is ary;-path partition whenever< j.

(2) The second inequality follows from that replacing the gakhin an f1-path partition by two pathP andx results an
fo-path partition ofH.

(3) The second inequality follows from that replacing the fa&tQin an f»>-path partition by two pathBx andQ results an
f1-path partition ofH.

(4) The first equality follows from that one is gi-path partition ofH if and only if it is either anf>-path partition ofH or
anf-path partition ofH — x. The second equality follows from that is an fp-path partition ofH if and only if it is the union
of {x} and arf-path partition ofH — x.

(5) According to (1), (3) and (4), we have

py(H) > ppy(H) = min(p g, (H), pp(H =)} > min(p g, (H) = 1 py(H) = = ppy () = 1. O

Lemma 2. (1) ps(G)< min{pr(A) + pr(B) — 1, p o (A) + pr(B) — 1}.

Proof. (1) Suppose? is an optimalf-path partition ofA, and2 an fp-path partition oB. Thenx € 2 and so(# U 2) — {x} is
anf-path partition ofG. This givesp s (G) < p s (A) + p s (B) — 1. Similarly, p ¢ (G) < p ,(A) + pr(B) — 1.

(2) The inequality follows from that if? (respectively,2) is an optimal f1-path partition ofA (respectivelyB) in which
Px € 2 (respectivelyx Q € 2) contain, then(2 U 2U {PxQ}) — {Px, xQ} is an fo-path partition ofG. O

We now have the following theorem which is key for the inductive step of our algorithm.

Theorem 3. Suppose=p s, (B) — p, (B) andf=p 1, (B) — p,(B). (Notice thatr, § € {0, 1}.) Then the following statements
hold:

(1) If f(x)=0,thenp;(G) = ps(A)+ ps(B)— 1.

(2) If f(x)=1,thenp(G)=pyp (A + ps,(B) — 1.

(3) If f(x)>2anda=p=0,thenp(G) = ps(A) + p(B) — 1.
(4) If f(x)>2anda=0andf =1,thenps(G) = pp(A) + pr(B).
(5) If f(x)>2anda=1,thenp(G) = pys, ,(A) + pp ,(B) — 1.
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Proof. Suppose? is an optimal-path partition ofG. Let P* be the path i? that contains. (It is possible that there is no such
path whenf (x) = 3.) There are three possibilities fér*: (a) P* does not exist oP* C A; (b) P* C B; (c) xis an internal
vertex of P*, sayP* = P/x P”, with P’x € A andxP” C B. (The latter is possible only whefi(x) > 2.)

For the case when (a) holds? € 2 : P C A} is anf-path partition ofAand{P € 2 : P C B} U {x} is an fp-path partition
of B. We then have the inequality i@). Similarly, we haveb’) and(c’) corresponding to (b) and (c).
@) pr(G)=pyr(A) + pg(B) — 1.
(0) pr(G)=pfy(A)+ py(B) — 1. (We may replace s (B) by p,(B) when f (x) >2.)
(©) pr(G)=py(A) + pp(B) — 1. (This is possible only wheyfi(x) > 2.)

We are now ready to prove the theorem.

(1) Sincef (x) =0, we havef = fo. According to Lemma 2(1)p s (G) < p r(A) + p r(B) — 1. On the other hand, {leand
(') give pr(G)=pr(A) + py(B) — 1.

(2) Sincef(x) = 1, we havef = f1. Lemma 2(1), together with (pand (B), gives p ¢ (G) = min{p ¢, (A) + p7,(B) —
L pp(A) + ppy(B) — 1) If =0, then

PfoA)+pp(B)=12pp(A)+ (pg(B) —o) = 1=pp(A) + pp(B) — L
and ife = 1, then

Pp(A)+pgp(B) =12 (pp(A) =D+ (pp(B)+0) —1=pg(A) + pp(B) — 1
Hencep ¢ (G) = py,_,(A) + pf,(B) — 1.

(3)Accordingto Lemma 2(1) s (G) < p r(A) + p s (B) — 1. On the other hand, as, (A) > p £, (A) = p (A) andp 7, (B) =

Pr(B)=pp(B), (@A)~(C)give pr(G)=pr(A) + pro(B) — 1.
(4) According to Lemma 1(4) and= 0 andff = 1, we have

Pr(B—x)=pgpB)—1=pp(B) —1=pg(B).
This, together with Lemma 1(4), gives that the above value is also equglt®) and sop y(B). Then, an optimalfz-path
partition# of A, together with an optimgp »-path partition ofB — x (respectivelyB) whenx s (respectively, is not) in a path
of 2, forms anf»-path partition ofG. Thus,p (G) < p £, (G) < p £;(A) + pr(B).
Onthe otherhand, singey, (A) > p s (A) > p s, (A) andp 7 (B)—1=p r, (B)—1=p(B), (&) or () impliesp ; (G) > p r, (A)+

pf(B).Also, asp s, (A) — 1> pr,(A) by Lemma 1(4), ® implies p ¢ (G) 2> p ;;(A) + py(B).
(5) According to Lemma 1(1) and Lemma 2, we have

PFG)<pp(G)<min{pg(A) + pp(B) =1, pp(A) + pp(B) — 1)
On the other hand, if (aholds, then by Lemma 1(5) and that,(B) = ps (B) +1,
PrG)Zpr(A)+pp(B) —12(pp(A) =D+ (ppB)+ D) —1=ppr(A)+pp(B) — 1
This, together with () and (¢), gives
pr(G)=min{ps(A) + pfp(B) =1, pf(A) + pr(B) — 1}
If f=0, then
P +ppB)—12ppn(A)+(ppB)—B) —1=pp(A)+pp(B) — L
and if f = 1, then
PAA) +pp(B) —12(pp(A) =D+ (ppp(B) + ) —1=pp(A) + pp(B) — L

Hencepf (G) = pf]_,ﬁ (A) + pflJr/;(B) -1 0
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3. Special blocks

Notice that the inductive theorem (Theorem 3) can be applied to solve the path-partition problem on graphs for which the
problem can be solved on its blocks. In this paper, we mainly consider the case when the blocks are complete graphs, cycles or
complete bipartite graphs.

Now, we assume thd is a graph in which each vertaxhas a labelf (v) € {0, 1, 2, 3}. Recall thatf—l(i) is the set of
preimagesfi, i.e.

liy=wevd): f) =il

According to Lemma 1(4), we haves(B) = ps(B — f~1(0)) + | f~1(0)|. Therefore we may assume without loss of

generality thatf —1(0) = ¢ throughout this sectian
We first consider the case whBiis a complete graph. The proof of the following lemma is straightforward and hence omitted.

Lemma 4. Suppose B is a complete graph/if1(1) # ¢ or f=1(2) =, thenp s (B) = [ f~1(1)|/2] elsep s (B) = 1.

Next, consider the case wheis a path. This is useful as a subroutine for handling cycles. The proof of the following lemma
is also omitted.

Lemma 5. Suppose B is a path

(1) If xis an end vertex of B witlf (x) = 3, thenp ¢ (B) = p (B — x).

(2) If xis an end vertex of B witlf (x) = 2, thenp ¢ (B) = p, (B).

(3) If B has an end vertex x and another vertex y wittx) = f(y) = 1 such that no vertex between x and y has a ldh#ten
pr(B)= pf(B/) + 1whereB’ is the path obtained from B by deletingy and all vertices between them

We then consider the case whiis a cycle. The proof of the following lemma is also omitted.

Lemma 6. Suppose B is a cycle

(1) If f=1@ =0, thenp;(B) =TI/ ~1(D)I/2].
(2) If Pis apath fromx toy in B such thgt=1(1) N P = {x, y} and f~1(2) N P # @, thenp s (B) = ps(B — P) + 1.

Finally, we consider the case whBis a complete bipartite graph withiu D as a bipartition of the vertex set. Foe {0, 1, 2, 3},
let

Ci={ueC: f(u)=i} withc¢; =|C;|;
Di={veD: f(v)=i} withd; =|D;|.
We have the following lemmas.
Lemma 7. If c; =di1 =0andcz>dp andx € C2,thenp¢(B) = p(B) where ' is the same as f except(x) = 1.

Proof. pr(B)< p s (B) follows from the fact that any”-path partition ofB is anf-partition.

Suppose? is an optimalf-path partition ofB. We may assume that is chosen so that the pathsdhcover as few vertices
as possible. For the case wherhas a pathiPy with y € C, we may interchangg andx to assume thaPx € 2. In this case,
2 is an f'-path partition of8 and sop p1(B) < p¢(B). So, now assume that all end vertices of pathiare inD. Then, these
end vertices are all i, for otherwise we may delete those end verticeB#1to get a new” which covers fewer vertices. We
may further assume that paths#hcover no vertices iD3, for otherwise we may interchange such a vertex with an end vertex
of a path inZ and then delete it from the path. Thus each pat® afses vertices i€ U C3 U D5, and has end vertices iby.
These imply thatly > ¢p, contradicting thaty, >dy. O

By symmetry, we may prove a similar theorem for the case when c1 = 0 anddo > ¢ andd, > 1.
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Lemma 8. Supposer € C1. Also eitherda > 1 with y € Dy, or elsecy > d1 anddz = 0 <dz withy € D3. Thenp ¢(B) =
p (B —x), wheref’ is the same as f except(y) = 1.

Proof. SupposePyis in an optimalf’-path partition? of B — x. Then(2 — {Py}) U { Pyx} is anf-path partition o8 and so
pr(B)<ps (B —x).

On the other hand, suppoBe is in an optimalf-path partitionZ of B. For the case wheyis not covered by any path i#,
we havey € D3 and soc1 > dq anddo = 0. Consequently, there is soni € 2 with z € C2 U C3 or z € D3. For the former
case, we replac®zby Qzyin Z; for the later, we replac®zby Qy. So, in any case we may assume tha covered by some
pathRySin 2. If RyS = Px, then again we may interchangevith the last vertex oP to assume thaRyS = T'yx in 2 for
someT. If RyS # Px, then we may replace the two patRgSandPx by RyxandPS So, in any case, we may assume t#at
has a pattuyx Then,(Z — {Uyx}) U {Uy} is an f’-path partition ofB — x. ThUSpf/(B —x)<pp(B). O

By symmetry, we may prove a similar theorem for the case whenD1; and eitheis > 1 with y € C», or elsed; > ¢1 and
cp=0<c3withy € C3.

4. Algorithm

We are ready to give a linear-time algorithm for the path-partition problem in graphs whose blocks are complete graphs,
cycles or complete bipartite graphs. Notice that we may consider only connected graphs. We present five procedures. The first
four are subroutines which calculdtpath-partition numbers of complete graphs, paths, cycles and complete bipartite graphs,
respectively, by using Lemmas 4-8. The last one is the main routine for the problem.

First, Lemmas 1(4) and 4 lead to the following subroutine for complete graphs.

Algorithm PCG. Find thef-path partition numbep /(B) of a complete grapB.

Input. A complete grapiB and a vertex labeling
Output. p¢(B).
Method.
if (f 71D #0or f7H2) =)
then p(B) = 1Yo+ 117 ti/2n
elseps(B) =10+ 1;
return p ¢ (B).

Lemma 5 leads to the following subroutine for paths, which is useful for the cycle subroutine.

Algorithm PP. Find thef-path partition numbep »(B) of the pathB.

Input. A pathB and a vertex labelingwith f~1(0) = @.
Output. p¢(B).
Method.
pr(B) < 0;
B’ < B;
while (B’ # ¢) do
choose an end vertexof B’;
if (f(x)=3)then B’ < B’ — x else
choose a vertey nearest toc with f(y) =1
(lety be the other end vertex if there is no such vertex);
pfr(B) < pr(B)+1;
B’ < B’— all vertices between (and includingandy;
end else
end while;
retun p s (B).

Lemmas 1(4) and 6 lead to the following subroutine for cycles.
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Algorithm PC. Find thef-path partition numbep s (B) of a cycleB.

Input. A cycle B and a vertex labeling
Output. p¢(B).
Method.
if (f~10)=0and =12 =0)
then ps(B) < [f~1(1)/21;
else if(f~1(0) =@ and f ~1(2) # ¥ and| f~1(1)| < 1) then
pr(B) <1
else if(f~1(0) = v and F~1(2) # ¢ and| f~1(1)| >2) then
choose a patP from x to y such that
fAnpP = ytandft@n P £4;
pr(B) < py(B — P)+ 1bycallingPP(B — P);
else// now f~1(0) £ ¢ //
let B — £~1(0) be the disjoint union of path&y, Ps, ..., Py;
pr(B) < 1f~2O);
fori=1tokdops(B) < pr(B)+ py(F;) by callingPP(P;);
end else
return p 7 (B).

Lemmas 1(4), 7 and 8 lead to the following subroutine for complete bipartite graphs. In the subroutine, we inductively
reduce the size of U D. Besides the reduction afg and Dg in the second line, we consider 9 cases. The first case is
for C =¥ or D = . The next 5 cases are faf >1 or d1 >1. In particular, the case af; >1 is covered by cases 2
and 3, except whedo = 0 and ¢1<dy or d3 = 0). The case ofi; >1 is covered by cases 4 and 5, except whgnr=
0 and @1<c1 or c3 = 0). The exceptions are then covered by case 6. Finally, the last 3 cases are
forcy =dy =0.

Algorithm PCB. Find thef-path partition numbep ;(B) of a complete bipartite gragB.
Input: A complete bipartite grapB with a bipartitionC U D of vertices and a vertex labelirig
Output: p ¢ (B).

Method.
¢ < |f~Y@)nclandd; < |£71G) N D] for 0<i<3;
pf(B) < co+ do;
while (true)do
if (c1 =cp=c3=00rdy =do =d3z=0)then
pf(B) < py(B)+c1+c2+d1+da; return py(B);
else if(c1 >1 anddo >1) then // use Lemma §/
c1<c1—1;dy<—dp—1; d < d1+ 1,
else if(c1 >1 andcy > dy anddo = 0 < d3) then // use Lemma §/
c1<«c1—1;d3 < d3—1; d < di1+ 1,
else if(dy > 1 andco >1) then // use the remark after Lemma/8
di<d1—1;, cop<c2—1, c1 < c1+1;
else if(d1 > 1 anddy > ¢1 andcp = 0 < ¢3) then // use the remark after Lemma/@
dy < dy—1; cg<«c3—1,¢c1 < c1+1
else if(co=do=0and ¢1 =dy>1o0rcy >dy >1withdg =0 ordy > ¢1 >1 with ¢c3 = 0)) then
pf(B) < pr(B) +maxXcy, di}; return p¢(B);
else// by nowc1 =dy =0// if (c2 =dp =0) then
return p ¢ (B);
else if(co >dp) then // use Lemma 7/
c1 <1, cp < cp—1;
else if(co < do) then // use the remark after Lemma/7
d1 < 1; do < dp — 1,
end while.

Finally, Theorem 3 together with the subroutines above leads to the following main algorithm.
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Algorithm PG. Find the path-partition number, (G) of the connected grap® whose blocks are cycles, complete graphs or
complete bipartite graphs.

Input: A graphG and a vertex labeling

Output: p ¢ (G).

Method.
pp(G) < 0;
G « G;
while (G" # ) do
choose a blocB of G with only one cut-vertex or with no cut-vertex;
if (Bis a complete grapthen
find p 7, (B) by callingPCG(B, f;) for 0<i <3;
if (Bis a cycle)then
find p 1, (B) by callingPC(B, f;) for 0<i <3;
if (Bis a complete bipartite grapkh)en
find p 1, (B) by callingPCB(B, f;) for 0<i <3;
o =pf(B) — pp(B);
B:=pp(B)—pr(B);
if (f(x)=0)then
pr(G) < pr(G)+pr(B)— 1
else if(f(x) = 1) then
Pr(G) < pr(G)+pp(B)—1; f(x) < 1—o
else// by now f(x) =2o0r3//
case lo==0
Pr(G) < pr(G)+ pp(B) — 1,
case 2a=0andf=1
Pf(G) < pr(G)+pr(B); f(x) < 3
case 3u=1
prG) < prG)+pp ,(B) =1 f(x) < 1=
G :=G' — (B - {x});
end while;
output p ¢ (G).

Theorem 9. AlgorithmPG computes the f-path partition number of a connected graph whose blocks are cgoigdete graphs
or complete bipartite graphs in linear time

Proof. The correctness of the algorithm follows from Lemma 1(4) and Lemmas 4 to 8. The algorithm takes only linear time
since depth-first search can be used to find end blocks and each subroutine requireg Bhlpperations. O
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