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Abstract

The path-partition problem is to find a minimum number of vertex-disjoint paths that cover all vertices of a given graph. This
paper studies the path-partition problem from an algorithmic point of view. As the Hamiltonian path problem is NP-complete
for many classes of graphs, so is the path-partition problem. The main result of this paper is to present a linear-time algorithm
for the path-partition problem in graphs whose blocks are complete graphs, cycles or complete bipartite graphs.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A path partitionof a graph is a collection of vertex-disjoint paths that cover all vertices of the graph.Thepath-partition problem
is to find thepath-partition numberp(G) of a graphG, which is the minimum cardinality of a path partition ofG. Notice thatG
has aHamiltonian path if and only ifp(G)=1. Since theHamiltonian path problem isNP-complete for planar graphs[9], bipartite
graphs[10], chordal graphs[10], chordal bipartite graphs[14] and strongly chordal graphs[14], so is the path-partition problem.
On the other hand, the path-partition problem is polynomially solvable for trees[11,16], interval graphs[1,2,7], circular-arc
graphs[2,7], cographs[5,6,13], cocomparability graphs[8], block graphs[17–19]and bipartite distance-hereditary graphs[21].
For some references of related problems, see[3,4,12,15,20].
The purpose of this paper is to give a linear-time algorithm for the path-partition problem for graphswhose blocks are complete

graphs, cycles or complete bipartite graphs. For technical reasons, we consider the following generalized problem, which is a
labeling approachfor the problem.
Suppose every vertexv in the graphG is associated with an integerf (v) ∈ {0,1,2,3}. An f-path partitionis a collectionP

of vertex-disjoint paths such that the following conditions hold:

(P1) Any vertexv with f (v) �= 3 is in some path inP.
(P2) If f (v)= 0, thenv itself is a path inP.
(P3) If f (v)= 1, thenv is an end vertex of some path inP.
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Thef-path-partition problemis to determine thef-path-partition numberpf (G) which is the minimum cardinality of anf-path
partition ofG. It is clear thatp(G)= pf (G) whenf (v)= 2 for all verticesv in G.
In the rest of this section, we review some terminology in graphs. Acut-vertexis a vertex whose removal results in a graph

having more components than the original graph. Ablockis a maximal connected subgraph without a cut-vertex. Notice that the
intersection of two distinct blocks contains at most one vertex; and a vertex is a cut-vertex if and only if it is the intersection of
two or more blocks. Consequently, a graph with one or more cut-vertices has at least two blocks. Anend blockis a block with
exactly one cut-vertex.

2. Path partition in graphs

The labeling approach used in this paper starts from the end blocks. SupposeB is an end block whose only cut-vertex isx.
LetA be the graphG− (V (B)− {x}). Notice that we can viewG as the “composition” ofA andB, i.e.,G is the union ofA and
Bwhich meet at a common vertexx. The idea is to get the path-partition number ofG from those ofA andB.
In the lemmas and theorems of this paper, we use the following notation. Supposex is a specified vertex of a graphH in which

f is a vertex labeling. Fori=0,1,2,3, we define the functionfi : V (H)→ {0,1,2,3} byfi(y)=f (y) for all verticesyexcept
fi(x)= i.

Lemma 1. Suppose x is a specified vertex in a graph H. Then the following statements hold.

(1) pf3(H)�pf2(H)�pf1(H)�pf0(H).
(2) pf1(H)�pf0(H)�pf1(H)+ 1.
(3) pf2(H)�pf1(H)�pf2(H)+ 1.
(4) pf3(H)=min{pf2(H), pf (H − x)}�pf (H − x)= pf0(H)− 1.
(5) pf (H)�pf1(H)− 1.

Proof. (1) The inequalities follow from that anfi -path partition is anfj -path partition wheneveri < j .
(2) The second inequality follows from that replacing the pathPx in anf1-path partition by two pathsP andx results an

f0-path partition ofH.
(3) The second inequality follows from that replacing the pathPxQ in anf2-path partition by two pathsPxandQ results an

f1-path partition ofH.
(4) The first equality follows from that one is anf3-path partition ofH if and only if it is either anf2-path partition ofH or

an f-path partition ofH − x. The second equality follows from thatP is anf0-path partition ofH if and only if it is the union
of {x} and anf-path partition ofH − x.
(5) According to (1), (3) and (4), we have

pf (H)�pf3(H)=min{pf2(H), pf (H − x)}� min{pf1(H)− 1, pf0(H)− 1} = pf1(H)− 1. �

Lemma 2. (1) pf (G)� min{pf (A)+ pf0(B)− 1, pf0(A)+ pf (B)− 1}.
(2) pf2(G)�pf1(A)+ pf1(B)− 1.

Proof. (1) SupposeP is an optimalf-path partition ofA, andQ anf0-path partition ofB. Thenx ∈ Q and so(P ∪ Q)− {x} is
anf-path partition ofG. This givespf (G)�pf (A)+ pf0(B)− 1. Similarly,pf (G)�pf0(A)+ pf (B)− 1.
(2) The inequality follows from that ifP (respectively,Q) is an optimalf1-path partition ofA (respectively,B) in which

Px ∈ P (respectively,xQ ∈ Q) containsx, then(P ∪ Q ∪ {PxQ})− {Px, xQ} is anf2-path partition ofG. �

We now have the following theorem which is key for the inductive step of our algorithm.

Theorem 3. Suppose�=pf0(B)−pf1(B) and�=pf1(B)−pf2(B). (Notice that�, � ∈ {0,1}.)Then the following statements
hold:

(1) If f (x)= 0, thenpf (G)= pf (A)+ pf (B)− 1.
(2) If f (x)= 1, thenpf (G)= pf1−�(A)+ pf�(B)− 1.
(3) If f (x)�2 and�= �= 0, thenpf (G)= pf (A)+ pf0(B)− 1.
(4) If f (x)�2 and�= 0 and�= 1, thenpf (G)= pf3(A)+ pf (B).
(5) If f (x)�2 and�= 1, thenpf (G)= pf1−�(A)+ pf1+�(B)− 1.
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Proof. SupposeP is an optimalf-path partition ofG. LetP ∗ be the path inP that containsx. (It is possible that there is no such
path whenf (x) = 3.) There are three possibilities forP ∗: (a)P ∗ does not exist orP ∗ ⊆ A; (b) P ∗ ⊆ B; (c) x is an internal
vertex ofP ∗, sayP ∗ = P ′xP ′′, with P ′x ⊆ A andxP ′′ ⊆ B. (The latter is possible only whenf (x)�2.)
For the case when (a) holds,{P ∈ P : P ⊆ A} is anf-path partition ofA and{P ∈ P : P ⊆ B} ∪ {x} is anf0-path partition

of B. We then have the inequality in(a′). Similarly, we have(b′) and(c′) corresponding to (b) and (c).

(a′) pf (G)�pf (A)+ pf0(B)− 1.
(b′) pf (G)�pf0(A)+ pf (B)− 1. (We may replacepf (B) by pf2(B) whenf (x)�2.)
(c′) pf (G)�pf1(A)+ pf1(B)− 1. (This is possible only whenf (x)�2.)
We are now ready to prove the theorem.
(1) Sincef (x)= 0, we havef = f0. According to Lemma 2(1),pf (G)�pf (A)+ pf (B)− 1. On the other hand, (a′) and

(b′) givepf (G)�pf (A)+ pf (B)− 1.
(2) Sincef (x) = 1, we havef = f1. Lemma 2(1), together with (a′) and (b′), givespf (G) = min{pf1(A) + pf0(B) −

1, pf0(A)+ pf1(B)− 1}. If �= 0, then

pf0(A)+ pf1(B)− 1�pf1(A)+ (pf0(B)− �)− 1= pf1(A)+ pf0(B)− 1;

and if�= 1, then

pf1(A)+ pf0(B)− 1�(pf0(A)− 1)+ (pf1(B)+ �)− 1= pf0(A)+ pf1(B)− 1.

Hencepf (G)= pf1−�(A)+ pf�(B)− 1.
(3)According to Lemma 2(1),pf (G)�pf (A)+pf0(B)−1. On the other hand, aspf0(A)�pf1(A)�pf (A) andpf0(B)=

pf1(B)= pf2(B), (a′)–(c′) givepf (G)�pf (A)+ pf0(B)− 1.
(4) According to Lemma 1(4) and�= 0 and�= 1, we have

pf (B − x)= pf0(B)− 1= pf1(B)− 1= pf2(B).

This, together with Lemma 1(4), gives that the above value is also equal topf3(B) and sopf (B). Then, an optimalf3-path
partitionP of A, together with an optimalpf -path partition ofB − x (respectively,B) whenx is (respectively, is not) in a path
of P, forms anf2-path partition ofG. Thus,pf (G)�pf2(G)�pf3(A)+ pf (B).
On theotherhand, sincepf1(A)�pf (A)�pf3(A)andpf0(B)−1=pf1(B)−1=pf (B), (a′) or (c′) impliespf (G)�pf3(A)+

pf (B). Also, aspf0(A)− 1�pf3(A) by Lemma 1(4), (b′) impliespf (G)�pf3(A)+ pf (B).
(5) According to Lemma 1(1) and Lemma 2, we have

pf (G)�pf2(G)� min{pf0(A)+ pf2(B)− 1, pf1(A)+ pf1(B)− 1}.

On the other hand, if (a′) holds, then by Lemma 1(5) and thatpf0(B)= pf1(B)+ 1,

pf (G)�pf (A)+ pf0(B)− 1�(pf1(A)− 1)+ (pf1(B)+ 1)− 1= pf1(A)+ pf1(B)− 1.

This, together with (b′) and (c′), gives

pf (G)=min{pf0(A)+ pf2(B)− 1, pf1(A)+ pf1(B)− 1}.

If �= 0, then

pf0(A)+ pf2(B)− 1�pf1(A)+ (pf1(B)− �)− 1= pf1(A)+ pf1(B)− 1;

and if�= 1, then

pf1(A)+ pf1(B)− 1�(pf0(A)− 1)+ (pf2(B)+ �)− 1= pf0(A)+ pf2(B)− 1.

Hencepf (G)= pf1−�(A)+ pf1+�(B)− 1. �
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3. Special blocks

Notice that the inductive theorem (Theorem 3) can be applied to solve the path-partition problem on graphs for which the
problem can be solved on its blocks. In this paper, we mainly consider the case when the blocks are complete graphs, cycles or
complete bipartite graphs.
Now, we assume thatB is a graph in which each vertexv has a labelf (v) ∈ {0,1,2,3}. Recall thatf−1(i) is the set of

preimagesof i, i.e.

f−1(i)= {v ∈ V (B) : f (v)= i}.

According to Lemma 1(4), we havepf (B) = pf (B − f−1(0)) + |f−1(0)|. Therefore, we may assume without loss of
generality thatf−1(0)= ∅ throughout this section.
We first consider the case whenB is a complete graph. The proof of the following lemma is straightforward and hence omitted.

Lemma 4. Suppose B is a complete graph. Iff−1(1) �= ∅ or f−1(2)= ∅, thenpf (B)= �|f−1(1)|/2� elsepf (B)= 1.

Next, consider the case whenB is a path. This is useful as a subroutine for handling cycles. The proof of the following lemma
is also omitted.

Lemma 5. Suppose B is a path.

(1) If x is an end vertex of B withf (x)= 3, thenpf (B)= pf (B − x).
(2) If x is an end vertex of B withf (x)= 2, thenpf (B)= pf1(B).
(3) If B has an end vertex x and another vertex y withf (x)= f (y)= 1 such that no vertex between x and y has a label1, then

pf (B)= pf (B
′)+ 1whereB ′ is the path obtained from B by deletingx, y and all vertices between them.

We then consider the case whenB is a cycle. The proof of the following lemma is also omitted.

Lemma 6. Suppose B is a cycle.

(1) If f−1(2)= ∅, thenpf (B)= �|f−1(1)|/2�.
(2) If P is a path from x to y in B such thatf−1(1) ∩ P = {x, y} andf−1(2) ∩ P �= ∅, thenpf (B)= pf (B − P)+ 1.

Finally,weconsider thecasewhenB is acompletebipartitegraphwithC∪D asabipartitionof thevertexset. Fori ∈ {0,1,2,3},
let

Ci = {u ∈ C : f (u)= i} with ci = |Ci |;

Di = {v ∈ D : f (v)= i} with di = |Di |.

We have the following lemmas.

Lemma 7. If c1= d1= 0 andc2�d2 andx ∈ C2, thenpf (B)= pf ′(B) wheref ′ is the same as f exceptf ′(x)= 1.

Proof. pf (B)�pf ′(B) follows from the fact that anyf ′-path partition ofB is anf-partition.
SupposeP is an optimalf-path partition ofB. We may assume thatP is chosen so that the paths inP cover as few vertices

as possible. For the case whenP has a pathPywith y ∈ C, we may interchangey andx to assume thatPx ∈ P. In this case,
P is anf ′-path partition ofB and sopf ′(B)�pf (B). So, now assume that all end vertices of paths inP are inD. Then, these
end vertices are all inD2 for otherwise we may delete those end vertices inD3 to get a newP which covers fewer vertices. We
may further assume that paths inP cover no vertices inD3, for otherwise we may interchange such a vertex with an end vertex
of a path inP and then delete it from the path. Thus each path ofP uses vertices inC2 ∪ C3 ∪D2, and has end vertices inD2.
These imply thatd2>c2, contradicting thatc2�d2. �

By symmetry, we may prove a similar theorem for the case whend1= c1= 0 andd2�c2 andd2�1.
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Lemma 8. Supposex ∈ C1. Also, eitherd2�1 with y ∈ D2, or elsec1>d1 andd2 = 0<d3 with y ∈ D3. Thenpf (B) =
pf ′(B − x), wheref ′ is the same as f exceptf ′(y)= 1.

Proof. SupposePy is in an optimalf ′-path partitionP of B − x. Then(P− {Py}) ∪ {Pyx} is anf-path partition ofB and so
pf (B)�pf ′(B − x).
On the other hand, supposePx is in an optimalf-path partitionP of B. For the case wheny is not covered by any path inP,

we havey ∈ D3 and soc1>d1 andd2 = 0. Consequently, there is someQz ∈ P with z ∈ C2 ∪ C3 or z ∈ D3. For the former
case, we replaceQzbyQzyin P; for the later, we replaceQzbyQy. So, in any case we may assume thaty is covered by some
pathRySin P. If RyS = Px, then again we may interchangey with the last vertex ofP to assume thatRyS = Tyx in P for
someT. If RyS �= Px, then we may replace the two pathsRySandPxbyRyxandPS. So, in any case, we may assume thatP

has a pathUyx. Then,(P− {Uyx}) ∪ {Uy} is anf ′-path partition ofB − x. Thuspf ′(B − x)�pf (B). �

By symmetry, we may prove a similar theorem for the case whenx ∈ D1; and eitherc2�1 with y ∈ C2, or elsed1>c1 and
c2 = 0<c3 with y ∈ C3.

4. Algorithm

We are ready to give a linear-time algorithm for the path-partition problem in graphs whose blocks are complete graphs,
cycles or complete bipartite graphs. Notice that we may consider only connected graphs. We present five procedures. The first
four are subroutines which calculatef-path-partition numbers of complete graphs, paths, cycles and complete bipartite graphs,
respectively, by using Lemmas 4–8. The last one is the main routine for the problem.
First, Lemmas 1(4) and 4 lead to the following subroutine for complete graphs.

Algorithm PCG. Find thef-path partition numberpf (B) of a complete graphB.

Input. A complete graphB and a vertex labelingf.
Output. pf (B).
Method.

if (f−1(1) �= ∅ or f−1(2)= ∅)
then pf (B)= |f−1(0)| + �|f−1(1)|/2�;
elsepf (B)= |f−1(0)| + 1;
return pf (B).

Lemma 5 leads to the following subroutine for paths, which is useful for the cycle subroutine.

Algorithm PP. Find thef-path partition numberpf (B) of the pathB.

Input. A pathB and a vertex labelingf with f−1(0)= ∅.
Output. pf (B).
Method.

pf (B)← 0;
B ′ ← B;
while (B ′ �= ∅) do

choose an end vertexx of B ′;
if (f (x)= 3) thenB ′ ← B ′ − x else

choose a vertexy nearest toxwith f (y)= 1
(let y be the other end vertex if there is no such vertex);
pf (B)← pf (B)+ 1;
B ′ ← B ′− all vertices between (and including)x andy;

end else;
end while;
return pf (B).

Lemmas 1(4) and 6 lead to the following subroutine for cycles.
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Algorithm PC. Find thef-path partition numberpf (B) of a cycleB.

Input. A cycleB and a vertex labelingf.
Output. pf (B).
Method.

if (f−1(0)= ∅ and f−1(2)= ∅)
then pf (B)← �f−1(1)/2�;
else if(f−1(0)= ∅ andf−1(2) �= ∅ and|f−1(1)|�1) then

pf (B)← 1;
else if(f−1(0)= ∅ andf−1(2) �= ∅ and|f−1(1)|�2) then

choose a pathP from x to y such that
f−1(1) ∩ P = {x, y} andf−1(2) ∩ P �= ∅;

pf (B)← pf (B − P)+ 1 by callingPP(B − P);
else// nowf−1(0) �= ∅ //

letB − f−1(0) be the disjoint union of pathsP1, P2, . . . , Pk ;
pf (B)← |f−1(0)|;
for i = 1 to k do pf (B)← pf (B)+ pf (Pi) by callingPP(Pi );

end else;
return pf (B).

Lemmas 1(4), 7 and 8 lead to the following subroutine for complete bipartite graphs. In the subroutine, we inductively
reduce the size ofC ∪ D. Besides the reduction ofC0 andD0 in the second line, we consider 9 cases. The first case is
for C = ∅ or D = ∅. The next 5 cases are forc1�1 or d1�1. In particular, the case ofc1�1 is covered by cases 2
and 3, except whend2 = 0 and (c1�d1 or d3 = 0). The case ofd1�1 is covered by cases 4 and 5, except whenc2 =
0 and (d1�c1 or c3 = 0). The exceptions are then covered by case 6. Finally, the last 3 cases are
for c1= d1= 0.

Algorithm PCB. Find thef-path partition numberpf (B) of a complete bipartite graphB.
Input : A complete bipartite graphBwith a bipartitionC ∪D of vertices and a vertex labelingf.
Output : pf (B).

Method.
ci ← |f−1(i) ∩ C| anddi ← |f−1(i) ∩D| for 0� i�3;
pf (B)← c0 + d0;
while (true)do

if (c1= c2 = c3= 0 ord1= d2 = d3= 0) then
pf (B)← pf (B)+ c1+ c2 + d1+ d2; return pf (B);

else if(c1�1 andd2�1) then // use Lemma 8//
c1← c1− 1; d2← d2 − 1; d1← d1+ 1;

else if(c1�1 andc1>d1 andd2 = 0<d3) then // use Lemma 8//
c1← c1− 1; d3← d3− 1; d1← d1+ 1;

else if(d1�1 andc2�1) then // use the remark after Lemma 8//
d1← d1− 1; c2← c2 − 1; c1← c1+ 1;

else if(d1�1 andd1>c1 andc2 = 0<c3) then // use the remark after Lemma 8//
d1← d1− 1; c3← c3− 1; c1← c1+ 1;

else if(c2 = d2 = 0 and (c1= d1�1 or c1>d1�1 with d3= 0 ord1>c1�1 with c3= 0)) then
pf (B)← pf (B)+max{c1, d1}; return pf (B);

else// by nowc1= d1= 0 // if (c2 = d2 = 0) then
return pf (B);

else if(c2�d2) then // use Lemma 7//
c1← 1; c2← c2 − 1;

else if(c2<d2) then // use the remark after Lemma 7//
d1← 1; d2← d2 − 1;

end while.

Finally, Theorem 3 together with the subroutines above leads to the following main algorithm.



J.-J. Pan, G.J. Chang /Discrete Applied Mathematics 145 (2005) 429–436 435

Algorithm PG. Find the path-partition numberpf (G) of the connected graphGwhose blocks are cycles, complete graphs or
complete bipartite graphs.
Input : A graphG and a vertex labelingf.
Output : pf (G).

Method.
pf (G)← 0;
G′ ← G;
while (G′ �= ∅) do

choose a blockB of G′ with only one cut-vertexx or with no cut-vertex;
if (B is a complete graph)then

find pfi (B) by callingPCG(B, fi) for 0� i�3;
if (B is a cycle)then

find pfi (B) by callingPC(B, fi) for 0� i�3;
if (B is a complete bipartite graph)then

find pfi (B) by callingPCB(B, fi) for 0� i�3;
� : =pf0(B)− pf1(B);
� : =pf1(B)− pf2(B);
if (f (x)= 0) then

pf (G)← pf (G)+ pf (B)− 1;
else if(f (x)= 1) then

pf (G)← pf (G)+ pf�(B)− 1; f (x)← 1− �;
else// by nowf (x)= 2 or 3//

case 1:�= �= 0
pf (G)← pf (G)+ pf0(B)− 1;

case 2:�= 0 and�= 1
pf (G)← pf (G)+ pf (B); f (x)← 3;

case 3:�= 1
pf (G)← pf (G)+ pf1+�(B)− 1; f (x)← 1− �;

G′ : =G′ − (B − {x});
end while;
output pf (G).

Theorem 9. AlgorithmPGcomputes the f-path partition number of a connected graphwhose blocks are cycles,complete graphs
or complete bipartite graphs in linear time.

Proof. The correctness of the algorithm follows from Lemma 1(4) and Lemmas 4 to 8. The algorithm takes only linear time
since depth-first search can be used to find end blocks and each subroutine requires onlyO(|B|) operations. �
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